organic compounds
N-(2-Chlorophenyl)-3-methylbenzamide
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C14H12ClNO, the N—H bond is anti to the carbonyl bond and the two aromatic rings make a dihedral angle of 5.4 (2)°. In the crystal, intermolecular N—H⋯O hydrogen bonds connect the molecules into chains running along the b axis. The chains are interconnected through short Cl⋯Cl contacts [3.279 (1) Å].
Related literature
For the preparation of the compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S160053681000992X/bt5219sup1.cif
contains datablock global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681000992X/bt5219Isup2.hkl
The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.
All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(Caromatic, N) or 1.5Ueq(Cmethyl). The C14-methyl group exhibits orientational disorder in the positions of H atoms. The two sets of methyl hydrogen atoms were refined with occupancies of 0.66 (3) and 0.34 (3).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).C14H12ClNO | F(000) = 512 |
Mr = 245.7 | Dx = 1.369 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 16100 reflections |
a = 9.9972 (3) Å | θ = 2.1–29.5° |
b = 4.9124 (1) Å | µ = 0.30 mm−1 |
c = 24.6662 (7) Å | T = 295 K |
β = 100.248 (3)° | Block, colourless |
V = 1192.04 (5) Å3 | 0.55 × 0.35 × 0.08 mm |
Z = 4 |
Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector | 2119 independent reflections |
Graphite monochromator | 1884 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.050 |
ω scans | θmax = 25.1°, θmin = 2.1° |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | h = −11→11 |
Tmin = 0.897, Tmax = 0.978 | k = −5→5 |
25420 measured reflections | l = −29→29 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0534P)2 + 0.5999P] where P = (Fo2 + 2Fc2)/3 |
2119 reflections | (Δ/σ)max < 0.001 |
157 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
C14H12ClNO | V = 1192.04 (5) Å3 |
Mr = 245.7 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.9972 (3) Å | µ = 0.30 mm−1 |
b = 4.9124 (1) Å | T = 295 K |
c = 24.6662 (7) Å | 0.55 × 0.35 × 0.08 mm |
β = 100.248 (3)° |
Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector | 2119 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | 1884 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.978 | Rint = 0.050 |
25420 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.22 e Å−3 |
2119 reflections | Δρmin = −0.22 e Å−3 |
157 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.29838 (18) | −0.1699 (3) | 0.57259 (7) | 0.0361 (4) | |
C2 | 0.28794 (18) | −0.0729 (3) | 0.62913 (7) | 0.0351 (4) | |
C3 | 0.19358 (19) | 0.1212 (4) | 0.63886 (8) | 0.0379 (4) | |
H3 | 0.1363 | 0.1997 | 0.6091 | 0.045* | |
C4 | 0.18309 (19) | 0.2001 (4) | 0.69191 (8) | 0.0396 (4) | |
C5 | 0.2713 (2) | 0.0838 (4) | 0.73564 (8) | 0.0459 (5) | |
H5 | 0.2666 | 0.1359 | 0.7715 | 0.055* | |
C6 | 0.3659 (2) | −0.1087 (4) | 0.72660 (8) | 0.0479 (5) | |
H6 | 0.4246 | −0.1841 | 0.7563 | 0.057* | |
C7 | 0.3737 (2) | −0.1891 (4) | 0.67377 (8) | 0.0425 (5) | |
H7 | 0.4362 | −0.3211 | 0.6679 | 0.051* | |
C8 | 0.27931 (18) | −0.0271 (3) | 0.47628 (7) | 0.0349 (4) | |
C9 | 0.18735 (19) | 0.1059 (4) | 0.43608 (8) | 0.0385 (4) | |
C10 | 0.1894 (2) | 0.0693 (5) | 0.38088 (8) | 0.0523 (5) | |
H10 | 0.1269 | 0.1598 | 0.3546 | 0.063* | |
C11 | 0.2843 (3) | −0.1017 (5) | 0.36470 (9) | 0.0583 (6) | |
H11 | 0.2861 | −0.1271 | 0.3275 | 0.07* | |
C12 | 0.3762 (2) | −0.2344 (5) | 0.40389 (9) | 0.0539 (5) | |
H12 | 0.4401 | −0.3504 | 0.393 | 0.065* | |
C13 | 0.3748 (2) | −0.1975 (4) | 0.45914 (8) | 0.0437 (5) | |
H13 | 0.4382 | −0.2873 | 0.4852 | 0.052* | |
C14 | 0.0792 (2) | 0.4081 (4) | 0.70160 (9) | 0.0534 (5) | |
H14A | 0.0666 | 0.3986 | 0.7392 | 0.08* | 0.66 (3) |
H14B | −0.0056 | 0.3716 | 0.6776 | 0.08* | 0.66 (3) |
H14C | 0.1103 | 0.5868 | 0.6941 | 0.08* | 0.66 (3) |
H14D | 0.0476 | 0.506 | 0.6681 | 0.08* | 0.34 (3) |
H14E | 0.1198 | 0.5331 | 0.7297 | 0.08* | 0.34 (3) |
H14F | 0.0039 | 0.3179 | 0.7132 | 0.08* | 0.34 (3) |
N1 | 0.27660 (16) | 0.0202 (3) | 0.53244 (6) | 0.0373 (4) | |
H1N | 0.2597 | 0.1834 | 0.5419 | 0.045* | |
O1 | 0.32539 (16) | −0.4076 (3) | 0.56431 (6) | 0.0511 (4) | |
Cl1 | 0.06537 (6) | 0.31991 (12) | 0.45519 (2) | 0.0569 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0421 (10) | 0.0259 (9) | 0.0396 (10) | 0.0012 (7) | 0.0058 (8) | 0.0004 (7) |
C2 | 0.0404 (10) | 0.0263 (9) | 0.0390 (10) | −0.0015 (7) | 0.0081 (8) | 0.0021 (7) |
C3 | 0.0458 (10) | 0.0287 (9) | 0.0389 (10) | 0.0016 (8) | 0.0067 (8) | 0.0041 (7) |
C4 | 0.0465 (11) | 0.0300 (9) | 0.0447 (10) | −0.0042 (8) | 0.0149 (8) | −0.0015 (8) |
C5 | 0.0594 (13) | 0.0444 (11) | 0.0355 (10) | −0.0052 (9) | 0.0129 (9) | −0.0041 (8) |
C6 | 0.0527 (12) | 0.0505 (12) | 0.0384 (10) | 0.0024 (10) | 0.0025 (9) | 0.0049 (9) |
C7 | 0.0457 (11) | 0.0378 (10) | 0.0441 (11) | 0.0067 (8) | 0.0079 (8) | 0.0029 (8) |
C8 | 0.0412 (10) | 0.0264 (9) | 0.0381 (9) | −0.0006 (7) | 0.0096 (7) | −0.0024 (7) |
C9 | 0.0423 (10) | 0.0330 (9) | 0.0410 (10) | 0.0054 (8) | 0.0097 (8) | −0.0023 (8) |
C10 | 0.0593 (13) | 0.0581 (13) | 0.0383 (10) | 0.0138 (11) | 0.0052 (9) | 0.0003 (9) |
C11 | 0.0753 (15) | 0.0626 (14) | 0.0405 (11) | 0.0123 (12) | 0.0195 (10) | −0.0065 (10) |
C12 | 0.0595 (13) | 0.0512 (12) | 0.0556 (13) | 0.0149 (10) | 0.0227 (10) | −0.0088 (10) |
C13 | 0.0469 (11) | 0.0386 (10) | 0.0464 (11) | 0.0100 (9) | 0.0099 (9) | −0.0013 (9) |
C14 | 0.0628 (14) | 0.0444 (11) | 0.0571 (13) | 0.0064 (10) | 0.0222 (10) | −0.0039 (10) |
N1 | 0.0514 (9) | 0.0248 (7) | 0.0361 (8) | 0.0072 (7) | 0.0091 (7) | −0.0016 (6) |
O1 | 0.0801 (10) | 0.0252 (7) | 0.0494 (8) | 0.0073 (6) | 0.0152 (7) | −0.0007 (6) |
Cl1 | 0.0570 (3) | 0.0622 (4) | 0.0510 (3) | 0.0279 (3) | 0.0085 (2) | −0.0044 (2) |
C1—O1 | 1.224 (2) | C9—C10 | 1.377 (3) |
C1—N1 | 1.350 (2) | C9—Cl1 | 1.7375 (18) |
C1—C2 | 1.495 (3) | C10—C11 | 1.378 (3) |
C2—C7 | 1.392 (3) | C10—H10 | 0.93 |
C2—C3 | 1.392 (3) | C11—C12 | 1.374 (3) |
C3—C4 | 1.386 (3) | C11—H11 | 0.93 |
C3—H3 | 0.93 | C12—C13 | 1.377 (3) |
C4—C5 | 1.389 (3) | C12—H12 | 0.93 |
C4—C14 | 1.507 (3) | C13—H13 | 0.93 |
C5—C6 | 1.384 (3) | C14—H14A | 0.96 |
C5—H5 | 0.93 | C14—H14B | 0.96 |
C6—C7 | 1.377 (3) | C14—H14C | 0.96 |
C6—H6 | 0.93 | C14—H14D | 0.96 |
C7—H7 | 0.93 | C14—H14E | 0.96 |
C8—C9 | 1.390 (3) | C14—H14F | 0.96 |
C8—C13 | 1.391 (3) | N1—H1N | 0.86 |
C8—N1 | 1.410 (2) | ||
O1—C1—N1 | 123.31 (17) | C8—C9—Cl1 | 119.86 (14) |
O1—C1—C2 | 120.91 (16) | C9—C10—C11 | 119.87 (19) |
N1—C1—C2 | 115.78 (15) | C9—C10—H10 | 120.1 |
C7—C2—C3 | 119.03 (17) | C11—C10—H10 | 120.1 |
C7—C2—C1 | 118.18 (16) | C12—C11—C10 | 119.63 (19) |
C3—C2—C1 | 122.76 (16) | C12—C11—H11 | 120.2 |
C4—C3—C2 | 121.43 (17) | C10—C11—H11 | 120.2 |
C4—C3—H3 | 119.3 | C11—C12—C13 | 120.66 (19) |
C2—C3—H3 | 119.3 | C11—C12—H12 | 119.7 |
C3—C4—C5 | 118.30 (17) | C13—C12—H12 | 119.7 |
C3—C4—C14 | 120.62 (18) | C12—C13—C8 | 120.58 (19) |
C5—C4—C14 | 121.08 (18) | C12—C13—H13 | 119.7 |
C6—C5—C4 | 120.91 (18) | C8—C13—H13 | 119.7 |
C6—C5—H5 | 119.5 | C4—C14—H14A | 109.5 |
C4—C5—H5 | 119.5 | C4—C14—H14B | 109.5 |
C7—C6—C5 | 120.24 (18) | C4—C14—H14C | 109.5 |
C7—C6—H6 | 119.9 | C4—C14—H14D | 109.5 |
C5—C6—H6 | 119.9 | C4—C14—H14E | 109.5 |
C6—C7—C2 | 120.07 (18) | H14D—C14—H14E | 109.5 |
C6—C7—H7 | 120 | C4—C14—H14F | 109.5 |
C2—C7—H7 | 120 | H14D—C14—H14F | 109.5 |
C9—C8—C13 | 117.94 (17) | H14E—C14—H14F | 109.5 |
C9—C8—N1 | 119.86 (16) | C1—N1—C8 | 125.30 (15) |
C13—C8—N1 | 122.16 (17) | C1—N1—H1N | 117.3 |
C10—C9—C8 | 121.32 (17) | C8—N1—H1N | 117.3 |
C10—C9—Cl1 | 118.82 (15) | ||
O1—C1—C2—C7 | 34.3 (3) | N1—C8—C9—C10 | 178.40 (18) |
N1—C1—C2—C7 | −145.58 (18) | C13—C8—C9—Cl1 | 179.69 (14) |
O1—C1—C2—C3 | −143.6 (2) | N1—C8—C9—Cl1 | −2.4 (2) |
N1—C1—C2—C3 | 36.5 (2) | C8—C9—C10—C11 | −0.1 (3) |
C7—C2—C3—C4 | −0.2 (3) | Cl1—C9—C10—C11 | −179.31 (18) |
C1—C2—C3—C4 | 177.67 (17) | C9—C10—C11—C12 | 0.0 (4) |
C2—C3—C4—C5 | 1.1 (3) | C10—C11—C12—C13 | −0.2 (4) |
C2—C3—C4—C14 | −179.28 (17) | C11—C12—C13—C8 | 0.6 (3) |
C3—C4—C5—C6 | −0.9 (3) | C9—C8—C13—C12 | −0.8 (3) |
C14—C4—C5—C6 | 179.54 (19) | N1—C8—C13—C12 | −178.60 (18) |
C4—C5—C6—C7 | −0.3 (3) | O1—C1—N1—C8 | 1.2 (3) |
C5—C6—C7—C2 | 1.3 (3) | C2—C1—N1—C8 | −178.98 (16) |
C3—C2—C7—C6 | −1.0 (3) | C9—C8—N1—C1 | 142.39 (19) |
C1—C2—C7—C6 | −178.99 (18) | C13—C8—N1—C1 | −39.8 (3) |
C13—C8—C9—C10 | 0.5 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.16 | 2.936 (2) | 151 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C14H12ClNO |
Mr | 245.7 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 295 |
a, b, c (Å) | 9.9972 (3), 4.9124 (1), 24.6662 (7) |
β (°) | 100.248 (3) |
V (Å3) | 1192.04 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.55 × 0.35 × 0.08 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.897, 0.978 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25420, 2119, 1884 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.108, 1.05 |
No. of reflections | 2119 |
No. of parameters | 157 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.22, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O1i | 0.86 | 2.16 | 2.936 (2) | 151 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.
References
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1421. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230. CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b), the structure of N-(2-chlorophenyl)3-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in in N-(2-chlorophenyl)2-methylbenzamide (II), N-(2-chlorophenyl)benzamide (III)(Gowda et al., 2008b), 3-methyl-N-(phenyl)benzamide (IV) (Gowda et al., 2008a) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is also anti to the meta- methyl substituent in the benzoyl ring, while the conformation of the N—H bond is syn to the ortho-Cl group in the aniline ring..
The central amide group –NH—C(=O)– is twisted by 35.6 (2)° and 37.9 (2)° out of the planes of the 3-methylphenyl and 2-chlorophenyl rings, respectively.
The dihedral angle between the two benzene rings is 5.4 (2)°, compared to the values of 7.4 (3)° in (II) and 22.2 (2)°) & 75.9 (1), in the molecules 1 and 2 of (IV), respectively.
The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the b-axis is shown in Fig. 2. The chains are interconnected through short Cl···Cl contacts of 3.279 (1) Å.