organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)-3-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 March 2010; accepted 17 March 2010; online 20 March 2010)

In the title compound, C14H12ClNO, the N—H bond is anti to the carbonyl bond and the two aromatic rings make a dihedral angle of 5.4 (2)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into chains running along the b axis. The chains are inter­connected through short Cl⋯Cl contacts [3.279 (1) Å].

Related literature

For the preparation of the compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770.],b[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1421.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO

  • Mr = 245.7

  • Monoclinic, P 21 /c

  • a = 9.9972 (3) Å

  • b = 4.9124 (1) Å

  • c = 24.6662 (7) Å

  • β = 100.248 (3)°

  • V = 1192.04 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 295 K

  • 0.55 × 0.35 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.897, Tmax = 0.978

  • 25420 measured reflections

  • 2119 independent reflections

  • 1884 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.108

  • S = 1.05

  • 2119 reflections

  • 157 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.16 2.936 (2) 151
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b), the structure of N-(2-chlorophenyl)3-methylbenzamide (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in in N-(2-chlorophenyl)2-methylbenzamide (II), N-(2-chlorophenyl)benzamide (III)(Gowda et al., 2008b), 3-methyl-N-(phenyl)benzamide (IV) (Gowda et al., 2008a) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is also anti to the meta- methyl substituent in the benzoyl ring, while the conformation of the N—H bond is syn to the ortho-Cl group in the aniline ring..

The central amide group –NH—C(=O)– is twisted by 35.6 (2)° and 37.9 (2)° out of the planes of the 3-methylphenyl and 2-chlorophenyl rings, respectively.

The dihedral angle between the two benzene rings is 5.4 (2)°, compared to the values of 7.4 (3)° in (II) and 22.2 (2)°) & 75.9 (1), in the molecules 1 and 2 of (IV), respectively.

The packing diagram of molecules in (I) showing the intermolecular N–H···O hydrogen bonds (Table 1) involved in the formation of molecular chains running along the b-axis is shown in Fig. 2. The chains are interconnected through short Cl···Cl contacts of 3.279 (1) Å.

Related literature top

For the preparation of the compound, see: Gowda et al. (2003). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution at room temperature.

Refinement top

All hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The Uiso(H) values were set at 1.2Ueq(Caromatic, N) or 1.5Ueq(Cmethyl). The C14-methyl group exhibits orientational disorder in the positions of H atoms. The two sets of methyl hydrogen atoms were refined with occupancies of 0.66 (3) and 0.34 (3).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of crystal structure of (I) showing molecular chains running along the b-axis and interconnected through the Cl—Cl contacts. Hydrogen bonds and short Cl—Cl contacts are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted. Symmetry codes: (i) x, 1+y, z; (ii) -x, 1-y, 1-z.
N-(2-Chlorophenyl)-3-methylbenzamide top
Crystal data top
C14H12ClNOF(000) = 512
Mr = 245.7Dx = 1.369 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 16100 reflections
a = 9.9972 (3) Åθ = 2.1–29.5°
b = 4.9124 (1) ŵ = 0.30 mm1
c = 24.6662 (7) ÅT = 295 K
β = 100.248 (3)°Block, colourless
V = 1192.04 (5) Å30.55 × 0.35 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
2119 independent reflections
Graphite monochromator1884 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.050
ω scansθmax = 25.1°, θmin = 2.1°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1111
Tmin = 0.897, Tmax = 0.978k = 55
25420 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.5999P]
where P = (Fo2 + 2Fc2)/3
2119 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H12ClNOV = 1192.04 (5) Å3
Mr = 245.7Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9972 (3) ŵ = 0.30 mm1
b = 4.9124 (1) ÅT = 295 K
c = 24.6662 (7) Å0.55 × 0.35 × 0.08 mm
β = 100.248 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
2119 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1884 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.978Rint = 0.050
25420 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
2119 reflectionsΔρmin = 0.22 e Å3
157 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.29838 (18)0.1699 (3)0.57259 (7)0.0361 (4)
C20.28794 (18)0.0729 (3)0.62913 (7)0.0351 (4)
C30.19358 (19)0.1212 (4)0.63886 (8)0.0379 (4)
H30.13630.19970.60910.045*
C40.18309 (19)0.2001 (4)0.69191 (8)0.0396 (4)
C50.2713 (2)0.0838 (4)0.73564 (8)0.0459 (5)
H50.26660.13590.77150.055*
C60.3659 (2)0.1087 (4)0.72660 (8)0.0479 (5)
H60.42460.18410.75630.057*
C70.3737 (2)0.1891 (4)0.67377 (8)0.0425 (5)
H70.43620.32110.66790.051*
C80.27931 (18)0.0271 (3)0.47628 (7)0.0349 (4)
C90.18735 (19)0.1059 (4)0.43608 (8)0.0385 (4)
C100.1894 (2)0.0693 (5)0.38088 (8)0.0523 (5)
H100.12690.15980.35460.063*
C110.2843 (3)0.1017 (5)0.36470 (9)0.0583 (6)
H110.28610.12710.32750.07*
C120.3762 (2)0.2344 (5)0.40389 (9)0.0539 (5)
H120.44010.35040.3930.065*
C130.3748 (2)0.1975 (4)0.45914 (8)0.0437 (5)
H130.43820.28730.48520.052*
C140.0792 (2)0.4081 (4)0.70160 (9)0.0534 (5)
H14A0.06660.39860.73920.08*0.66 (3)
H14B0.00560.37160.67760.08*0.66 (3)
H14C0.11030.58680.69410.08*0.66 (3)
H14D0.04760.5060.66810.08*0.34 (3)
H14E0.11980.53310.72970.08*0.34 (3)
H14F0.00390.31790.71320.08*0.34 (3)
N10.27660 (16)0.0202 (3)0.53244 (6)0.0373 (4)
H1N0.25970.18340.54190.045*
O10.32539 (16)0.4076 (3)0.56431 (6)0.0511 (4)
Cl10.06537 (6)0.31991 (12)0.45519 (2)0.0569 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0421 (10)0.0259 (9)0.0396 (10)0.0012 (7)0.0058 (8)0.0004 (7)
C20.0404 (10)0.0263 (9)0.0390 (10)0.0015 (7)0.0081 (8)0.0021 (7)
C30.0458 (10)0.0287 (9)0.0389 (10)0.0016 (8)0.0067 (8)0.0041 (7)
C40.0465 (11)0.0300 (9)0.0447 (10)0.0042 (8)0.0149 (8)0.0015 (8)
C50.0594 (13)0.0444 (11)0.0355 (10)0.0052 (9)0.0129 (9)0.0041 (8)
C60.0527 (12)0.0505 (12)0.0384 (10)0.0024 (10)0.0025 (9)0.0049 (9)
C70.0457 (11)0.0378 (10)0.0441 (11)0.0067 (8)0.0079 (8)0.0029 (8)
C80.0412 (10)0.0264 (9)0.0381 (9)0.0006 (7)0.0096 (7)0.0024 (7)
C90.0423 (10)0.0330 (9)0.0410 (10)0.0054 (8)0.0097 (8)0.0023 (8)
C100.0593 (13)0.0581 (13)0.0383 (10)0.0138 (11)0.0052 (9)0.0003 (9)
C110.0753 (15)0.0626 (14)0.0405 (11)0.0123 (12)0.0195 (10)0.0065 (10)
C120.0595 (13)0.0512 (12)0.0556 (13)0.0149 (10)0.0227 (10)0.0088 (10)
C130.0469 (11)0.0386 (10)0.0464 (11)0.0100 (9)0.0099 (9)0.0013 (9)
C140.0628 (14)0.0444 (11)0.0571 (13)0.0064 (10)0.0222 (10)0.0039 (10)
N10.0514 (9)0.0248 (7)0.0361 (8)0.0072 (7)0.0091 (7)0.0016 (6)
O10.0801 (10)0.0252 (7)0.0494 (8)0.0073 (6)0.0152 (7)0.0007 (6)
Cl10.0570 (3)0.0622 (4)0.0510 (3)0.0279 (3)0.0085 (2)0.0044 (2)
Geometric parameters (Å, º) top
C1—O11.224 (2)C9—C101.377 (3)
C1—N11.350 (2)C9—Cl11.7375 (18)
C1—C21.495 (3)C10—C111.378 (3)
C2—C71.392 (3)C10—H100.93
C2—C31.392 (3)C11—C121.374 (3)
C3—C41.386 (3)C11—H110.93
C3—H30.93C12—C131.377 (3)
C4—C51.389 (3)C12—H120.93
C4—C141.507 (3)C13—H130.93
C5—C61.384 (3)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—C71.377 (3)C14—H14C0.96
C6—H60.93C14—H14D0.96
C7—H70.93C14—H14E0.96
C8—C91.390 (3)C14—H14F0.96
C8—C131.391 (3)N1—H1N0.86
C8—N11.410 (2)
O1—C1—N1123.31 (17)C8—C9—Cl1119.86 (14)
O1—C1—C2120.91 (16)C9—C10—C11119.87 (19)
N1—C1—C2115.78 (15)C9—C10—H10120.1
C7—C2—C3119.03 (17)C11—C10—H10120.1
C7—C2—C1118.18 (16)C12—C11—C10119.63 (19)
C3—C2—C1122.76 (16)C12—C11—H11120.2
C4—C3—C2121.43 (17)C10—C11—H11120.2
C4—C3—H3119.3C11—C12—C13120.66 (19)
C2—C3—H3119.3C11—C12—H12119.7
C3—C4—C5118.30 (17)C13—C12—H12119.7
C3—C4—C14120.62 (18)C12—C13—C8120.58 (19)
C5—C4—C14121.08 (18)C12—C13—H13119.7
C6—C5—C4120.91 (18)C8—C13—H13119.7
C6—C5—H5119.5C4—C14—H14A109.5
C4—C5—H5119.5C4—C14—H14B109.5
C7—C6—C5120.24 (18)C4—C14—H14C109.5
C7—C6—H6119.9C4—C14—H14D109.5
C5—C6—H6119.9C4—C14—H14E109.5
C6—C7—C2120.07 (18)H14D—C14—H14E109.5
C6—C7—H7120C4—C14—H14F109.5
C2—C7—H7120H14D—C14—H14F109.5
C9—C8—C13117.94 (17)H14E—C14—H14F109.5
C9—C8—N1119.86 (16)C1—N1—C8125.30 (15)
C13—C8—N1122.16 (17)C1—N1—H1N117.3
C10—C9—C8121.32 (17)C8—N1—H1N117.3
C10—C9—Cl1118.82 (15)
O1—C1—C2—C734.3 (3)N1—C8—C9—C10178.40 (18)
N1—C1—C2—C7145.58 (18)C13—C8—C9—Cl1179.69 (14)
O1—C1—C2—C3143.6 (2)N1—C8—C9—Cl12.4 (2)
N1—C1—C2—C336.5 (2)C8—C9—C10—C110.1 (3)
C7—C2—C3—C40.2 (3)Cl1—C9—C10—C11179.31 (18)
C1—C2—C3—C4177.67 (17)C9—C10—C11—C120.0 (4)
C2—C3—C4—C51.1 (3)C10—C11—C12—C130.2 (4)
C2—C3—C4—C14179.28 (17)C11—C12—C13—C80.6 (3)
C3—C4—C5—C60.9 (3)C9—C8—C13—C120.8 (3)
C14—C4—C5—C6179.54 (19)N1—C8—C13—C12178.60 (18)
C4—C5—C6—C70.3 (3)O1—C1—N1—C81.2 (3)
C5—C6—C7—C21.3 (3)C2—C1—N1—C8178.98 (16)
C3—C2—C7—C61.0 (3)C9—C8—N1—C1142.39 (19)
C1—C2—C7—C6178.99 (18)C13—C8—N1—C139.8 (3)
C13—C8—C9—C100.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.162.936 (2)151
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO
Mr245.7
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.9972 (3), 4.9124 (1), 24.6662 (7)
β (°) 100.248 (3)
V3)1192.04 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.55 × 0.35 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.897, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
25420, 2119, 1884
Rint0.050
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.108, 1.05
No. of reflections2119
No. of parameters157
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.162.936 (2)151
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds