organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Chloro­phen­yl)-3-methyl­benzamide hemihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 19 March 2010; accepted 19 March 2010; online 31 March 2010)

In the title compound, C14H12ClNO·0.5H2O, the N—H bond is in an anti conformation to the C=O bond. The two aromatic rings make a dihedral angle of 49.5 (1)°. The water mol­ecule lies on a twofold rotation axis. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds connect the mol­ecules into a three-dimensional network.

Related literature

For the preparation of the title compound and related structures, see: Gowda et al. (2008a[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770.],b[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o462.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Rodrigues et al. (2010[Rodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClNO·0.5H2O

  • Mr = 254.71

  • Monoclinic, C 2/c

  • a = 7.6497 (3) Å

  • b = 12.6829 (5) Å

  • c = 25.9694 (10) Å

  • β = 95.365 (3)°

  • V = 2508.54 (16) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 295 K

  • 0.52 × 0.16 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector

  • Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.860, Tmax = 0.984

  • 19774 measured reflections

  • 2277 independent reflections

  • 1894 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.095

  • S = 1.07

  • 2277 reflections

  • 164 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2Wi 0.86 2.2 3.0155 (19) 158
O2W—H2W⋯O1 0.813 (18) 1.991 (18) 2.7984 (17) 171.9 (19)
Symmetry code: (i) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In the present work, as part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, Rodrigues et al., 2010), the structure of N-(3-chlorophenyl)3-methylbenzamide hydrate (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(3-chlorophenyl)3-chlorobenzamide (II), N-(3-chlorophenyl)benzamide (III)(Gowda et al., 2008b), 3-methyl-N-(phenyl)benzamide (IV)(Gowda et al., 2008a), N-(2-chlorophenyl)3-methylbenzamide (V)(Rodrigues et al., 2010) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is also anti to the meta- methyl substituent in the benzoyl ring and that of the N—H bond is anti to the meta-Cl group in the aniline ring, compared to the syn conformation observed between the N—H bond and the ortho-Cl group in the aniline ring of (V).

The two aromatic rings make a dihedral angle of 49.5 (1)°. The central amide group –NH–C(=O)– is twisted by 35.1 (1)° and 15.9 (1)° out of the planes of the 3-methylphenyl and 3-chlorophenyl ring, respectively. The molecular structure is stabilized by the C9–H9···O1 intramolecular hydrogen bond (Table 1). In the crystal, the water molecule lies on a twofold rotation axis.

Intermolecular N–H···O and O–H···O hydrogen bonds connect the molecules into a three-dimensional network (Fig.2). The water O2w oxygen lies on a twofold rotation axis 0,y,1/4 and its hydrogen atoms are related by the symmetry -x, y, 1/2 - z.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2008a,b). For related structures, see: Bowes et al. (2003); Gowda et al. (2008a,b); Rodrigues et al. (2010).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2008a,b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution in the presence of a few drops of water, at room temperature.

Refinement top

The C- and N- bound hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The coordinates of the water hydrogen atom were refined. The Uiso(H) values were set at 1.2Ueq(C aromatic, N, O) and 1.5Ueq(Cmethyl). The C14-methyl group exhibits orientational disorder in the positions of H atoms. The two sets of methyl hydrogen atoms were refined with occupancies of 0.52 (9)) and 0.48 (9).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii. Only one set of the disordered methyl H atoms is shown.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding were omitted. Symmetry code: (i) x+1/2, y+1/2, z.
N-(3-Chlorophenyl)-3-methylbenzamide hemihydrate top
Crystal data top
C14H12ClNO·0.5H2OF(000) = 1064
Mr = 254.71Dx = 1.349 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9097 reflections
a = 7.6497 (3) Åθ = 2.4–29.6°
b = 12.6829 (5) ŵ = 0.29 mm1
c = 25.9694 (10) ÅT = 295 K
β = 95.365 (3)°Rod, colourless
V = 2508.54 (16) Å30.52 × 0.16 × 0.06 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
2277 independent reflections
Graphite monochromator1894 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.029
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 99
Tmin = 0.860, Tmax = 0.984k = 1515
19774 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.037P)2 + 1.9211P]
where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.16 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H12ClNO·0.5H2OV = 2508.54 (16) Å3
Mr = 254.71Z = 8
Monoclinic, C2/cMo Kα radiation
a = 7.6497 (3) ŵ = 0.29 mm1
b = 12.6829 (5) ÅT = 295 K
c = 25.9694 (10) Å0.52 × 0.16 × 0.06 mm
β = 95.365 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
2277 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction, 2009)
1894 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.984Rint = 0.029
19774 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0412 restraints
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.16 e Å3
2277 reflectionsΔρmin = 0.20 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2652 (2)0.58130 (14)0.27335 (7)0.0377 (4)
C20.2321 (2)0.59925 (13)0.21633 (6)0.0357 (4)
C30.1655 (2)0.69364 (13)0.19574 (6)0.0369 (4)
H30.14510.7490.21790.044*
C40.1286 (2)0.70707 (14)0.14252 (7)0.0384 (4)
C50.1625 (2)0.62336 (15)0.11091 (7)0.0447 (4)
H50.13890.63070.07530.054*
C60.2302 (3)0.52944 (15)0.13046 (7)0.0485 (5)
H60.25350.47480.10820.058*
C70.2633 (2)0.51674 (14)0.18334 (7)0.0435 (4)
H70.30640.45290.19680.052*
C80.3568 (2)0.67382 (13)0.35616 (6)0.0330 (4)
C90.2973 (2)0.59967 (14)0.38974 (7)0.0392 (4)
H90.23620.54020.37720.047*
C100.3311 (2)0.61650 (15)0.44221 (7)0.0450 (4)
C110.4205 (3)0.70309 (16)0.46236 (7)0.0524 (5)
H110.44240.71230.49790.063*
C120.4770 (3)0.77618 (16)0.42818 (7)0.0516 (5)
H120.53710.83590.44090.062*
C130.4461 (2)0.76231 (14)0.37559 (7)0.0407 (4)
H130.48510.81230.35310.049*
C140.0552 (3)0.80902 (15)0.12042 (8)0.0542 (5)
H14A0.08340.8650.14460.081*0.52 (9)
H14B0.070.80320.11380.081*0.52 (9)
H14C0.10530.8240.08870.081*0.52 (9)
H14D0.14180.84360.10190.081*0.48 (9)
H14E0.02420.85370.1480.081*0.48 (9)
H14F0.04740.79490.09720.081*0.48 (9)
N10.32473 (17)0.66596 (11)0.30168 (5)0.0362 (3)
H1N0.34560.72170.28450.043*
O10.24049 (18)0.49471 (10)0.29259 (5)0.0516 (4)
O2W00.34503 (13)0.250.0413 (4)
H2W0.077 (2)0.3837 (15)0.2631 (7)0.05*
Cl10.25269 (9)0.52457 (5)0.48445 (2)0.0763 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0362 (9)0.0364 (10)0.0401 (9)0.0005 (7)0.0012 (7)0.0016 (8)
C20.0340 (9)0.0362 (10)0.0368 (9)0.0055 (7)0.0030 (7)0.0004 (7)
C30.0350 (9)0.0368 (9)0.0389 (10)0.0028 (7)0.0028 (7)0.0064 (8)
C40.0356 (9)0.0388 (10)0.0401 (10)0.0050 (7)0.0005 (7)0.0018 (8)
C50.0503 (10)0.0495 (11)0.0337 (9)0.0073 (9)0.0010 (8)0.0041 (9)
C60.0611 (12)0.0412 (11)0.0438 (11)0.0018 (9)0.0090 (9)0.0111 (9)
C70.0514 (10)0.0354 (10)0.0440 (10)0.0002 (8)0.0057 (8)0.0023 (8)
C80.0322 (8)0.0330 (9)0.0339 (9)0.0055 (7)0.0028 (7)0.0017 (7)
C90.0442 (10)0.0344 (9)0.0389 (10)0.0013 (8)0.0035 (8)0.0021 (8)
C100.0534 (11)0.0441 (11)0.0381 (10)0.0026 (9)0.0077 (8)0.0044 (8)
C110.0641 (12)0.0601 (13)0.0321 (10)0.0029 (10)0.0007 (9)0.0071 (9)
C120.0566 (12)0.0477 (11)0.0497 (11)0.0101 (9)0.0014 (9)0.0113 (9)
C130.0456 (10)0.0380 (10)0.0388 (10)0.0027 (8)0.0051 (8)0.0012 (8)
C140.0607 (12)0.0472 (12)0.0529 (12)0.0029 (10)0.0041 (9)0.0026 (9)
N10.0435 (8)0.0319 (7)0.0331 (8)0.0034 (6)0.0025 (6)0.0023 (6)
O10.0757 (9)0.0354 (7)0.0417 (7)0.0116 (6)0.0055 (6)0.0036 (6)
O2W0.0476 (10)0.0314 (10)0.0442 (10)00.0003 (8)0
Cl10.1181 (5)0.0692 (4)0.0436 (3)0.0204 (3)0.0181 (3)0.0103 (3)
Geometric parameters (Å, º) top
C1—O11.228 (2)C9—C101.380 (2)
C1—N11.356 (2)C9—H90.93
C1—C21.496 (2)C10—C111.371 (3)
C2—C71.387 (2)C10—Cl11.7451 (19)
C2—C31.389 (2)C11—C121.380 (3)
C3—C41.395 (2)C11—H110.93
C3—H30.93C12—C131.375 (2)
C4—C51.382 (2)C12—H120.93
C4—C141.502 (3)C13—H130.93
C5—C61.377 (3)C14—H14A0.96
C5—H50.93C14—H14B0.96
C6—C71.382 (3)C14—H14C0.96
C6—H60.93C14—H14D0.96
C7—H70.93C14—H14E0.96
C8—C131.384 (2)C14—H14F0.96
C8—C91.388 (2)N1—H1N0.86
C8—N11.417 (2)O2W—H2W0.813 (18)
O1—C1—N1122.95 (16)C8—C9—H9120.9
O1—C1—C2121.35 (15)C11—C10—C9122.79 (17)
N1—C1—C2115.69 (15)C11—C10—Cl1118.93 (14)
C7—C2—C3119.37 (16)C9—C10—Cl1118.27 (14)
C7—C2—C1118.28 (15)C10—C11—C12117.86 (17)
C3—C2—C1122.30 (15)C10—C11—H11121.1
C2—C3—C4121.33 (16)C12—C11—H11121.1
C2—C3—H3119.3C13—C12—C11121.16 (18)
C4—C3—H3119.3C13—C12—H12119.4
C5—C4—C3117.58 (16)C11—C12—H12119.4
C5—C4—C14121.24 (16)C12—C13—C8119.93 (17)
C3—C4—C14121.17 (16)C12—C13—H13120
C6—C5—C4122.05 (17)C8—C13—H13120
C6—C5—H5119C4—C14—H14A109.5
C4—C5—H5119C4—C14—H14B109.5
C5—C6—C7119.67 (17)C4—C14—H14C109.5
C5—C6—H6120.2C4—C14—H14D109.5
C7—C6—H6120.2C4—C14—H14E109.5
C6—C7—C2119.98 (17)H14D—C14—H14E109.5
C6—C7—H7120C4—C14—H14F109.5
C2—C7—H7120H14D—C14—H14F109.5
C13—C8—C9119.99 (15)H14E—C14—H14F109.5
C13—C8—N1117.04 (15)C1—N1—C8127.99 (14)
C9—C8—N1122.92 (15)C1—N1—H1N116
C10—C9—C8118.26 (16)C8—N1—H1N116
C10—C9—H9120.9
O1—C1—C2—C733.4 (2)C13—C8—C9—C100.6 (2)
N1—C1—C2—C7146.10 (16)N1—C8—C9—C10178.05 (15)
O1—C1—C2—C3144.07 (17)C8—C9—C10—C110.1 (3)
N1—C1—C2—C336.4 (2)C8—C9—C10—Cl1178.80 (13)
C7—C2—C3—C40.2 (2)C9—C10—C11—C120.5 (3)
C1—C2—C3—C4177.18 (15)Cl1—C10—C11—C12178.23 (15)
C2—C3—C4—C50.7 (2)C10—C11—C12—C130.5 (3)
C2—C3—C4—C14179.53 (16)C11—C12—C13—C80.0 (3)
C3—C4—C5—C60.1 (3)C9—C8—C13—C120.6 (3)
C14—C4—C5—C6179.83 (17)N1—C8—C13—C12178.17 (16)
C4—C5—C6—C71.0 (3)O1—C1—N1—C84.7 (3)
C5—C6—C7—C21.5 (3)C2—C1—N1—C8175.85 (14)
C3—C2—C7—C60.9 (3)C13—C8—N1—C1169.04 (16)
C1—C2—C7—C6178.40 (16)C9—C8—N1—C113.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.862.23.0155 (19)158
O2W—H2W···O10.813 (18)1.991 (18)2.7984 (17)171.9 (19)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H12ClNO·0.5H2O
Mr254.71
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)7.6497 (3), 12.6829 (5), 25.9694 (10)
β (°) 95.365 (3)
V3)2508.54 (16)
Z8
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.52 × 0.16 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Ruby Gemini detector
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.860, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
19774, 2277, 1894
Rint0.029
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.095, 1.07
No. of reflections2277
No. of parameters164
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.20

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2Wi0.862.23.0155 (19)158
O2W—H2W···O10.813 (18)1.991 (18)2.7984 (17)171.9 (19)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o462.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds