organic compounds
N-(3-Chlorophenyl)-3-methylbenzamide hemihydrate
aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com
In the title compound, C14H12ClNO·0.5H2O, the N—H bond is in an anti conformation to the C=O bond. The two aromatic rings make a dihedral angle of 49.5 (1)°. The water molecule lies on a twofold rotation axis. In the crystal, intermolecular N—H⋯O and O—H⋯O hydrogen bonds connect the molecules into a three-dimensional network.
Related literature
For the preparation of the title compound and related structures, see: Gowda et al. (2008a,b); Bowes et al. (2003); Rodrigues et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810010354/bt5221sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010354/bt5221Isup2.hkl
The title compound was prepared according to the literature method (Gowda et al., 2008a,b). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its ethanolic solution in the presence of a few drops of water, at room temperature.
The C- and N- bound hydrogen atoms were positioned with idealized geometry using a riding model with C–H = 0.93 Å or 0.96 Å and N–H = 0.86 Å. The coordinates of the water hydrogen atom were refined. The Uiso(H) values were set at 1.2Ueq(C aromatic, N, O) and 1.5Ueq(Cmethyl). The C14-methyl group exhibits orientational disorder in the positions of H atoms. The two sets of methyl hydrogen atoms were refined with occupancies of 0.52 (9)) and 0.48 (9).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).C14H12ClNO·0.5H2O | F(000) = 1064 |
Mr = 254.71 | Dx = 1.349 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 9097 reflections |
a = 7.6497 (3) Å | θ = 2.4–29.6° |
b = 12.6829 (5) Å | µ = 0.29 mm−1 |
c = 25.9694 (10) Å | T = 295 K |
β = 95.365 (3)° | Rod, colourless |
V = 2508.54 (16) Å3 | 0.52 × 0.16 × 0.06 mm |
Z = 8 |
Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector | 2277 independent reflections |
Graphite monochromator | 1894 reflections with I > 2σ(I) |
Detector resolution: 10.434 pixels mm-1 | Rint = 0.029 |
ω scans | θmax = 25.3°, θmin = 3.1° |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | h = −9→9 |
Tmin = 0.860, Tmax = 0.984 | k = −15→15 |
19774 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.037P)2 + 1.9211P] where P = (Fo2 + 2Fc2)/3 |
2277 reflections | (Δ/σ)max = 0.001 |
164 parameters | Δρmax = 0.16 e Å−3 |
2 restraints | Δρmin = −0.20 e Å−3 |
C14H12ClNO·0.5H2O | V = 2508.54 (16) Å3 |
Mr = 254.71 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 7.6497 (3) Å | µ = 0.29 mm−1 |
b = 12.6829 (5) Å | T = 295 K |
c = 25.9694 (10) Å | 0.52 × 0.16 × 0.06 mm |
β = 95.365 (3)° |
Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector | 2277 independent reflections |
Absorption correction: analytical (CrysAlis PRO; Oxford Diffraction, 2009) | 1894 reflections with I > 2σ(I) |
Tmin = 0.860, Tmax = 0.984 | Rint = 0.029 |
19774 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 2 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 0.16 e Å−3 |
2277 reflections | Δρmin = −0.20 e Å−3 |
164 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C1 | 0.2652 (2) | 0.58130 (14) | 0.27335 (7) | 0.0377 (4) | |
C2 | 0.2321 (2) | 0.59925 (13) | 0.21633 (6) | 0.0357 (4) | |
C3 | 0.1655 (2) | 0.69364 (13) | 0.19574 (6) | 0.0369 (4) | |
H3 | 0.1451 | 0.749 | 0.2179 | 0.044* | |
C4 | 0.1286 (2) | 0.70707 (14) | 0.14252 (7) | 0.0384 (4) | |
C5 | 0.1625 (2) | 0.62336 (15) | 0.11091 (7) | 0.0447 (4) | |
H5 | 0.1389 | 0.6307 | 0.0753 | 0.054* | |
C6 | 0.2302 (3) | 0.52944 (15) | 0.13046 (7) | 0.0485 (5) | |
H6 | 0.2535 | 0.4748 | 0.1082 | 0.058* | |
C7 | 0.2633 (2) | 0.51674 (14) | 0.18334 (7) | 0.0435 (4) | |
H7 | 0.3064 | 0.4529 | 0.1968 | 0.052* | |
C8 | 0.3568 (2) | 0.67382 (13) | 0.35616 (6) | 0.0330 (4) | |
C9 | 0.2973 (2) | 0.59967 (14) | 0.38974 (7) | 0.0392 (4) | |
H9 | 0.2362 | 0.5402 | 0.3772 | 0.047* | |
C10 | 0.3311 (2) | 0.61650 (15) | 0.44221 (7) | 0.0450 (4) | |
C11 | 0.4205 (3) | 0.70309 (16) | 0.46236 (7) | 0.0524 (5) | |
H11 | 0.4424 | 0.7123 | 0.4979 | 0.063* | |
C12 | 0.4770 (3) | 0.77618 (16) | 0.42818 (7) | 0.0516 (5) | |
H12 | 0.5371 | 0.8359 | 0.4409 | 0.062* | |
C13 | 0.4461 (2) | 0.76231 (14) | 0.37559 (7) | 0.0407 (4) | |
H13 | 0.4851 | 0.8123 | 0.3531 | 0.049* | |
C14 | 0.0552 (3) | 0.80902 (15) | 0.12042 (8) | 0.0542 (5) | |
H14A | 0.0834 | 0.865 | 0.1446 | 0.081* | 0.52 (9) |
H14B | −0.07 | 0.8032 | 0.1138 | 0.081* | 0.52 (9) |
H14C | 0.1053 | 0.824 | 0.0887 | 0.081* | 0.52 (9) |
H14D | 0.1418 | 0.8436 | 0.1019 | 0.081* | 0.48 (9) |
H14E | 0.0242 | 0.8537 | 0.148 | 0.081* | 0.48 (9) |
H14F | −0.0474 | 0.7949 | 0.0972 | 0.081* | 0.48 (9) |
N1 | 0.32473 (17) | 0.66596 (11) | 0.30168 (5) | 0.0362 (3) | |
H1N | 0.3456 | 0.7217 | 0.2845 | 0.043* | |
O1 | 0.24049 (18) | 0.49471 (10) | 0.29259 (5) | 0.0516 (4) | |
O2W | 0 | 0.34503 (13) | 0.25 | 0.0413 (4) | |
H2W | 0.077 (2) | 0.3837 (15) | 0.2631 (7) | 0.05* | |
Cl1 | 0.25269 (9) | 0.52457 (5) | 0.48445 (2) | 0.0763 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0362 (9) | 0.0364 (10) | 0.0401 (9) | −0.0005 (7) | 0.0012 (7) | −0.0016 (8) |
C2 | 0.0340 (9) | 0.0362 (10) | 0.0368 (9) | −0.0055 (7) | 0.0030 (7) | −0.0004 (7) |
C3 | 0.0350 (9) | 0.0368 (9) | 0.0389 (10) | −0.0028 (7) | 0.0028 (7) | −0.0064 (8) |
C4 | 0.0356 (9) | 0.0388 (10) | 0.0401 (10) | −0.0050 (7) | −0.0005 (7) | −0.0018 (8) |
C5 | 0.0503 (10) | 0.0495 (11) | 0.0337 (9) | −0.0073 (9) | 0.0010 (8) | −0.0041 (9) |
C6 | 0.0611 (12) | 0.0412 (11) | 0.0438 (11) | −0.0018 (9) | 0.0090 (9) | −0.0111 (9) |
C7 | 0.0514 (10) | 0.0354 (10) | 0.0440 (10) | −0.0002 (8) | 0.0057 (8) | −0.0023 (8) |
C8 | 0.0322 (8) | 0.0330 (9) | 0.0339 (9) | 0.0055 (7) | 0.0028 (7) | −0.0017 (7) |
C9 | 0.0442 (10) | 0.0344 (9) | 0.0389 (10) | −0.0013 (8) | 0.0035 (8) | −0.0021 (8) |
C10 | 0.0534 (11) | 0.0441 (11) | 0.0381 (10) | 0.0026 (9) | 0.0077 (8) | 0.0044 (8) |
C11 | 0.0641 (12) | 0.0601 (13) | 0.0321 (10) | −0.0029 (10) | −0.0007 (9) | −0.0071 (9) |
C12 | 0.0566 (12) | 0.0477 (11) | 0.0497 (11) | −0.0101 (9) | 0.0014 (9) | −0.0113 (9) |
C13 | 0.0456 (10) | 0.0380 (10) | 0.0388 (10) | −0.0027 (8) | 0.0051 (8) | −0.0012 (8) |
C14 | 0.0607 (12) | 0.0472 (12) | 0.0529 (12) | 0.0029 (10) | −0.0041 (9) | 0.0026 (9) |
N1 | 0.0435 (8) | 0.0319 (7) | 0.0331 (8) | −0.0034 (6) | 0.0025 (6) | 0.0023 (6) |
O1 | 0.0757 (9) | 0.0354 (7) | 0.0417 (7) | −0.0116 (6) | −0.0055 (6) | 0.0036 (6) |
O2W | 0.0476 (10) | 0.0314 (10) | 0.0442 (10) | 0 | −0.0003 (8) | 0 |
Cl1 | 0.1181 (5) | 0.0692 (4) | 0.0436 (3) | −0.0204 (3) | 0.0181 (3) | 0.0103 (3) |
C1—O1 | 1.228 (2) | C9—C10 | 1.380 (2) |
C1—N1 | 1.356 (2) | C9—H9 | 0.93 |
C1—C2 | 1.496 (2) | C10—C11 | 1.371 (3) |
C2—C7 | 1.387 (2) | C10—Cl1 | 1.7451 (19) |
C2—C3 | 1.389 (2) | C11—C12 | 1.380 (3) |
C3—C4 | 1.395 (2) | C11—H11 | 0.93 |
C3—H3 | 0.93 | C12—C13 | 1.375 (2) |
C4—C5 | 1.382 (2) | C12—H12 | 0.93 |
C4—C14 | 1.502 (3) | C13—H13 | 0.93 |
C5—C6 | 1.377 (3) | C14—H14A | 0.96 |
C5—H5 | 0.93 | C14—H14B | 0.96 |
C6—C7 | 1.382 (3) | C14—H14C | 0.96 |
C6—H6 | 0.93 | C14—H14D | 0.96 |
C7—H7 | 0.93 | C14—H14E | 0.96 |
C8—C13 | 1.384 (2) | C14—H14F | 0.96 |
C8—C9 | 1.388 (2) | N1—H1N | 0.86 |
C8—N1 | 1.417 (2) | O2W—H2W | 0.813 (18) |
O1—C1—N1 | 122.95 (16) | C8—C9—H9 | 120.9 |
O1—C1—C2 | 121.35 (15) | C11—C10—C9 | 122.79 (17) |
N1—C1—C2 | 115.69 (15) | C11—C10—Cl1 | 118.93 (14) |
C7—C2—C3 | 119.37 (16) | C9—C10—Cl1 | 118.27 (14) |
C7—C2—C1 | 118.28 (15) | C10—C11—C12 | 117.86 (17) |
C3—C2—C1 | 122.30 (15) | C10—C11—H11 | 121.1 |
C2—C3—C4 | 121.33 (16) | C12—C11—H11 | 121.1 |
C2—C3—H3 | 119.3 | C13—C12—C11 | 121.16 (18) |
C4—C3—H3 | 119.3 | C13—C12—H12 | 119.4 |
C5—C4—C3 | 117.58 (16) | C11—C12—H12 | 119.4 |
C5—C4—C14 | 121.24 (16) | C12—C13—C8 | 119.93 (17) |
C3—C4—C14 | 121.17 (16) | C12—C13—H13 | 120 |
C6—C5—C4 | 122.05 (17) | C8—C13—H13 | 120 |
C6—C5—H5 | 119 | C4—C14—H14A | 109.5 |
C4—C5—H5 | 119 | C4—C14—H14B | 109.5 |
C5—C6—C7 | 119.67 (17) | C4—C14—H14C | 109.5 |
C5—C6—H6 | 120.2 | C4—C14—H14D | 109.5 |
C7—C6—H6 | 120.2 | C4—C14—H14E | 109.5 |
C6—C7—C2 | 119.98 (17) | H14D—C14—H14E | 109.5 |
C6—C7—H7 | 120 | C4—C14—H14F | 109.5 |
C2—C7—H7 | 120 | H14D—C14—H14F | 109.5 |
C13—C8—C9 | 119.99 (15) | H14E—C14—H14F | 109.5 |
C13—C8—N1 | 117.04 (15) | C1—N1—C8 | 127.99 (14) |
C9—C8—N1 | 122.92 (15) | C1—N1—H1N | 116 |
C10—C9—C8 | 118.26 (16) | C8—N1—H1N | 116 |
C10—C9—H9 | 120.9 | ||
O1—C1—C2—C7 | −33.4 (2) | C13—C8—C9—C10 | −0.6 (2) |
N1—C1—C2—C7 | 146.10 (16) | N1—C8—C9—C10 | −178.05 (15) |
O1—C1—C2—C3 | 144.07 (17) | C8—C9—C10—C11 | 0.1 (3) |
N1—C1—C2—C3 | −36.4 (2) | C8—C9—C10—Cl1 | 178.80 (13) |
C7—C2—C3—C4 | 0.2 (2) | C9—C10—C11—C12 | 0.5 (3) |
C1—C2—C3—C4 | −177.18 (15) | Cl1—C10—C11—C12 | −178.23 (15) |
C2—C3—C4—C5 | −0.7 (2) | C10—C11—C12—C13 | −0.5 (3) |
C2—C3—C4—C14 | 179.53 (16) | C11—C12—C13—C8 | 0.0 (3) |
C3—C4—C5—C6 | 0.1 (3) | C9—C8—C13—C12 | 0.6 (3) |
C14—C4—C5—C6 | 179.83 (17) | N1—C8—C13—C12 | 178.17 (16) |
C4—C5—C6—C7 | 1.0 (3) | O1—C1—N1—C8 | −4.7 (3) |
C5—C6—C7—C2 | −1.5 (3) | C2—C1—N1—C8 | 175.85 (14) |
C3—C2—C7—C6 | 0.9 (3) | C13—C8—N1—C1 | 169.04 (16) |
C1—C2—C7—C6 | 178.40 (16) | C9—C8—N1—C1 | −13.4 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2Wi | 0.86 | 2.2 | 3.0155 (19) | 158 |
O2W—H2W···O1 | 0.813 (18) | 1.991 (18) | 2.7984 (17) | 171.9 (19) |
Symmetry code: (i) x+1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C14H12ClNO·0.5H2O |
Mr | 254.71 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 295 |
a, b, c (Å) | 7.6497 (3), 12.6829 (5), 25.9694 (10) |
β (°) | 95.365 (3) |
V (Å3) | 2508.54 (16) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.52 × 0.16 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur diffractometer with a Ruby Gemini detector |
Absorption correction | Analytical (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.860, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19774, 2277, 1894 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.095, 1.07 |
No. of reflections | 2277 |
No. of parameters | 164 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.16, −0.20 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O2Wi | 0.86 | 2.2 | 3.0155 (19) | 158 |
O2W—H2W···O1 | 0.813 (18) | 1.991 (18) | 2.7984 (17) | 171.9 (19) |
Symmetry code: (i) x+1/2, y+1/2, z. |
Acknowledgements
MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship.
References
Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o770. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o462. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rodrigues, V. Z., Tokarčík, M., Gowda, B. T. & Kožíšek, J. (2010). Acta Cryst. E66, o891. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the present work, as part of a study of the substituent effects on the crystal structures of benzanilides (Gowda et al., 2008a,b, Rodrigues et al., 2010), the structure of N-(3-chlorophenyl)3-methylbenzamide hydrate (I) has been determined. In the structure, the conformations of the N—H and C=O bonds are anti to each other (Fig. 1), similar to those observed in N-(3-chlorophenyl)3-chlorobenzamide (II), N-(3-chlorophenyl)benzamide (III)(Gowda et al., 2008b), 3-methyl-N-(phenyl)benzamide (IV)(Gowda et al., 2008a), N-(2-chlorophenyl)3-methylbenzamide (V)(Rodrigues et al., 2010) and the parent benzanilide (Bowes et al., 2003). Further, the conformation of the C=O bond in (I) is also anti to the meta- methyl substituent in the benzoyl ring and that of the N—H bond is anti to the meta-Cl group in the aniline ring, compared to the syn conformation observed between the N—H bond and the ortho-Cl group in the aniline ring of (V).
The two aromatic rings make a dihedral angle of 49.5 (1)°. The central amide group –NH–C(=O)– is twisted by 35.1 (1)° and 15.9 (1)° out of the planes of the 3-methylphenyl and 3-chlorophenyl ring, respectively. The molecular structure is stabilized by the C9–H9···O1 intramolecular hydrogen bond (Table 1). In the crystal, the water molecule lies on a twofold rotation axis.
Intermolecular N–H···O and O–H···O hydrogen bonds connect the molecules into a three-dimensional network (Fig.2). The water O2w oxygen lies on a twofold rotation axis 0,y,1/4 and its hydrogen atoms are related by the symmetry -x, y, 1/2 - z.