organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o974-o975

4-{3-[Hydr­­oxy(phen­yl)meth­yl]-5-thioxo-4,5-di­hydro-1H-1,2,4-triazol-4-yl}benzene­sulfonamide

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 58140 Sivas, Turkey, cDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Istanbul, 34116 Beyazıt, Istanbul, Turkey, and dDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 23 March 2010; accepted 25 March 2010; online 27 March 2010)

In the title compound, C15H14N4O3S2, the hydr­oxy group is disordered over two positions with occupancies of 0.619 (5) and 0.381 (5). The benzene ring attached to the heterocycle makes a dihedral angle of 86.92 (9)° with respect to the best plane through the five-membered ring. The crystal packing is stabilized by inter­molecular O—H⋯O, N—H⋯S, N—H⋯N, C—H⋯O and C—H⋯N hydrogen bonds, and N—H⋯π and C—H⋯π inter­actions.

Related literature

For the pharmacological activity of functionalized 1,2,4-triazoles, see: De La Rosa et al. (2006[De La Rosa, M., Kim, H. W., Gunic, E., Jenket, C., Boyle, U., Koh, Y., Korboukh, I., Allan, M., Zhang, W., Chen, H., Xu, W., Nilar, S., Yao, N., Hamatake, R., Lang, S. A., Hong, Z., Zhang, Z. & Girardet, J. L. (2006). Bioorg. Med. Chem. Lett. 16, 4444-4449.]); Mavrova et al. (2009[Mavrova, A. T., Wesselinova, D., Tsenov, Y. A. & Denkova, P. (2009). Eur. J. Med. Chem. 44, 63-69.]); Shiradkar et al. (2007[Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997-4008.]). For annular tautomerism in 1,2,4-triazoles in the solid state and in solution, see: Buzykin et al. (2008[Buzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2008). Russ. J. Gen. Chem. 78, 643-648.]); Dolzhenko et al. (2010[Dolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o549-o550.]). Two tautomeric fothione (C=S)r.m.s. for 3(5)-thioxo-1,2,4-triazoles may exist in the solid state. For the evidence for the thione (C=S) form, see: Karayel et al. (2007[Karayel, A., Özbey, S. & Çapan, G. (2007). J. Mol. Struct. 841, 118-124.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4O3S2

  • Mr = 362.44

  • Orthorhombic, P 21 21 21

  • a = 8.2498 (5) Å

  • b = 13.5167 (7) Å

  • c = 14.2522 (7) Å

  • V = 1589.26 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 296 K

  • 0.62 × 0.48 × 0.36 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.815, Tmax = 0.879

  • 8693 measured reflections

  • 3666 independent reflections

  • 3050 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.01

  • 3666 reflections

  • 245 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1538 Freidel pairs

  • Flack parameter: 0.14 (5)

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O3i 0.82 2.35 2.973 (3) 134
N2—H2⋯S1ii 0.86 2.46 3.2744 (15) 158
N4—H4A⋯N1iii 0.88 (2) 2.18 (2) 3.052 (2) 171 (2)
C6—H6⋯O2iv 0.93 2.57 3.442 (2) 155
C12—H12⋯N1v 0.93 2.59 3.499 (2) 165
C15—H15⋯O2iv 0.93 2.48 3.2805 (19) 145
C2—H2ACg3vi 0.93 2.90 3.502 (2) 124
N4—H4BCg2iii 0.85 (2) 2.67 (2) 3.218 (2) 123 (2)
C14—H14⋯Cg2vii 0.93 2.83 3.463 (2) 126
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) x-1, y, z; (v) x+1, y, z; (vi) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (vii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Functionalized 1,2,4-triazoles have attracted intense research interest after the discovery that triazole have a wide range of pharmacological properties such as antiviral (De La Rosa et al., 2006), anticancer (Mavrova et al., 2009) and antimycobacterial activity (Shiradkar et al., 2007).

Previous reports have also dealt with the annular tautomerism encountered in 1,2,4-triazoles in the solid state and in solution (Buzykin et al., 2008; Dolzhenko et al., 2010). For 3(5)-thioxo-1,2,4-triazoles, two tautomeric forms may exist in the solid state: the thione (C=S) and the thiol (SH), where the former has been supported by a recent X-ray diffraction study (Karayel et al., 2007). In this context, we prepared the title compound to determine its pharmacological potential and the preferred tautomeric form in the solid state.

The title molecule (Fig. 1) the aromatic rings (C1–C6 and C10–C15) are oriented at angles of 73.79 (10) and 86.92 (9)° with respect to the best plane through the five-membered ring. The dihedral angle between the two six-membered rings is 47.58 (9)°.

In the structure, the molecules are linked by intermolecular O—H···O, N—H···S, N—H···N, C—H···O and C—H···N hydrogen bonds (Table 1, Fig. 2), and N—H···π and C—H···π interations (Table 1). In addition, there is also a weak S2—O3···Cg1 (-1+x, y, z) interaction [(S2)O3···Cg1 = 3.1082 (17) Å, S2—O3···Cg1 = 150.21 (9) °, where Cg1 is a centroid of the ring N1–N3/C8/C9].

Related literature top

For the pharmacological activity of functionalized 1,2,4-triazoles, see: De La Rosa et al. (2006); Mavrova et al. (2009); Shiradkar et al. (2007). For annular tautomerism in 1,2,4-triazoles in the solid state and in solution, see: Buzykin et al. (2008); Dolzhenko et al. (2010). Two tautomeric fothione (C=S)r.m.s. for 3(5)-thioxo-1,2,4-triazoles may exist in the solid state. For the evidence for the thione (C=S) form, see: Karayel et al. (2007).

Experimental top

A mixture of 1-[2-[hydroxy(phenyl)acetyl]]-4-(4-sulfamoylphenyl)-3-thiosemicarbazide (0.005 mol) and 2 N NaOH (20 ml) was heated on a water bath for 3 h. After cooling, the reaction mixture was acidified by the addition of HCl (% 12.5). The precipitate thus obtained was filtered, washed with water and recrystallized from aqueous ethanol.[Yield: 80.2 %, m.p.: 523-526 K]. IR (KBr) ν = 3518, 3437, 3346 (O—H, N—H), 1593 (C=N), 1342, 1154 (SO2) cm-1. 1H-NMR (DMSO-d6, 500 MHz) δ = 5.62 (1H, d, J=3.0 Hz, CHOH), 6.34 (1H, d, J=4.8 Hz, CHOH), 7.17-7.19 (2H, m, Ar—H), 7.22-7.25 (3H, m, Ar—H), 7.41 (2H, d, J=7.90 Hz, Ar—H), 7.52 (2H, s, SO2NH2), 7.87 (2H, d, J=8.54 Hz, Ar—H), 13.91 (1H, s, NH). Analysis calculated for C15H14N4O3S2 : C 49.71, H 3.89, N 15.46, S 17.69 %. Found : C 49.47, H 3.72, N 15.26, S 17.94 %.

Refinement top

The H atoms of the aromatic and hydroxyl groups were positioned geometrically with O—H = 0.82 Å, C—H = 0.93Å and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C,O). The H atoms of the NH2 group were located in a difference Fourier synthesis and their positional parameters were refined with Uiso(H) set to 1.2Ueq(N). The N—H distances were restrained to 0.84 (1) Å. The H and O atoms of the hydroxyl group and the H atom of the C atom to which the hydroxyl group is attached are disordered in two alternative positions with occupancy factors 0.620 (4):0.380 (4). The C—O distances of the disordered hydroxyl group were restrained to 1.30 (1)Å.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. The minor occupied sites of the disordered atoms have been omitted for clarity.
[Figure 2] Fig. 2. View down the a axis of the packing and hydrogen bonding interactions of the title compound. All hydrogen atoms not involved in hydrogen bonding and the minor occupied sites of the disordered atoms have been omitted for clarity.
4-{3-[Hydroxy(phenyl)methyl]-5-thioxo-4,5-dihydro-1H-1,2,4- triazol-4-yl}benzenesulfonamide top
Crystal data top
C15H14N4O3S2F(000) = 752
Mr = 362.44Dx = 1.515 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 14591 reflections
a = 8.2498 (5) Åθ = 1.4–28.0°
b = 13.5167 (7) ŵ = 0.36 mm1
c = 14.2522 (7) ÅT = 296 K
V = 1589.26 (15) Å3Prism, colourless
Z = 40.62 × 0.48 × 0.36 mm
Data collection top
Stoe IPDS 2
diffractometer
3666 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus3050 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.036
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.1°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1416
Tmin = 0.815, Tmax = 0.879l = 1617
8693 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0413P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
3666 reflectionsΔρmax = 0.22 e Å3
245 parametersΔρmin = 0.22 e Å3
4 restraintsAbsolute structure: Flack (1983), 1538 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (5)
Crystal data top
C15H14N4O3S2V = 1589.26 (15) Å3
Mr = 362.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2498 (5) ŵ = 0.36 mm1
b = 13.5167 (7) ÅT = 296 K
c = 14.2522 (7) Å0.62 × 0.48 × 0.36 mm
Data collection top
Stoe IPDS 2
diffractometer
3666 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3050 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.879Rint = 0.036
8693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.066Δρmax = 0.22 e Å3
S = 1.01Δρmin = 0.22 e Å3
3666 reflectionsAbsolute structure: Flack (1983), 1538 Freidel pairs
245 parametersAbsolute structure parameter: 0.14 (5)
4 restraints
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.17287 (5)0.71648 (3)0.41130 (3)0.0371 (1)
S20.79576 (4)0.40875 (3)0.33694 (3)0.0315 (1)
O1A0.2506 (3)0.4120 (2)0.6848 (2)0.0621 (9)0.620 (4)
O20.92661 (14)0.43807 (13)0.39572 (10)0.0510 (5)
O30.77632 (18)0.30741 (11)0.31372 (14)0.0592 (5)
N10.03407 (16)0.55833 (11)0.60444 (10)0.0327 (4)
N20.01523 (16)0.63968 (11)0.54897 (10)0.0317 (4)
N30.18483 (14)0.54616 (10)0.51694 (9)0.0270 (3)
N40.81784 (19)0.46661 (14)0.23974 (11)0.0406 (5)
C10.03337 (19)0.35747 (13)0.66854 (13)0.0334 (5)
C20.0487 (2)0.33998 (14)0.76345 (13)0.0382 (5)
C30.1902 (3)0.29833 (14)0.79838 (14)0.0463 (6)
C40.3154 (2)0.27399 (15)0.73879 (17)0.0496 (6)
C50.2995 (2)0.29076 (16)0.64419 (16)0.0504 (6)
C60.1595 (2)0.33125 (15)0.60919 (14)0.0426 (6)
C7A0.1213 (9)0.4010 (5)0.6305 (6)0.0333 (16)0.620 (4)
C80.08859 (17)0.50199 (12)0.58420 (12)0.0295 (4)
C90.11550 (16)0.63506 (12)0.49321 (12)0.0282 (4)
C100.33246 (16)0.50982 (11)0.47478 (11)0.0264 (4)
C110.47832 (19)0.53833 (15)0.51248 (13)0.0369 (5)
C120.62079 (19)0.50687 (15)0.47033 (14)0.0379 (5)
C130.61324 (17)0.44786 (13)0.39193 (12)0.0289 (4)
C140.46561 (18)0.41826 (14)0.35441 (12)0.0353 (5)
C150.32367 (18)0.45127 (13)0.39608 (13)0.0352 (5)
C7B0.1184 (15)0.4081 (11)0.6206 (12)0.055 (5)0.380 (4)
O1B0.2021 (5)0.3451 (3)0.5701 (3)0.0600 (16)0.380 (4)
H2A0.035600.356100.804000.0460*
H30.200400.286800.862400.0560*
H20.080800.689100.549700.0380*
H4A0.734 (3)0.4531 (19)0.2033 (17)0.0660*
H4B0.848 (3)0.5258 (14)0.251 (2)0.0660*
H40.410200.246400.762500.0600*
H60.149000.341200.544900.0510*
H7A0.155100.356900.579500.0400*0.620 (4)
H110.481500.578200.565600.0440*
H120.720600.525600.494900.0450*
H140.462000.377000.302200.0420*
H150.223500.434000.371000.0420*
H50.383900.274600.603700.0600*
H1A0.261600.362800.717900.0930*0.620 (4)
H1B0.237800.301300.604200.0890*0.380 (4)
H7B0.190400.421500.673800.0660*0.380 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0329 (2)0.0357 (2)0.0426 (2)0.0029 (2)0.0009 (2)0.0101 (2)
S20.0211 (2)0.0390 (2)0.0344 (2)0.0051 (2)0.0029 (1)0.0016 (2)
O1A0.0366 (11)0.0597 (16)0.090 (2)0.0082 (10)0.0184 (11)0.0367 (15)
O20.0231 (5)0.0929 (12)0.0369 (7)0.0062 (6)0.0020 (5)0.0003 (7)
O30.0482 (7)0.0366 (7)0.0928 (12)0.0067 (6)0.0273 (8)0.0050 (8)
N10.0296 (6)0.0344 (8)0.0341 (7)0.0042 (5)0.0055 (5)0.0036 (6)
N20.0286 (6)0.0291 (7)0.0375 (8)0.0053 (5)0.0045 (5)0.0016 (6)
N30.0223 (5)0.0278 (6)0.0310 (7)0.0012 (5)0.0042 (5)0.0001 (5)
N40.0343 (7)0.0527 (9)0.0349 (8)0.0026 (7)0.0023 (6)0.0022 (7)
C10.0311 (7)0.0298 (8)0.0392 (9)0.0017 (6)0.0023 (7)0.0063 (8)
C20.0401 (9)0.0372 (9)0.0373 (9)0.0029 (7)0.0039 (7)0.0033 (8)
C30.0568 (11)0.0421 (10)0.0400 (10)0.0060 (9)0.0142 (9)0.0081 (8)
C40.0392 (9)0.0459 (11)0.0637 (13)0.0063 (8)0.0146 (9)0.0049 (10)
C50.0405 (9)0.0509 (11)0.0598 (13)0.0063 (9)0.0057 (9)0.0014 (10)
C60.0446 (10)0.0467 (11)0.0366 (10)0.0007 (8)0.0020 (8)0.0039 (8)
C7A0.036 (3)0.019 (2)0.045 (3)0.0050 (18)0.006 (2)0.015 (2)
C80.0253 (6)0.0313 (8)0.0318 (8)0.0009 (5)0.0035 (6)0.0015 (7)
C90.0245 (6)0.0292 (8)0.0310 (8)0.0009 (6)0.0009 (6)0.0025 (7)
C100.0212 (6)0.0271 (7)0.0308 (7)0.0014 (5)0.0036 (5)0.0016 (6)
C110.0278 (7)0.0468 (10)0.0362 (9)0.0000 (7)0.0034 (6)0.0125 (8)
C120.0221 (7)0.0498 (10)0.0417 (10)0.0002 (6)0.0043 (6)0.0110 (8)
C130.0221 (6)0.0331 (8)0.0315 (8)0.0020 (5)0.0029 (5)0.0017 (7)
C140.0266 (7)0.0436 (10)0.0358 (9)0.0003 (7)0.0021 (6)0.0123 (8)
C150.0215 (6)0.0425 (9)0.0417 (9)0.0028 (6)0.0005 (6)0.0104 (8)
C7B0.019 (5)0.084 (11)0.063 (8)0.008 (5)0.008 (4)0.007 (7)
O1B0.069 (3)0.044 (2)0.067 (3)0.0257 (19)0.044 (2)0.0191 (19)
Geometric parameters (Å, º) top
S1—C91.6727 (17)C3—C41.377 (3)
S2—O21.4227 (14)C4—C51.374 (3)
S2—O31.4183 (16)C5—C61.372 (3)
S2—N41.6012 (17)C7A—C81.540 (7)
S2—C131.7779 (15)C7B—C81.393 (15)
O1A—C7A1.326 (8)C10—C111.373 (2)
O1B—C7B1.312 (16)C10—C151.375 (2)
O1A—H1A0.8200C11—C121.387 (2)
O1B—H1B0.8200C12—C131.374 (3)
N1—C81.299 (2)C13—C141.389 (2)
N1—N21.363 (2)C14—C151.387 (2)
N2—C91.341 (2)C2—H2A0.9300
N3—C81.381 (2)C3—H30.9300
N3—C91.373 (2)C4—H40.9300
N3—C101.4442 (18)C5—H50.9300
N2—H20.8600C6—H60.9300
N4—H4A0.88 (2)C7A—H7A0.9800
N4—H4B0.85 (2)C7B—H7B0.9800
C1—C21.379 (3)C11—H110.9300
C1—C7A1.506 (8)C12—H120.9300
C1—C61.387 (2)C14—H140.9300
C1—C7B1.582 (14)C15—H150.9300
C2—C31.388 (3)
S1···N2i3.2744 (15)C8···O2xii3.122 (2)
S1···O3ii3.460 (2)C9···O2xii3.384 (2)
S1···H2Aiii3.0100C10···O1A3.341 (3)
S1···H1Aiii3.0100C10···O1B2.821 (4)
S1···H2i2.4600C12···C6v3.583 (3)
S1···H4iv3.0700C13···C2iii3.444 (3)
S2···H6v3.1300C14···C6vi3.565 (3)
S2···H1Bvi3.0000C14···C5vi3.573 (3)
O1A···N33.051 (3)C14···C2iii3.582 (3)
O1A···C103.341 (3)C15···O1B3.036 (5)
O1A···O3vii2.973 (3)C15···C5vi3.473 (3)
O1B···O3vii2.714 (4)C15···O2xii3.2805 (19)
O1B···C153.036 (5)C1···H4Ax3.09 (3)
O1B···N32.825 (4)C2···H1A2.6600
O1B···C102.821 (4)C2···H4Bx3.07 (2)
O2···N3v3.1076 (19)C2···H14vii3.0800
O2···C15v3.2805 (19)C3···H14vii3.0400
O2···C8v3.122 (2)C3···H4Bx2.79 (2)
O2···C9v3.384 (2)C4···H4Bx2.725 (19)
O3···C7Avi3.194 (7)C5···H15vii3.0500
O3···C1vi3.400 (2)C5···H4Bx2.94 (2)
O3···C7Bvi3.326 (15)C8···H62.9800
O3···O1Bvi2.714 (4)C9···H3xiii2.9900
O3···S1viii3.460 (2)C10···H7A2.9400
O3···O1Avi2.973 (3)H1A···S1x3.0100
O1A···H2A2.5700H1A···C22.6600
O1B···H62.9200H1A···H2A2.2300
O2···H122.5100H1A···O3vii2.3500
O2···H15v2.4800H1B···O3vii1.9000
O2···H6v2.5700H1B···S2vii3.0000
O3···H7Avi2.8700H2···S1xi2.4600
O3···H142.7600H2A···O1A2.5700
O3···H1Bvi1.9000H2A···S1x3.0100
O3···H1Avi2.3500H2A···H1A2.2300
O3···H4ix2.9000H2A···H7B2.4200
N1···N32.2008 (18)H3···C9xiv2.9900
N1···C63.240 (2)H4···O3xv2.9000
N1···N4x3.052 (2)H4···S1xvi3.0700
N2···N32.1285 (19)H4A···C1iii3.09 (3)
N2···S1xi3.2744 (15)H4A···N1iii2.18 (2)
N3···O1B2.825 (4)H4B···C2iii3.07 (2)
N3···N22.1285 (19)H4B···C3iii2.79 (2)
N3···O1A3.051 (3)H4B···C5iii2.94 (2)
N3···O2xii3.1076 (19)H4B···C4iii2.725 (19)
N4···C2iii3.447 (3)H6···S2xii3.1300
N4···N1iii3.052 (2)H6···O2xii2.5700
N4···C3iii3.450 (3)H6···C82.9800
N1···H12xii2.5900H6···H7A2.5700
N1···H4Ax2.18 (2)H6···O1B2.9200
N2···H12xii2.7800H7A···C102.9400
C1···O3vii3.400 (2)H7A···H62.5700
C2···C13x3.444 (3)H7A···O3vii2.8700
C2···N4x3.447 (3)H7B···H2A2.4200
C2···C14x3.582 (3)H12···N2v2.7800
C3···N4x3.450 (3)H12···N1v2.5900
C5···C15vii3.473 (3)H12···O22.5100
C5···C14vii3.573 (3)H14···C2vi3.0800
C6···C12xii3.583 (3)H14···O32.7600
C6···C14vii3.565 (3)H14···C3vi3.0400
C6···N13.240 (2)H15···C5vi3.0500
C7A···O3vii3.194 (7)H15···O2xii2.4800
C7B···O3vii3.326 (15)
O2—S2—O3119.49 (10)N3—C8—C7A125.5 (3)
O2—S2—N4106.68 (9)S1—C9—N2127.62 (12)
O2—S2—C13107.47 (8)S1—C9—N3129.04 (11)
O3—S2—N4106.42 (11)N2—C9—N3103.28 (14)
O3—S2—C13107.11 (9)N3—C10—C11118.74 (14)
N4—S2—C13109.42 (8)C11—C10—C15121.81 (14)
C7A—O1A—H1A109.00N3—C10—C15119.39 (12)
C7B—O1B—H1B109.00C10—C11—C12119.16 (17)
N2—N1—C8104.79 (13)C11—C12—C13119.46 (15)
N1—N2—C9113.44 (14)S2—C13—C12119.51 (11)
C9—N3—C10123.12 (13)S2—C13—C14119.16 (13)
C8—N3—C9108.06 (12)C12—C13—C14121.33 (14)
C8—N3—C10128.82 (13)C13—C14—C15118.87 (16)
N1—N2—H2123.00C10—C15—C14119.35 (14)
C9—N2—H2123.00C3—C2—H2A120.00
H4A—N4—H4B122 (2)C1—C2—H2A120.00
S2—N4—H4A108.6 (16)C2—C3—H3120.00
S2—N4—H4B109.2 (19)C4—C3—H3120.00
C2—C1—C7B124.8 (6)C3—C4—H4120.00
C2—C1—C7A119.9 (3)C5—C4—H4120.00
C6—C1—C7A121.1 (4)C6—C5—H5120.00
C6—C1—C7B116.2 (6)C4—C5—H5120.00
C2—C1—C6119.05 (16)C5—C6—H6120.00
C1—C2—C3119.89 (17)C1—C6—H6120.00
C2—C3—C4120.42 (19)O1A—C7A—H7A106.00
C3—C4—C5119.63 (17)C8—C7A—H7A106.00
C4—C5—C6120.21 (18)C1—C7A—H7A106.00
C1—C6—C5120.78 (19)C8—C7B—H7B103.00
O1A—C7A—C8107.0 (5)C1—C7B—H7B103.00
O1A—C7A—C1121.0 (6)O1B—C7B—H7B103.00
C1—C7A—C8110.6 (5)C10—C11—H11120.00
O1B—C7B—C8118.7 (12)C12—C11—H11120.00
C1—C7B—C8114.5 (8)C11—C12—H12120.00
O1B—C7B—C1111.9 (10)C13—C12—H12120.00
N1—C8—N3110.41 (14)C15—C14—H14121.00
N1—C8—C7A124.1 (3)C13—C14—H14121.00
N3—C8—C7B123.4 (6)C10—C15—H15120.00
N1—C8—C7B126.1 (6)C14—C15—H15120.00
O2—S2—C13—C127.66 (18)C2—C1—C6—C51.6 (3)
O2—S2—C13—C14172.54 (15)C7A—C1—C6—C5179.4 (3)
O3—S2—C13—C12137.22 (16)C2—C1—C7A—O1A8.1 (7)
O3—S2—C13—C1442.98 (18)C2—C1—C7A—C8118.0 (4)
N4—S2—C13—C12107.81 (16)C6—C1—C7A—O1A169.6 (4)
N4—S2—C13—C1471.99 (16)C6—C1—C7A—C864.3 (6)
C8—N1—N2—C90.93 (18)C1—C2—C3—C40.2 (3)
N2—N1—C8—N30.02 (18)C2—C3—C4—C50.3 (3)
N2—N1—C8—C7A179.2 (4)C3—C4—C5—C60.2 (3)
N1—N2—C9—S1175.96 (12)C4—C5—C6—C11.2 (3)
N1—N2—C9—N31.44 (18)O1A—C7A—C8—N1109.8 (5)
C9—N3—C8—N10.90 (18)O1A—C7A—C8—N369.3 (6)
C9—N3—C8—C7A179.9 (4)C1—C7A—C8—N123.9 (7)
C10—N3—C8—N1179.74 (14)C1—C7A—C8—N3157.0 (3)
C10—N3—C8—C7A0.6 (4)N3—C10—C11—C12177.57 (16)
C8—N3—C9—S1175.99 (13)C15—C10—C11—C120.3 (3)
C8—N3—C9—N21.37 (17)N3—C10—C15—C14178.55 (15)
C10—N3—C9—S13.4 (2)C11—C10—C15—C141.3 (3)
C10—N3—C9—N2179.23 (13)C10—C11—C12—C130.1 (3)
C8—N3—C10—C1194.4 (2)C11—C12—C13—S2179.21 (15)
C8—N3—C10—C1588.3 (2)C11—C12—C13—C140.6 (3)
C9—N3—C10—C1186.3 (2)S2—C13—C14—C15178.22 (14)
C9—N3—C10—C1590.99 (19)C12—C13—C14—C151.6 (3)
C6—C1—C2—C31.2 (3)C13—C14—C15—C101.9 (3)
C7A—C1—C2—C3178.9 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x1/2, y+1, z1/2; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y+1/2, z+1; (viii) x+1, y1/2, z+1/2; (ix) x+3/2, y+1/2, z+1; (x) x+1/2, y+1, z+1/2; (xi) x1/2, y+3/2, z+1; (xii) x1, y, z; (xiii) x, y+1/2, z+3/2; (xiv) x, y1/2, z+3/2; (xv) x3/2, y+1/2, z+1; (xvi) x1/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3vii0.822.352.973 (3)134
N2—H2···S1xi0.862.463.2744 (15)158
N4—H4A···N1iii0.88 (2)2.18 (2)3.052 (2)171 (2)
C2—H2A···O1A0.932.572.881 (3)100
C6—H6···O2xii0.932.573.442 (2)155
C12—H12···O20.932.512.892 (2)105
C12—H12···N1v0.932.593.499 (2)165
C15—H15···O2xii0.932.483.2805 (19)145
C2—H2A···Cg3x0.932.903.502 (2)124
N4—H4B···Cg2iii0.85 (2)2.67 (2)3.218 (2)123 (2)
C14—H14···Cg2vi0.932.833.463 (2)126
Symmetry codes: (iii) x+1/2, y+1, z1/2; (v) x+1, y, z; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y+1/2, z+1; (x) x+1/2, y+1, z+1/2; (xi) x1/2, y+3/2, z+1; (xii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N4O3S2
Mr362.44
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.2498 (5), 13.5167 (7), 14.2522 (7)
V3)1589.26 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.62 × 0.48 × 0.36
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.815, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
8693, 3666, 3050
Rint0.036
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.01
No. of reflections3666
No. of parameters245
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.22
Absolute structureFlack (1983), 1538 Freidel pairs
Absolute structure parameter0.14 (5)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O3i0.822.352.973 (3)134
N2—H2···S1ii0.862.463.2744 (15)158
N4—H4A···N1iii0.88 (2)2.18 (2)3.052 (2)171 (2)
C2—H2A···O1A0.932.572.881 (3)100
C6—H6···O2iv0.932.573.442 (2)155
C12—H12···O20.932.512.892 (2)105
C12—H12···N1v0.932.593.499 (2)165
C15—H15···O2iv0.932.483.2805 (19)145
C2—H2A···Cg3vi0.932.903.502 (2)124
N4—H4B···Cg2iii0.85 (2)2.67 (2)3.218 (2)123 (2)
C14—H14···Cg2vii0.932.833.463 (2)126
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x1/2, y+3/2, z+1; (iii) x+1/2, y+1, z1/2; (iv) x1, y, z; (v) x+1, y, z; (vi) x+1/2, y+1, z+1/2; (vii) x+1/2, y+1/2, z+1.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBuzykin, B. I., Mironova, E. V., Nabiullin, V. N., Gubaidullin, A. T. & Litvinov, I. A. (2008). Russ. J. Gen. Chem. 78, 643–648.  Google Scholar
First citationDe La Rosa, M., Kim, H. W., Gunic, E., Jenket, C., Boyle, U., Koh, Y., Korboukh, I., Allan, M., Zhang, W., Chen, H., Xu, W., Nilar, S., Yao, N., Hamatake, R., Lang, S. A., Hong, Z., Zhang, Z. & Girardet, J. L. (2006). Bioorg. Med. Chem. Lett. 16, 4444–4449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolzhenko, A. V., Tan, G. K., Koh, L. L., Dolzhenko, A. V. & Chui, W. K. (2010). Acta Cryst. E66, o549–o550.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarayel, A., Özbey, S. & Çapan, G. (2007). J. Mol. Struct. 841, 118–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationMavrova, A. T., Wesselinova, D., Tsenov, Y. A. & Denkova, P. (2009). Eur. J. Med. Chem. 44, 63–69.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Panchal, D., Kaur, R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997–4008.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o974-o975
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds