metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4-Methyl­benzohydrazidato-κ2N′,O)[2-(4-methyl­benzoyl­hydrazinyl­­idene-κ2N,O)-3-phenyl­propionato(2−)]oxido­vanadium(V) methanol monosolvate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 March 2010; accepted 25 March 2010; online 31 March 2010)

The VV atom in the title compound, [V(C8H9N2O)(C17H14N2O3)O]·CH3OH, is N,O-chelated by the benzoyl­hydrazidate anion and O,N,O′-chelated by the (benzoyl­hydrazono)propionate dianion. The octa­hedral trans-N2O4 coordination geometry is completed by the vanadyl O atom. Two mononuclear complexes and two solvent mol­ecules are linked by O—H⋯O and O—H⋯N hydrogen bonds, generating a centrosymmetric aggregate.

Related literature

For (benzohydrazidato)[2-(benzoyl­hydrazono)propionato]oxidovanadium(V), see: Wong et al. (2009a[Wong, H. W., Lo, K. M. & Ng, S. W. (2009a). Acta Cryst. E65, m422.]) and for (4-chloro­benzohydrazidato)[2-(4-chloro­benzoylhydrazono)propionato(2−)]oxido­vanadium(V), see: Wong et al. (2009,b[Wong, H. W., Lo, K. M. & Ng, S. W. (2009b). Acta Cryst. E65, m718.]).

[Scheme 1]

Experimental

Crystal data
  • [V(C8H9N2O)(C17H14N2O3)O]·CH4O

  • Mr = 542.46

  • Triclinic, [P \overline 1]

  • a = 9.2770 (2) Å

  • b = 11.2558 (2) Å

  • c = 13.4691 (3) Å

  • α = 95.769 (2)°

  • β = 96.708 (2)°

  • γ = 109.675 (2)°

  • V = 1300.48 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.864, Tmax = 0.919

  • 12503 measured reflections

  • 5956 independent reflections

  • 3843 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.167

  • S = 1.03

  • 5956 reflections

  • 337 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6⋯O4i 0.84 2.18 2.821 (5) 133
N1—H1⋯O3i 0.86 2.13 2.808 (3) 135
N2—H2⋯O6 0.86 1.99 2.800 (4) 156
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The reaction of vanadyl(IV) sulfate and the Schiff base that is synthesized by condensing a substituted benzhydrazine and a substituted pyruvic acid leads a vanadium(V) derivative of the Schiff base. However, another mole of the Schiff base is cleaved and the resulting benzhydrazine monoanion also chelates to the metal atom (Wong et al., 2009a, 2009b). A similar product is isolated in the present study on the reaction of the Schiff base, 2-[p-methylbenzoylhydrazono]-3-phenylpropionic acid so that the metal atom is chelated by two different ligands. The mononuclear mixed-ligand compound crystallizes as a monosolvate (Scheme I, Fig. 1). The vanadium(V) atom is N,O-chelated by the benzoylhydrazidate anion and O,N,O'-chelated by the (benzoylhydrazono)propionate dianion; the terdentate chelate binds in a meridional mode. The octahedral trans-N2O4 coordination geometry is completed by the vanadyl O atom. Two mononuclear complexes and two solvent molecules are linked by hydrogen bonds to generate a centrosymmetric aggregate.

Related literature top

For (benzohydrazidato)[2-(benzoylhydrazono)propionato]oxidovanadium(V), see: Wong et al. (2009a,b).

Experimental top

2-[p-Methylbenzoylhydrazono]-3-phenylpropionic acid prepared from the condensation reaction of p-methylbenzhydrazide and 3-phenylpyruvic acid. The compound (0.85 g, 3 mmol) and vanadyl sulfate (1.25 g, 1.5 mmol) in 50 ml of 95% ethanol for 5 hours. Slow evaporation of the filtrate gave orange crystals. The presence of methanol in the crystal structure is attributed to the methanol present in the techical grade solvent.

Refinement top

Carbon-, nitrogen- and oxygen-bound H-atoms were placed in calculated positions (C–H 0.95 to 0.96 Å, N–H 0.86 Å and O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C,N) or 1.5U(Cmethyl,O).

The carbon-oxygen distance in the methanol molecule was tightly restrained to 1.500±0.005 Å; the anisotropic temperature factors of the two atoms were restrained to be nearly isotropic. Attempts to model this molecule as a molecule disordered over two positions did not lead to meaningful results.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound with ellipsoids at the 50% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
(4-Methylbenzohydrazidato-κ2N',O)[2-(4- methylbenzoylhydrazinylidene-κ2N,O)-3- phenylpropionato(2-)]oxidovanadium(V) methanol monosolvate top
Crystal data top
[V(C8H9N2O)(C17H14N2O3)O]·CH4OZ = 2
Mr = 542.46F(000) = 564
Triclinic, P1Dx = 1.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2770 (2) ÅCell parameters from 2688 reflections
b = 11.2558 (2) Åθ = 2.5–22.6°
c = 13.4691 (3) ŵ = 0.43 mm1
α = 95.769 (2)°T = 293 K
β = 96.708 (2)°Block, orange
γ = 109.675 (2)°0.35 × 0.20 × 0.20 mm
V = 1300.48 (5) Å3
Data collection top
Bruker SMART APEX
diffractometer
5956 independent reflections
Radiation source: fine-focus sealed tube3843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.864, Tmax = 0.919k = 1414
12503 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0856P)2 + 0.2209P]
where P = (Fo2 + 2Fc2)/3
5956 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.55 e Å3
13 restraintsΔρmin = 0.48 e Å3
Crystal data top
[V(C8H9N2O)(C17H14N2O3)O]·CH4Oγ = 109.675 (2)°
Mr = 542.46V = 1300.48 (5) Å3
Triclinic, P1Z = 2
a = 9.2770 (2) ÅMo Kα radiation
b = 11.2558 (2) ŵ = 0.43 mm1
c = 13.4691 (3) ÅT = 293 K
α = 95.769 (2)°0.35 × 0.20 × 0.20 mm
β = 96.708 (2)°
Data collection top
Bruker SMART APEX
diffractometer
5956 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3843 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 0.919Rint = 0.028
12503 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05413 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.03Δρmax = 0.55 e Å3
5956 reflectionsΔρmin = 0.48 e Å3
337 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.51795 (6)0.51791 (5)0.29034 (4)0.04766 (18)
O10.6537 (2)0.40109 (19)0.34261 (14)0.0526 (5)
O20.6733 (2)0.57531 (19)0.20087 (15)0.0542 (5)
O30.3375 (2)0.3810 (2)0.32493 (15)0.0557 (5)
O40.1695 (3)0.1820 (2)0.28159 (19)0.0734 (7)
O50.4366 (3)0.6198 (2)0.27738 (17)0.0633 (6)
O60.6859 (6)0.8379 (3)0.5277 (3)0.1379 (14)
H60.76100.87250.57490.207*
N10.7041 (3)0.5407 (2)0.47916 (18)0.0493 (6)
H10.74570.57230.54090.059*
N20.6198 (3)0.5937 (2)0.42177 (18)0.0498 (6)
H20.61260.66460.44640.060*
N30.5391 (3)0.3913 (2)0.08943 (17)0.0475 (6)
N40.4523 (3)0.3744 (2)0.16640 (17)0.0450 (5)
C10.7176 (3)0.4347 (3)0.4322 (2)0.0466 (7)
C20.8042 (3)0.3663 (3)0.4855 (2)0.0480 (7)
C30.8251 (4)0.2638 (3)0.4316 (3)0.0645 (9)
H3A0.78440.24000.36320.077*
C40.9055 (5)0.1970 (4)0.4783 (3)0.0740 (10)
H40.92090.12990.44020.089*
C50.9646 (4)0.2264 (3)0.5806 (3)0.0578 (8)
C60.9450 (4)0.3295 (3)0.6338 (3)0.0631 (9)
H6A0.98540.35280.70230.076*
C70.8662 (4)0.3989 (3)0.5873 (2)0.0597 (8)
H70.85470.46830.62480.072*
C81.0483 (4)0.1494 (4)0.6323 (3)0.0776 (11)
H8A1.11880.20180.69080.116*
H8B1.10510.12020.58630.116*
H8C0.97400.07720.65280.116*
C90.7612 (3)0.5454 (3)0.0442 (2)0.0487 (7)
C100.8704 (4)0.6676 (3)0.0614 (3)0.0633 (8)
H100.87680.72320.11910.076*
C110.9708 (4)0.7072 (4)0.0079 (3)0.0696 (10)
H111.04300.78990.00390.083*
C120.9656 (4)0.6271 (4)0.0932 (3)0.0643 (9)
C130.8574 (4)0.5052 (4)0.1092 (2)0.0631 (9)
H130.85270.44940.16630.076*
C140.7560 (4)0.4647 (3)0.0425 (2)0.0577 (8)
H140.68310.38230.05550.069*
C151.0760 (4)0.6718 (5)0.1666 (3)0.0884 (13)
H15A1.06250.60200.21830.133*
H15B1.18080.70280.13130.133*
H15C1.05530.73920.19690.133*
C160.6518 (3)0.5021 (3)0.1152 (2)0.0460 (6)
C170.3434 (3)0.2683 (3)0.1692 (2)0.0478 (7)
C180.2745 (4)0.2739 (3)0.2641 (2)0.0536 (7)
C190.2976 (4)0.1494 (3)0.0962 (2)0.0609 (8)
H19A0.32610.17010.03130.073*
H19B0.18600.10690.08680.073*
C200.3765 (4)0.0608 (3)0.1338 (3)0.0633 (9)
C210.5281 (5)0.0825 (4)0.1244 (4)0.1030 (16)
H210.58120.15090.09360.124*
C220.6049 (6)0.0033 (5)0.1603 (6)0.137 (2)
H220.70870.02040.15480.165*
C230.5271 (8)0.0973 (5)0.2027 (5)0.1208 (19)
H230.57690.15100.22550.145*
C240.3768 (8)0.1209 (4)0.2124 (4)0.1169 (19)
H240.32360.19100.24150.140*
C250.3016 (6)0.0412 (4)0.1791 (3)0.0907 (13)
H250.19900.05720.18760.109*
C260.5773 (8)0.9020 (8)0.5320 (7)0.192 (3)
H26A0.51000.86880.57940.287*
H26B0.51670.88860.46630.287*
H26C0.63200.99170.55310.287*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0597 (3)0.0463 (3)0.0420 (3)0.0246 (2)0.0100 (2)0.0063 (2)
O10.0668 (13)0.0564 (12)0.0399 (11)0.0298 (11)0.0082 (9)0.0026 (9)
O20.0625 (13)0.0522 (12)0.0424 (11)0.0141 (10)0.0074 (9)0.0052 (9)
O30.0648 (13)0.0579 (13)0.0488 (12)0.0243 (11)0.0197 (10)0.0067 (10)
O40.0693 (15)0.0715 (16)0.0716 (16)0.0101 (13)0.0239 (13)0.0126 (13)
O50.0803 (15)0.0571 (13)0.0625 (14)0.0378 (12)0.0081 (11)0.0098 (10)
O60.224 (4)0.093 (2)0.095 (2)0.063 (3)0.004 (3)0.0042 (19)
N10.0582 (15)0.0502 (14)0.0392 (12)0.0195 (12)0.0072 (11)0.0048 (11)
N20.0612 (15)0.0452 (13)0.0477 (13)0.0234 (12)0.0136 (11)0.0065 (10)
N30.0502 (13)0.0548 (15)0.0402 (12)0.0211 (12)0.0099 (10)0.0082 (11)
N40.0507 (13)0.0482 (14)0.0409 (12)0.0236 (12)0.0069 (10)0.0073 (10)
C10.0482 (16)0.0497 (16)0.0430 (16)0.0149 (13)0.0156 (13)0.0099 (13)
C20.0472 (16)0.0563 (17)0.0449 (16)0.0204 (14)0.0132 (12)0.0130 (13)
C30.087 (2)0.065 (2)0.0480 (18)0.0383 (19)0.0068 (17)0.0034 (15)
C40.097 (3)0.066 (2)0.068 (2)0.043 (2)0.010 (2)0.0006 (18)
C50.0551 (18)0.0573 (19)0.064 (2)0.0216 (15)0.0102 (15)0.0146 (15)
C60.069 (2)0.077 (2)0.0493 (18)0.0343 (19)0.0046 (15)0.0096 (16)
C70.067 (2)0.068 (2)0.0499 (18)0.0332 (17)0.0084 (15)0.0012 (15)
C80.078 (2)0.076 (3)0.086 (3)0.039 (2)0.001 (2)0.018 (2)
C90.0483 (16)0.0611 (19)0.0412 (15)0.0244 (15)0.0032 (12)0.0143 (13)
C100.064 (2)0.072 (2)0.0525 (19)0.0227 (18)0.0051 (15)0.0120 (16)
C110.0538 (19)0.075 (2)0.074 (2)0.0112 (18)0.0077 (17)0.0268 (19)
C120.0523 (18)0.097 (3)0.0536 (19)0.035 (2)0.0096 (15)0.0272 (19)
C130.0589 (19)0.093 (3)0.0459 (17)0.036 (2)0.0107 (15)0.0135 (17)
C140.0541 (18)0.073 (2)0.0489 (18)0.0246 (16)0.0087 (14)0.0125 (15)
C150.066 (2)0.131 (4)0.084 (3)0.039 (2)0.032 (2)0.047 (3)
C160.0522 (16)0.0533 (17)0.0379 (15)0.0251 (14)0.0050 (12)0.0105 (12)
C170.0507 (16)0.0483 (17)0.0465 (16)0.0205 (14)0.0051 (13)0.0083 (13)
C180.0531 (17)0.0575 (19)0.0533 (18)0.0218 (16)0.0118 (14)0.0098 (15)
C190.064 (2)0.058 (2)0.0531 (18)0.0173 (16)0.0009 (15)0.0016 (15)
C200.075 (2)0.0433 (17)0.066 (2)0.0184 (16)0.0049 (17)0.0017 (15)
C210.081 (3)0.064 (3)0.170 (5)0.029 (2)0.020 (3)0.032 (3)
C220.096 (4)0.073 (3)0.249 (8)0.037 (3)0.012 (4)0.040 (4)
C230.139 (5)0.073 (3)0.163 (6)0.055 (3)0.014 (4)0.024 (3)
C240.176 (6)0.066 (3)0.131 (4)0.054 (4)0.051 (4)0.042 (3)
C250.105 (3)0.064 (2)0.108 (3)0.028 (2)0.036 (3)0.018 (2)
C260.147 (5)0.208 (7)0.229 (7)0.077 (5)0.040 (5)0.015 (6)
Geometric parameters (Å, º) top
V1—O51.583 (2)C9—C101.384 (4)
V1—N21.875 (2)C9—C141.391 (4)
V1—O21.970 (2)C9—C161.473 (4)
V1—O31.996 (2)C10—C111.395 (5)
V1—N42.080 (2)C10—H100.9300
V1—O12.215 (2)C11—C121.373 (5)
O1—C11.241 (3)C11—H110.9300
O2—C161.301 (3)C12—C131.378 (5)
O3—C181.297 (4)C12—C151.507 (5)
O4—C181.224 (4)C13—C141.375 (4)
O6—C261.426 (4)C13—H130.9300
O6—H60.8400C14—H140.9300
N1—C11.344 (4)C15—H15A0.9600
N1—N21.353 (3)C15—H15B0.9600
N1—H10.8600C15—H15C0.9600
N2—H20.8600C17—C191.481 (4)
N3—C161.312 (4)C17—C181.500 (4)
N3—N41.375 (3)C19—C201.513 (5)
N4—C171.286 (4)C19—H19A0.9700
C1—C21.465 (4)C19—H19B0.9700
C2—C31.383 (4)C20—C211.368 (5)
C2—C71.384 (4)C20—C251.370 (5)
C3—C41.372 (5)C21—C221.403 (6)
C3—H3A0.9300C21—H210.9300
C4—C51.385 (5)C22—C231.344 (7)
C4—H40.9300C22—H220.9300
C5—C61.377 (5)C23—C241.354 (7)
C5—C81.513 (4)C23—H230.9300
C6—C71.384 (4)C24—C251.387 (7)
C6—H6A0.9300C24—H240.9300
C7—H70.9300C25—H250.9300
C8—H8A0.9600C26—H26A0.9600
C8—H8B0.9600C26—H26B0.9600
C8—H8C0.9600C26—H26C0.9600
O5—V1—N293.97 (11)C9—C10—H10120.1
O5—V1—O298.37 (11)C11—C10—H10120.1
N2—V1—O2105.98 (10)C12—C11—C10121.5 (3)
O5—V1—O397.34 (11)C12—C11—H11119.2
N2—V1—O398.78 (9)C10—C11—H11119.2
O2—V1—O3149.52 (9)C11—C12—C13118.2 (3)
O5—V1—N4112.73 (10)C11—C12—C15120.5 (4)
N2—V1—N4153.13 (10)C13—C12—C15121.3 (4)
O2—V1—N474.21 (9)C14—C13—C12121.3 (3)
O3—V1—N475.66 (9)C14—C13—H13119.4
O5—V1—O1167.08 (10)C12—C13—H13119.4
N2—V1—O173.11 (9)C13—C14—C9120.8 (3)
O2—V1—O185.61 (8)C13—C14—H14119.6
O3—V1—O184.85 (8)C9—C14—H14119.6
N4—V1—O180.17 (8)C12—C15—H15A109.5
C1—O1—V1113.77 (18)C12—C15—H15B109.5
C16—O2—V1116.79 (18)H15A—C15—H15B109.5
C18—O3—V1119.46 (18)C12—C15—H15C109.5
C26—O6—H6109.5H15A—C15—H15C109.5
C1—N1—N2114.8 (2)H15B—C15—H15C109.5
C1—N1—H1122.6O2—C16—N3123.4 (3)
N2—N1—H1122.6O2—C16—C9118.2 (3)
N1—N2—V1122.31 (18)N3—C16—C9118.3 (2)
N1—N2—H2118.8N4—C17—C19126.7 (3)
V1—N2—H2118.8N4—C17—C18110.9 (3)
C16—N3—N4107.1 (2)C19—C17—C18122.1 (3)
C17—N4—N3122.2 (2)O4—C18—O3124.2 (3)
C17—N4—V1119.05 (19)O4—C18—C17121.2 (3)
N3—N4—V1118.32 (17)O3—C18—C17114.6 (3)
O1—C1—N1115.7 (3)C17—C19—C20110.7 (3)
O1—C1—C2123.6 (3)C17—C19—H19A109.5
N1—C1—C2120.7 (3)C20—C19—H19A109.5
C3—C2—C7118.2 (3)C17—C19—H19B109.5
C3—C2—C1118.4 (3)C20—C19—H19B109.5
C7—C2—C1123.4 (3)H19A—C19—H19B108.1
C4—C3—C2120.5 (3)C21—C20—C25117.8 (4)
C4—C3—H3A119.8C21—C20—C19120.1 (3)
C2—C3—H3A119.8C25—C20—C19122.2 (4)
C3—C4—C5121.9 (3)C20—C21—C22121.3 (4)
C3—C4—H4119.0C20—C21—H21119.4
C5—C4—H4119.0C22—C21—H21119.4
C6—C5—C4117.4 (3)C23—C22—C21119.4 (5)
C6—C5—C8121.0 (3)C23—C22—H22120.3
C4—C5—C8121.6 (3)C21—C22—H22120.3
C5—C6—C7121.3 (3)C22—C23—C24120.4 (5)
C5—C6—H6A119.4C22—C23—H23119.8
C7—C6—H6A119.4C24—C23—H23119.8
C2—C7—C6120.7 (3)C23—C24—C25120.3 (5)
C2—C7—H7119.6C23—C24—H24119.8
C6—C7—H7119.6C25—C24—H24119.8
C5—C8—H8A109.5C20—C25—C24120.8 (4)
C5—C8—H8B109.5C20—C25—H25119.6
H8A—C8—H8B109.5C24—C25—H25119.6
C5—C8—H8C109.5O6—C26—H26A109.5
H8A—C8—H8C109.5O6—C26—H26B109.5
H8B—C8—H8C109.5H26A—C26—H26B109.5
C10—C9—C14118.4 (3)O6—C26—H26C109.5
C10—C9—C16120.9 (3)H26A—C26—H26C109.5
C14—C9—C16120.7 (3)H26B—C26—H26C109.5
C9—C10—C11119.9 (3)
O5—V1—O1—C15.1 (5)C4—C5—C6—C71.5 (5)
N2—V1—O1—C15.47 (19)C8—C5—C6—C7178.9 (3)
O2—V1—O1—C1113.6 (2)C3—C2—C7—C60.9 (5)
O3—V1—O1—C195.3 (2)C1—C2—C7—C6179.1 (3)
N4—V1—O1—C1171.6 (2)C5—C6—C7—C20.2 (5)
O5—V1—O2—C16108.5 (2)C14—C9—C10—C110.5 (5)
N2—V1—O2—C16154.9 (2)C16—C9—C10—C11178.8 (3)
O3—V1—O2—C1611.8 (3)C9—C10—C11—C120.7 (5)
N4—V1—O2—C162.85 (19)C10—C11—C12—C130.2 (5)
O1—V1—O2—C1683.9 (2)C10—C11—C12—C15179.6 (3)
O5—V1—O3—C18115.4 (2)C11—C12—C13—C140.5 (5)
N2—V1—O3—C18149.4 (2)C15—C12—C13—C14179.6 (3)
O2—V1—O3—C185.1 (3)C12—C13—C14—C90.8 (5)
N4—V1—O3—C183.8 (2)C10—C9—C14—C130.3 (5)
O1—V1—O3—C1877.4 (2)C16—C9—C14—C13179.5 (3)
C1—N1—N2—V14.3 (3)V1—O2—C16—N34.0 (4)
O5—V1—N2—N1174.8 (2)V1—O2—C16—C9176.91 (18)
O2—V1—N2—N185.3 (2)N4—N3—C16—O22.2 (4)
O3—V1—N2—N176.8 (2)N4—N3—C16—C9178.7 (2)
N4—V1—N2—N11.2 (4)C10—C9—C16—O28.9 (4)
O1—V1—N2—N15.07 (19)C14—C9—C16—O2171.9 (3)
C16—N3—N4—C17171.9 (2)C10—C9—C16—N3172.0 (3)
C16—N3—N4—V10.5 (3)C14—C9—C16—N37.3 (4)
O5—V1—N4—C1796.6 (2)N3—N4—C17—C192.4 (4)
N2—V1—N4—C1776.5 (3)V1—N4—C17—C19169.9 (2)
O2—V1—N4—C17170.8 (2)N3—N4—C17—C18176.7 (2)
O3—V1—N4—C174.5 (2)V1—N4—C17—C184.3 (3)
O1—V1—N4—C1782.6 (2)V1—O3—C18—O4175.6 (2)
O5—V1—N4—N390.8 (2)V1—O3—C18—C172.7 (3)
N2—V1—N4—N396.1 (3)N4—C17—C18—O4179.5 (3)
O2—V1—N4—N31.82 (17)C19—C17—C18—O44.9 (5)
O3—V1—N4—N3177.2 (2)N4—C17—C18—O31.1 (4)
O1—V1—N4—N390.01 (18)C19—C17—C18—O3173.5 (3)
V1—O1—C1—N15.0 (3)N4—C17—C19—C2095.4 (4)
V1—O1—C1—C2175.4 (2)C18—C17—C19—C2078.3 (4)
N2—N1—C1—O11.1 (4)C17—C19—C20—C2178.5 (4)
N2—N1—C1—C2179.3 (2)C17—C19—C20—C25100.5 (4)
O1—C1—C2—C34.6 (4)C25—C20—C21—C220.3 (7)
N1—C1—C2—C3175.0 (3)C19—C20—C21—C22178.8 (5)
O1—C1—C2—C7175.4 (3)C20—C21—C22—C231.5 (9)
N1—C1—C2—C75.0 (4)C21—C22—C23—C241.2 (10)
C7—C2—C3—C40.1 (5)C22—C23—C24—C250.3 (10)
C1—C2—C3—C4179.9 (3)C21—C20—C25—C241.2 (7)
C2—C3—C4—C51.9 (6)C19—C20—C25—C24179.8 (4)
C3—C4—C5—C62.5 (6)C23—C24—C25—C201.5 (8)
C3—C4—C5—C8177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.842.182.821 (5)133
N1—H1···O3i0.862.132.808 (3)135
N2—H2···O60.861.992.800 (4)156
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[V(C8H9N2O)(C17H14N2O3)O]·CH4O
Mr542.46
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.2770 (2), 11.2558 (2), 13.4691 (3)
α, β, γ (°)95.769 (2), 96.708 (2), 109.675 (2)
V3)1300.48 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.864, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
12503, 5956, 3843
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.167, 1.03
No. of reflections5956
No. of parameters337
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.48

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O4i0.842.182.821 (5)133
N1—H1···O3i0.862.132.808 (3)135
N2—H2···O60.861.992.800 (4)156
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya (RG020/09AFR) for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationWong, H. W., Lo, K. M. & Ng, S. W. (2009a). Acta Cryst. E65, m422.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWong, H. W., Lo, K. M. & Ng, S. W. (2009b). Acta Cryst. E65, m718.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds