metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2-{[1,1-Bis(hy­droxy­meth­yl)-2-oxidoeth­yl]imino­meth­yl}-4-chloro­phenolato-κ3N,O,O′)di­butyl­tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 25 March 2010; accepted 25 March 2010; online 31 March 2010)

The Schiff base ligand in the title compound, [Sn(C4H9)2(C11H12ClNO4)], chelates to the Sn atom through the two deprotonated O atoms, as well as through the N atom, to confer an overall cis-C2SnNO2 trigonal-bipyramidal geometry at tin [C—Sn—C = 130.3 (1)°]. The hydr­oxy groups engage in O—H⋯O hydrogen bonding with the O atoms of adjacent mol­ecules, generating a chain running along the c axis.

Related literature

For the crystal structure of the uncoordinated Schiff base, see: Ng (2008[Ng, S. W. (2008). Acta Cryst. E64, o2455.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C11H12ClNO4)]

  • Mr = 490.58

  • Monoclinic, C 2/c

  • a = 18.6212 (2) Å

  • b = 13.4657 (2) Å

  • c = 16.6949 (1) Å

  • β = 91.845 (1)°

  • V = 4184.03 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 123 K

  • 0.43 × 0.30 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.590, Tmax = 0.726

  • 23501 measured reflections

  • 4803 independent reflections

  • 4350 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.064

  • S = 0.94

  • 4803 reflections

  • 243 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—O1 2.118 (1)
Sn1—O2 2.106 (1)
Sn1—C1 2.136 (2)
Sn1—C5 2.136 (2)
Sn1—N1 2.215 (1)
C1—Sn1—C5 130.26 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯O2i 0.83 (1) 1.79 (1) 2.612 (2) 172 (3)
O4—H4o⋯O3ii 0.84 (1) 1.94 (1) 2.739 (2) 160 (2)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The Schiff base derived from the condensation of salicylaldehyde (and other substituted salcylaldehydes) and tris(hydroxymethyl)methylamine is invariably deprotonated with respect to the phenoxy hydrogen atom and the deprotonated ligand binds to a metal atom through this oxygen atom. Occasionally, one of the methylelenehydroxy groups is also deprotonated in the metal complexes. The 4-chloro substituted compound, which exists as a zwitterion (Ng, 2008), when reacted with dibutyltin oxide is doubly-deprotonated in order to balance the charge of tin so that the ligand binds in a terdentate manner (Scheme I, Fig. 1).

The tin atom shows cis-trigonal bipyramidal coordination with a C–Sn–C angle of 130.3 (1) °; the ligand spans the two axial sites. The C–Sn–C angle is not opened up by the electronegative atom of any adjacent molecule. Adjacent molecules are linked by hydrogen bonds to form a ribbon (Fig. 2).

Related literature top

For the crystal structure of the Schiff base ligand, see: Ng (2008).

Experimental top

The Schiff base, 4-chloro-2-tris[(hydroxymethyl)methylimino]phenol was prepared from tris(hydroxymethyl)aminomethane and 5-chlorosalicylaldehyde in ethanol. The compound (0.26 g, 0.1 mmol) and dibutyltin oxide (0.25 g, 1.0 mmol) were heated in toluene in a Dean-Stark apparatus for 8 hours. Crystals was obtained when the filtered solution was allowed to evaporate over several days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The hydroxy H-atoms were located in a difference Fourier map, and were refined isotropically with a distance restraint of O–H 0.84±0.01 Å.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Sn(C4H9)2(C11H12ClNO4) with ellipsoids at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title compound.
(2-{[1,1-Bis(hydroxymethyl)-2-oxidoethyl]iminomethyl}-4-chlorophenolato- κ3N,O,O')dibutyltin(IV) top
Crystal data top
[Sn(C4H9)2(C11H12ClNO4)]F(000) = 2000
Mr = 490.58Dx = 1.558 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9381 reflections
a = 18.6212 (2) Åθ = 2.2–31.7°
b = 13.4657 (2) ŵ = 1.37 mm1
c = 16.6949 (1) ÅT = 123 K
β = 91.845 (1)°Block, yellow
V = 4184.03 (8) Å30.43 × 0.30 × 0.25 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
4803 independent reflections
Radiation source: fine-focus sealed tube4350 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.590, Tmax = 0.726k = 1517
23501 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0487P)2 + 2.5005P]
where P = (Fo2 + 2Fc2)/3
4803 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.60 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Sn(C4H9)2(C11H12ClNO4)]V = 4184.03 (8) Å3
Mr = 490.58Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.6212 (2) ŵ = 1.37 mm1
b = 13.4657 (2) ÅT = 123 K
c = 16.6949 (1) Å0.43 × 0.30 × 0.25 mm
β = 91.845 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4803 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4350 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.726Rint = 0.025
23501 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0202 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.60 e Å3
4803 reflectionsΔρmin = 0.31 e Å3
243 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.324176 (5)0.374067 (8)0.254047 (6)0.01818 (5)
Cl10.05353 (3)0.31243 (4)0.07291 (3)0.03821 (13)
N10.33156 (7)0.43789 (10)0.13234 (8)0.0169 (3)
O10.26803 (7)0.26136 (9)0.18945 (7)0.0251 (3)
O20.39660 (6)0.49305 (9)0.27014 (7)0.0213 (2)
O30.51910 (6)0.51554 (9)0.10309 (7)0.0208 (2)
O40.37037 (6)0.56261 (10)0.01897 (7)0.0233 (3)
C10.40248 (10)0.27086 (14)0.29943 (12)0.0280 (4)
H1A0.44520.27570.26580.034*
H1B0.41750.29220.35420.034*
C20.38064 (11)0.16181 (15)0.30333 (12)0.0318 (4)
H2A0.36690.13910.24860.038*
H2B0.42290.12240.32180.038*
C30.31878 (12)0.14046 (16)0.35828 (14)0.0367 (5)
H3A0.27610.17860.33920.044*
H3B0.30660.06900.35460.044*
C40.33487 (16)0.1662 (3)0.44466 (15)0.0629 (8)
H4A0.29300.15070.47650.094*
H4B0.34580.23720.44920.094*
H4C0.37630.12760.46460.094*
C50.23412 (10)0.43890 (15)0.31046 (12)0.0298 (4)
H5A0.24990.45970.36510.036*
H5B0.22040.49970.28040.036*
C60.16740 (12)0.37495 (16)0.31741 (16)0.0403 (5)
H6A0.15470.34690.26400.048*
H6B0.17890.31870.35380.048*
C70.10287 (11)0.42862 (17)0.34800 (15)0.0420 (5)
H7A0.08890.48140.30920.050*
H7B0.11680.46140.39930.050*
C80.03807 (14)0.3637 (2)0.36135 (19)0.0559 (7)
H8A0.00080.40420.38220.084*
H8B0.05090.31140.40000.084*
H8C0.02210.33340.31040.084*
C90.22124 (9)0.27459 (12)0.12977 (9)0.0194 (3)
C100.16258 (9)0.20867 (13)0.11998 (10)0.0236 (3)
H100.15840.15440.15590.028*
C110.11135 (9)0.22152 (14)0.05944 (10)0.0245 (4)
H110.07100.17850.05570.029*
C120.11877 (9)0.29764 (13)0.00376 (10)0.0230 (3)
C130.17673 (10)0.36033 (13)0.00828 (11)0.0229 (4)
H130.18260.40980.03150.028*
C140.22784 (8)0.35110 (13)0.07241 (10)0.0186 (3)
C150.28649 (8)0.42135 (12)0.07342 (10)0.0181 (3)
H150.29250.45910.02610.022*
C160.38984 (8)0.51236 (12)0.12515 (9)0.0159 (3)
C170.39581 (9)0.56345 (12)0.20768 (9)0.0192 (3)
H17A0.44040.60340.21120.023*
H17B0.35460.60900.21360.023*
C180.45807 (8)0.45272 (12)0.10880 (10)0.0180 (3)
H18A0.46670.40420.15260.022*
H18B0.45100.41520.05810.022*
C190.37587 (9)0.59373 (13)0.06223 (10)0.0201 (3)
H19B0.33070.62820.07520.024*
H19A0.41520.64310.06740.024*
H3O0.5441 (11)0.5129 (19)0.1452 (9)0.043 (7)*
H4O0.4099 (8)0.5403 (17)0.0338 (13)0.036 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01691 (8)0.02207 (8)0.01539 (8)0.00301 (4)0.00201 (5)0.00291 (4)
Cl10.0319 (2)0.0357 (3)0.0454 (3)0.00971 (19)0.0231 (2)0.0064 (2)
N10.0143 (6)0.0188 (7)0.0176 (6)0.0016 (5)0.0002 (5)0.0011 (5)
O10.0287 (6)0.0245 (6)0.0215 (6)0.0075 (5)0.0081 (5)0.0056 (5)
O20.0235 (6)0.0246 (6)0.0157 (5)0.0051 (5)0.0039 (4)0.0021 (5)
O30.0147 (5)0.0293 (7)0.0184 (6)0.0050 (4)0.0022 (4)0.0037 (5)
O40.0210 (6)0.0322 (7)0.0165 (6)0.0003 (5)0.0003 (5)0.0036 (5)
C10.0220 (8)0.0282 (10)0.0334 (10)0.0012 (7)0.0055 (7)0.0062 (8)
C20.0328 (10)0.0266 (10)0.0355 (10)0.0011 (8)0.0034 (8)0.0027 (8)
C30.0356 (11)0.0367 (11)0.0372 (12)0.0116 (8)0.0060 (9)0.0108 (9)
C40.0592 (17)0.094 (2)0.0357 (13)0.0296 (16)0.0015 (12)0.0084 (14)
C50.0264 (9)0.0296 (10)0.0337 (10)0.0011 (7)0.0066 (7)0.0002 (8)
C60.0269 (10)0.0461 (14)0.0485 (14)0.0077 (8)0.0097 (9)0.0149 (10)
C70.0303 (10)0.0395 (12)0.0570 (14)0.0044 (9)0.0120 (10)0.0132 (10)
C80.0296 (12)0.080 (2)0.0587 (17)0.0080 (11)0.0091 (11)0.0029 (13)
C90.0205 (8)0.0202 (8)0.0173 (7)0.0016 (6)0.0003 (6)0.0012 (6)
C100.0286 (9)0.0232 (9)0.0189 (8)0.0089 (7)0.0012 (7)0.0012 (6)
C110.0208 (8)0.0274 (9)0.0252 (9)0.0083 (7)0.0013 (6)0.0056 (7)
C120.0197 (8)0.0246 (9)0.0242 (8)0.0015 (6)0.0067 (6)0.0025 (7)
C130.0225 (8)0.0224 (9)0.0234 (9)0.0034 (6)0.0059 (7)0.0036 (6)
C140.0166 (7)0.0208 (8)0.0183 (8)0.0017 (6)0.0020 (6)0.0001 (6)
C150.0175 (7)0.0197 (8)0.0170 (7)0.0016 (6)0.0004 (6)0.0023 (6)
C160.0144 (7)0.0174 (8)0.0159 (7)0.0027 (5)0.0014 (5)0.0000 (6)
C170.0222 (8)0.0188 (8)0.0165 (7)0.0009 (6)0.0000 (6)0.0010 (6)
C180.0165 (7)0.0183 (8)0.0191 (7)0.0018 (6)0.0008 (6)0.0004 (6)
C190.0213 (8)0.0197 (8)0.0191 (8)0.0003 (6)0.0011 (6)0.0025 (6)
Geometric parameters (Å, º) top
Sn1—O12.118 (1)C6—C71.506 (3)
Sn1—O22.106 (1)C6—H6A0.9900
Sn1—C12.136 (2)C6—H6B0.9900
Sn1—C52.136 (2)C7—C81.513 (3)
Sn1—N12.215 (1)C7—H7A0.9900
Cl1—C121.7476 (17)C7—H7B0.9900
N1—C151.292 (2)C8—H8A0.9800
N1—C161.4852 (19)C8—H8B0.9800
O1—C91.314 (2)C8—H8C0.9800
O2—C171.4091 (19)C9—C101.413 (2)
O3—C181.4224 (18)C9—C141.415 (2)
O3—H3O0.831 (10)C10—C111.378 (2)
O4—C191.419 (2)C10—H100.9500
O4—H4O0.840 (10)C11—C121.394 (3)
C1—C21.526 (3)C11—H110.9500
C1—H1A0.9900C12—C131.370 (2)
C1—H1B0.9900C13—C141.415 (2)
C2—C31.523 (3)C13—H130.9500
C2—H2A0.9900C14—C151.445 (2)
C2—H2B0.9900C15—H150.9500
C3—C41.504 (3)C16—C191.534 (2)
C3—H3A0.9900C16—C181.535 (2)
C3—H3B0.9900C16—C171.541 (2)
C4—H4A0.9800C17—H17A0.9900
C4—H4B0.9800C17—H17B0.9900
C4—H4C0.9800C18—H18A0.9900
C5—C61.519 (3)C18—H18B0.9900
C5—H5A0.9900C19—H19B0.9900
C5—H5B0.9900C19—H19A0.9900
O2—Sn1—O1156.02 (5)C8—C7—H7A108.5
O2—Sn1—C191.30 (6)C6—C7—H7B108.5
O1—Sn1—C191.98 (6)C8—C7—H7B108.5
O2—Sn1—C598.13 (6)H7A—C7—H7B107.5
O1—Sn1—C597.80 (6)C7—C8—H8A109.5
C1—Sn1—C5130.26 (8)C7—C8—H8B109.5
O2—Sn1—N176.31 (5)H8A—C8—H8B109.5
O1—Sn1—N181.67 (5)C7—C8—H8C109.5
C1—Sn1—N1121.08 (6)H8A—C8—H8C109.5
C5—Sn1—N1108.59 (7)H8B—C8—H8C109.5
C15—N1—C16120.89 (13)O1—C9—C10119.58 (15)
C15—N1—Sn1125.01 (11)O1—C9—C14122.82 (14)
C16—N1—Sn1113.79 (9)C10—C9—C14117.57 (14)
C9—O1—Sn1126.37 (11)C11—C10—C9121.35 (16)
C17—O2—Sn1115.22 (9)C11—C10—H10119.3
C18—O3—H3O110.1 (17)C9—C10—H10119.3
C19—O4—H4O110.5 (16)C10—C11—C12120.03 (15)
C2—C1—Sn1117.49 (12)C10—C11—H11120.0
C2—C1—H1A107.9C12—C11—H11120.0
Sn1—C1—H1A107.9C13—C12—C11120.74 (15)
C2—C1—H1B107.9C13—C12—Cl1119.85 (14)
Sn1—C1—H1B107.9C11—C12—Cl1119.40 (13)
H1A—C1—H1B107.2C12—C13—C14119.79 (16)
C3—C2—C1114.53 (17)C12—C13—H13120.1
C3—C2—H2A108.6C14—C13—H13120.1
C1—C2—H2A108.6C9—C14—C13120.36 (15)
C3—C2—H2B108.6C9—C14—C15123.44 (14)
C1—C2—H2B108.6C13—C14—C15116.18 (15)
H2A—C2—H2B107.6N1—C15—C14126.46 (15)
C4—C3—C2113.76 (19)N1—C15—H15116.8
C4—C3—H3A108.8C14—C15—H15116.8
C2—C3—H3A108.8N1—C16—C19115.43 (12)
C4—C3—H3B108.8N1—C16—C18105.80 (12)
C2—C3—H3B108.8C19—C16—C18112.02 (13)
H3A—C3—H3B107.7N1—C16—C17105.13 (12)
C3—C4—H4A109.5C19—C16—C17107.40 (13)
C3—C4—H4B109.5C18—C16—C17110.87 (12)
H4A—C4—H4B109.5O2—C17—C16111.11 (13)
C3—C4—H4C109.5O2—C17—H17A109.4
H4A—C4—H4C109.5C16—C17—H17A109.4
H4B—C4—H4C109.5O2—C17—H17B109.4
C6—C5—Sn1117.23 (14)C16—C17—H17B109.4
C6—C5—H5A108.0H17A—C17—H17B108.0
Sn1—C5—H5A108.0O3—C18—C16111.62 (13)
C6—C5—H5B108.0O3—C18—H18A109.3
Sn1—C5—H5B108.0C16—C18—H18A109.3
H5A—C5—H5B107.2O3—C18—H18B109.3
C7—C6—C5114.67 (17)C16—C18—H18B109.3
C7—C6—H6A108.6H18A—C18—H18B108.0
C5—C6—H6A108.6O4—C19—C16116.64 (14)
C7—C6—H6B108.6O4—C19—H19B108.1
C5—C6—H6B108.6C16—C19—H19B108.1
H6A—C6—H6B107.6O4—C19—H19A108.1
C6—C7—C8114.9 (2)C16—C19—H19A108.1
C6—C7—H7A108.5H19B—C19—H19A107.3
O2—Sn1—N1—C15163.22 (14)C9—C10—C11—C123.4 (3)
O1—Sn1—N1—C1526.37 (13)C10—C11—C12—C130.1 (3)
C1—Sn1—N1—C15113.65 (14)C10—C11—C12—Cl1179.67 (14)
C5—Sn1—N1—C1569.11 (15)C11—C12—C13—C143.2 (3)
O2—Sn1—N1—C1610.39 (10)Cl1—C12—C13—C14177.18 (14)
O1—Sn1—N1—C16160.03 (11)O1—C9—C14—C13178.46 (16)
C1—Sn1—N1—C1672.75 (12)C10—C9—C14—C130.4 (2)
C5—Sn1—N1—C16104.50 (11)O1—C9—C14—C150.4 (3)
O2—Sn1—O1—C964.26 (19)C10—C9—C14—C15177.68 (16)
C1—Sn1—O1—C9161.94 (14)C12—C13—C14—C93.0 (3)
C5—Sn1—O1—C966.95 (14)C12—C13—C14—C15178.85 (16)
N1—Sn1—O1—C940.81 (13)C16—N1—C15—C14179.74 (15)
O1—Sn1—O2—C1741.07 (18)Sn1—N1—C15—C147.1 (2)
C1—Sn1—O2—C17138.89 (12)C9—C14—C15—N114.7 (3)
C5—Sn1—O2—C1790.09 (12)C13—C14—C15—N1167.15 (17)
N1—Sn1—O2—C1717.16 (10)C15—N1—C16—C1923.6 (2)
O2—Sn1—C1—C2179.95 (15)Sn1—N1—C16—C19150.32 (11)
O1—Sn1—C1—C223.71 (15)C15—N1—C16—C18100.89 (16)
C5—Sn1—C1—C278.25 (18)Sn1—N1—C16—C1885.21 (12)
N1—Sn1—C1—C2105.17 (15)C15—N1—C16—C17141.72 (15)
Sn1—C1—C2—C362.2 (2)Sn1—N1—C16—C1732.18 (14)
C1—C2—C3—C461.8 (3)Sn1—O2—C17—C1641.23 (15)
O2—Sn1—C5—C6176.69 (16)N1—C16—C17—O246.68 (16)
O1—Sn1—C5—C621.30 (17)C19—C16—C17—O2170.11 (12)
C1—Sn1—C5—C678.01 (19)C18—C16—C17—O267.21 (16)
N1—Sn1—C5—C6105.09 (17)N1—C16—C18—O3178.13 (12)
Sn1—C5—C6—C7172.58 (17)C19—C16—C18—O355.30 (17)
C5—C6—C7—C8175.3 (2)C17—C16—C18—O364.66 (16)
Sn1—O1—C9—C10146.41 (13)N1—C16—C19—O464.69 (18)
Sn1—O1—C9—C1435.5 (2)C18—C16—C19—O456.47 (18)
O1—C9—C10—C11178.29 (16)C17—C16—C19—O4178.44 (13)
C14—C9—C10—C113.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.83 (1)1.79 (1)2.612 (2)172 (3)
O4—H4o···O3ii0.84 (1)1.94 (1)2.739 (2)160 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C11H12ClNO4)]
Mr490.58
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)18.6212 (2), 13.4657 (2), 16.6949 (1)
β (°) 91.845 (1)
V3)4184.03 (8)
Z8
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.43 × 0.30 × 0.25
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.590, 0.726
No. of measured, independent and
observed [I > 2σ(I)] reflections
23501, 4803, 4350
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.064, 0.94
No. of reflections4803
No. of parameters243
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.31

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—O12.118 (1)Sn1—C52.136 (2)
Sn1—O22.106 (1)Sn1—N12.215 (1)
Sn1—C12.136 (2)
C1—Sn1—C5130.26 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···O2i0.83 (1)1.79 (1)2.612 (2)172 (3)
O4—H4o···O3ii0.84 (1)1.94 (1)2.739 (2)160 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z.
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNg, S. W. (2008). Acta Cryst. E64, o2455.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds