organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Methyl-3-(n-octylsulfan­yl)quinoxaline

aLaboratoire Nationale de Contrôle des Médicaments, Direction du Médicament et de la Pharmacie, BP 6206, 10000 Rabat, Morocco, bLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II Mohammedia-Casablana, BP 146, 20800 Mohammedia, Morocco, cLaboratoires de Diffraction des Rayons X, Division UATRS, Centre National pour la Recherche Scientifique et Technique, Rabat, Morocco, and dLaboratoire de Chimie Organique Hétérocyclique, Université Mohammed, V-Agdal, BP 1014, Rabat, Morocco
*Correspondence e-mail: lazar_said@yahoo.fr

(Received 25 March 2010; accepted 26 March 2010; online 31 March 2010)

All the non-H atoms of the title compound, C17H24N2S, lie almost in a common plane (r.m.s. deviation = 0.049 Å). The octyl chain adopts an all-trans conformation.

Related literature

For the biological activity of quinoxaline derivatives, see: Kleim et al. (1995[Kleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253-2257.]). For the anti­tumor and anti­tuberculous properties of quinoxaline derivatives, see: Abasolo et al. (1987[Abasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771-1775.]); Rodrigo et al. (2002[Rodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137-143.]). For the anti­fungal, herbicidal, anti­dyslipidemic and anti-oxidative activity of quinoxaline derivatives, see: Jampilek et al. (2005[Jampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591-599.]); Sashidhara et al. (2009[Sashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813-1818.]); Watkins et al. (2009[Watkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580-585.]).

[Scheme 1]

Experimental

Crystal data
  • C17H24N2S

  • Mr = 288.44

  • Triclinic, [P \overline 1]

  • a = 7.3514 (3) Å

  • b = 8.2978 (3) Å

  • c = 14.2168 (5) Å

  • α = 92.275 (2)°

  • β = 98.706 (2)°

  • γ = 103.810 (2)°

  • V = 829.86 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.26 × 0.17 × 0.16 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 29319 measured reflections

  • 6513 independent reflections

  • 3251 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.161

  • S = 1.00

  • 6513 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Quinoxaline derivatives are used as starting compounds in the synthesis of various more complex heterocyclic systems. On the other hand, quinoxaline core constitutes a structural fragment of many important pharmaceuticals and biologically active substances so that compounds containing a quinoxaline fragment attract strong interest of synthetic chemists and biochemists. Quinoxaline derivatives were found to exhibit antimicrobial (Kleim et al. 1995 ), antitumor (Abasolo et al., 1987), and antituberculous activity (Rodrigo et al., 2002).

Bond lengths and angles in title molecule (Fig.1) are normal.

Related literature top

For the biological activity of quinoxaline derivatives, see: (Kleim et al. 1995). For the antitumor and antituberculous properties of quinoxaline derivatives, see: Abasolo et al. (1987); Rodrigo et al. (2002). For the antifungal, herbicidal, antidyslipidemic and anti-oxidative activity of quinoxaline derivatives, see: Jampilek et al. (2005); Sashidhara et al. (2009); Watkins et al. (2009).

Experimental top

To a solution of 3-methylequinoxaline-2(1H)-thione (1 g, 5.68053 mmol) in dimethylformamide (20 ml), was added CH3(CH2)6C2I ,K2CO3 (1 g, 7.46 mmol) and a catalytic quantity of tetrabutylammoniumbromide. The mixture was stirred at room temperature for 24 h. The solution was filtered to remove the salts. The solvent was removed under reduced pressure.

The residue was crystallized in ethanol to afford the title compound as colourless crystals.

Refinement top

All H atoms were geometrically positioned and treated as riding with Cmethyl—H = 0.96 Å, Cmethylene—H = 0.97 Å and Caromatic—H = 0.93 Å with U(H) = 1.2Ueq(C) or U(H) = 1.5Ueq(Cmethyl) .

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
2-Methyl-3-(n-octylsulfanyl)quinoxaline top
Crystal data top
C17H24N2SZ = 2
Mr = 288.44F(000) = 312
Triclinic, P1Dx = 1.154 Mg m3
Hall symbol: -P 1Melting point: 374 K
a = 7.3514 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.2978 (3) ÅCell parameters from 2685 reflections
c = 14.2168 (5) Åθ = 2.5–27.3°
α = 92.275 (2)°µ = 0.19 mm1
β = 98.706 (2)°T = 296 K
γ = 103.810 (2)°Block, colourless
V = 829.86 (5) Å30.26 × 0.17 × 0.16 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
3251 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 33.6°, θmin = 2.8°
ω and ϕ scansh = 1011
29319 measured reflectionsk = 1212
6513 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.0189P]
where P = (Fo2 + 2Fc2)/3
6513 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H24N2Sγ = 103.810 (2)°
Mr = 288.44V = 829.86 (5) Å3
Triclinic, P1Z = 2
a = 7.3514 (3) ÅMo Kα radiation
b = 8.2978 (3) ŵ = 0.19 mm1
c = 14.2168 (5) ÅT = 296 K
α = 92.275 (2)°0.26 × 0.17 × 0.16 mm
β = 98.706 (2)°
Data collection top
Bruker APEXII CCD detector
diffractometer
3251 reflections with I > 2σ(I)
29319 measured reflectionsRint = 0.046
6513 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
6513 reflectionsΔρmin = 0.21 e Å3
183 parameters
Special details top

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of seven sets of exposures; each set had a different ϕ angle for the crystal and each exposure covered 0.5° in ω and 25 seconds in time. The crystal-to-detector distance was 37.5 mm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.61857 (5)0.28251 (5)0.04284 (3)0.05291 (14)
N20.67349 (16)0.13786 (14)0.11823 (8)0.0467 (3)
C80.54850 (18)0.17628 (16)0.07085 (10)0.0426 (3)
N10.28116 (16)0.05407 (15)0.19181 (9)0.0518 (3)
C100.87038 (19)0.29990 (18)0.06244 (11)0.0493 (3)
H10A0.89330.18960.05970.059*
H10B0.92630.35960.01240.059*
C70.34717 (18)0.13428 (17)0.10860 (11)0.0472 (3)
C10.6056 (2)0.05508 (17)0.20663 (10)0.0476 (3)
C110.9631 (2)0.39073 (19)0.15840 (11)0.0552 (4)
H11A0.90860.32980.20850.066*
H11B0.93790.50020.16150.066*
C60.4093 (2)0.01226 (17)0.24318 (10)0.0503 (3)
C121.1760 (2)0.40888 (19)0.17481 (11)0.0550 (4)
H12A1.19900.29890.16890.066*
H12B1.22870.47110.12470.066*
C141.4944 (2)0.5180 (2)0.27832 (11)0.0593 (4)
H14A1.52010.40970.26890.071*
H14B1.53690.58310.22700.071*
C131.2816 (2)0.4944 (2)0.27024 (11)0.0571 (4)
H13A1.23720.42850.32090.069*
H13B1.25390.60220.27860.069*
C50.3444 (3)0.0724 (2)0.33399 (12)0.0654 (4)
H50.21510.10260.35800.078*
C151.6108 (2)0.6024 (2)0.37177 (12)0.0659 (4)
H15A1.57570.53410.42310.079*
H15B1.58110.70850.38350.079*
C90.2124 (2)0.1842 (2)0.05151 (13)0.0626 (4)
H9A0.08600.15130.08720.094*
H9B0.24800.30280.03770.094*
H9C0.21660.13080.00720.094*
C20.7318 (3)0.0135 (2)0.26280 (12)0.0630 (4)
H20.86160.04090.23970.076*
C161.8230 (3)0.6316 (3)0.37289 (14)0.0818 (6)
H16A1.85230.52470.36320.098*
H16B1.85620.69560.31960.098*
C30.6642 (3)0.0667 (2)0.35107 (13)0.0737 (5)
H30.74890.09270.38800.088*
C40.4702 (3)0.1106 (2)0.38715 (13)0.0748 (5)
H40.42660.16600.44750.090*
C171.9438 (3)0.7205 (3)0.46263 (17)0.1066 (8)
H17A1.92240.82950.47080.160*
H17B2.07520.73030.45870.160*
H17C1.91140.65890.51600.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0394 (2)0.0656 (2)0.0517 (2)0.01121 (16)0.00697 (15)0.00649 (16)
N20.0370 (6)0.0531 (6)0.0480 (7)0.0077 (5)0.0075 (5)0.0010 (5)
C80.0345 (7)0.0467 (7)0.0450 (7)0.0078 (5)0.0052 (5)0.0039 (6)
N10.0393 (6)0.0597 (7)0.0529 (7)0.0106 (5)0.0004 (5)0.0030 (6)
C100.0370 (7)0.0551 (8)0.0511 (8)0.0046 (6)0.0052 (6)0.0026 (6)
C70.0346 (7)0.0498 (7)0.0555 (9)0.0087 (6)0.0049 (6)0.0064 (6)
C10.0454 (8)0.0501 (7)0.0467 (8)0.0093 (6)0.0090 (6)0.0041 (6)
C110.0465 (8)0.0620 (9)0.0523 (9)0.0077 (7)0.0041 (7)0.0011 (7)
C60.0489 (8)0.0518 (8)0.0468 (8)0.0095 (6)0.0018 (6)0.0059 (6)
C120.0475 (8)0.0601 (8)0.0507 (8)0.0058 (7)0.0004 (7)0.0006 (7)
C140.0528 (9)0.0644 (9)0.0518 (9)0.0041 (7)0.0018 (7)0.0044 (7)
C130.0518 (9)0.0618 (9)0.0514 (9)0.0071 (7)0.0009 (7)0.0010 (7)
C50.0667 (11)0.0707 (10)0.0515 (9)0.0130 (8)0.0048 (8)0.0018 (8)
C150.0579 (10)0.0745 (10)0.0554 (9)0.0070 (8)0.0045 (8)0.0010 (8)
C90.0383 (8)0.0779 (10)0.0721 (11)0.0181 (7)0.0082 (7)0.0061 (8)
C20.0597 (10)0.0699 (10)0.0616 (10)0.0151 (8)0.0203 (8)0.0006 (8)
C160.0637 (12)0.1066 (15)0.0644 (11)0.0139 (10)0.0064 (9)0.0109 (10)
C30.0848 (14)0.0779 (11)0.0645 (11)0.0220 (10)0.0298 (10)0.0013 (9)
C40.0960 (15)0.0749 (11)0.0481 (10)0.0159 (10)0.0067 (10)0.0051 (8)
C170.0735 (14)0.138 (2)0.0857 (16)0.0068 (13)0.0159 (12)0.0248 (14)
Geometric parameters (Å, º) top
S1—C81.7530 (14)C14—H14B0.9700
S1—C101.7995 (14)C13—H13A0.9700
N2—C81.3077 (18)C13—H13B0.9700
N2—C11.3705 (18)C5—C41.363 (3)
C8—C71.4485 (18)C5—H50.9300
N1—C71.2990 (18)C15—C161.518 (2)
N1—C61.373 (2)C15—H15A0.9700
C10—C111.5119 (19)C15—H15B0.9700
C10—H10A0.9700C9—H9A0.9600
C10—H10B0.9700C9—H9B0.9600
C7—C91.491 (2)C9—H9C0.9600
C1—C21.405 (2)C2—C31.361 (2)
C1—C61.411 (2)C2—H20.9300
C11—C121.517 (2)C16—C171.493 (2)
C11—H11A0.9700C16—H16A0.9700
C11—H11B0.9700C16—H16B0.9700
C6—C51.403 (2)C3—C41.395 (3)
C12—C131.513 (2)C3—H30.9300
C12—H12A0.9700C4—H40.9300
C12—H12B0.9700C17—H17A0.9600
C14—C151.511 (2)C17—H17B0.9600
C14—C131.515 (2)C17—H17C0.9600
C14—H14A0.9700
C8—S1—C10101.52 (7)C14—C13—H13A109.2
C8—N2—C1116.84 (12)C12—C13—H13B109.2
N2—C8—C7122.43 (13)C14—C13—H13B109.2
N2—C8—S1120.95 (10)H13A—C13—H13B107.9
C7—C8—S1116.62 (10)C4—C5—C6120.31 (17)
C7—N1—C6117.62 (12)C4—C5—H5119.8
C11—C10—S1110.83 (10)C6—C5—H5119.8
C11—C10—H10A109.5C14—C15—C16112.72 (16)
S1—C10—H10A109.5C14—C15—H15A109.0
C11—C10—H10B109.5C16—C15—H15A109.0
S1—C10—H10B109.5C14—C15—H15B109.0
H10A—C10—H10B108.1C16—C15—H15B109.0
N1—C7—C8121.19 (13)H15A—C15—H15B107.8
N1—C7—C9119.08 (12)C7—C9—H9A109.5
C8—C7—C9119.73 (13)C7—C9—H9B109.5
N2—C1—C2120.09 (13)H9A—C9—H9B109.5
N2—C1—C6120.89 (13)C7—C9—H9C109.5
C2—C1—C6119.02 (14)H9A—C9—H9C109.5
C10—C11—C12111.23 (13)H9B—C9—H9C109.5
C10—C11—H11A109.4C3—C2—C1119.96 (16)
C12—C11—H11A109.4C3—C2—H2120.0
C10—C11—H11B109.4C1—C2—H2120.0
C12—C11—H11B109.4C17—C16—C15114.54 (18)
H11A—C11—H11B108.0C17—C16—H16A108.6
N1—C6—C5119.52 (14)C15—C16—H16A108.6
N1—C6—C1121.03 (13)C17—C16—H16B108.6
C5—C6—C1119.45 (14)C15—C16—H16B108.6
C13—C12—C11115.33 (13)H16A—C16—H16B107.6
C13—C12—H12A108.4C2—C3—C4121.23 (17)
C11—C12—H12A108.4C2—C3—H3119.4
C13—C12—H12B108.4C4—C3—H3119.4
C11—C12—H12B108.4C5—C4—C3120.02 (17)
H12A—C12—H12B107.5C5—C4—H4120.0
C15—C14—C13115.44 (14)C3—C4—H4120.0
C15—C14—H14A108.4C16—C17—H17A109.5
C13—C14—H14A108.4C16—C17—H17B109.5
C15—C14—H14B108.4H17A—C17—H17B109.5
C13—C14—H14B108.4C16—C17—H17C109.5
H14A—C14—H14B107.5H17A—C17—H17C109.5
C12—C13—C14112.02 (13)H17B—C17—H17C109.5
C12—C13—H13A109.2

Experimental details

Crystal data
Chemical formulaC17H24N2S
Mr288.44
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.3514 (3), 8.2978 (3), 14.2168 (5)
α, β, γ (°)92.275 (2), 98.706 (2), 103.810 (2)
V3)829.86 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.17 × 0.16
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
29319, 6513, 3251
Rint0.046
(sin θ/λ)max1)0.778
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.161, 1.00
No. of reflections6513
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.21

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 2008), publCIF (Westrip, 2010).

 

References

First citationAbasolo, M. I., Gaozza, C. H. & Fernandez, B. M. (1987). J. Heterocycl. Chem. 24, 1771–1775.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJampilek, J., Dolezal, M., Kunes, J., Buchta, V. & Kralova, K. (2005). Med. Chem. 1, 591–599.  CrossRef PubMed CAS Google Scholar
First citationKleim, J. P., Bender, R., Kirsch, R., Meichsner, C., Paessens, A., Rosner, M., Rubsamen Waigmann, H., Kaiser, R., Wichers, M., Schneweis, K. E., Winkler, I. & Riess, G. (1995). Antimicrob. Agents Chemother. 39, 2253–2257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRodrigo, G. A., Robinshon, A. E., Hedrera, M. E., Kogan, M., Sicardi, S. M. & Fernaandez, B. M. (2002). Trends Heterocycl. Chem. 8, 137–143.  CAS Google Scholar
First citationSashidhara, K. V., Kumar, A., Bhatia, G., Khan, M. M., Khanna, A. K. & Saxena, J. K. (2009). Eur. J. Med. Chem. 44, 1813–1818.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkins, A. J., Nicol, G. W. & Shawa, L. J. (2009). Soil Biol. Biochem. 41, 580–585.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds