organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o1007-o1008

N′-[(E)-4-(Di­ethyl­amino)benzyl­­idene]-4-nitro­benzohydrazide monohydrate

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, and cDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 25 March 2010; accepted 26 March 2010; online 31 March 2010)

In the title compound, C18H20N4O3·H2O, the two aromatic rings are linked through a methyl­idenehydrazide fragment, which is fully extended with C—C—N—N, C—N—N=C and N—N=C—C torsion angles of 179.4 (2), 174.7 (2) and 178.3 (2)°, respectively. The dihedral angle between the two aromatic rings is 7.01 (8)°. In the crystal structure, the water of hydration is involved in extensive hydrogen bonding. Inter­molecular O—H⋯O, N—H⋯O and O—H⋯N hydrogen bonds link the components of the structure into a two-dimensional network and additional stabilization is provided by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the synthesis of related compounds, see: Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For the coordinating capability of hydrazones, see: Rodríguez-Argüelles et al. (2004[Rodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313-321.]). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009[Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311-1316.]); Galal et al. (2009[Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500-1508.]); Bordoloi et al. (2009[Bordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754-2757.]). For closely related structures, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907-o1908.]); Bessy et al. (2006[Bessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201-208.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N4O3·H2O

  • Mr = 358.40

  • Monoclinic, C 2/c

  • a = 38.3142 (12) Å

  • b = 7.4563 (3) Å

  • c = 12.6332 (5) Å

  • β = 98.215 (2)°

  • V = 3572.0 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.08 × 0.06 × 0.04 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.992, Tmax = 0.996

  • 5710 measured reflections

  • 4048 independent reflections

  • 3182 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.138

  • S = 1.11

  • 4048 reflections

  • 246 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4B⋯O3i 0.83 (4) 2.23 (4) 3.009 (3) 156 (3)
N2—H2N⋯O4 0.88 (2) 2.00 (2) 2.861 (2) 165 (2)
O4—H4A⋯O3ii 0.85 (3) 2.06 (4) 2.823 (2) 149 (3)
O4—H4A⋯N3ii 0.85 (3) 2.57 (3) 3.250 (3) 138 (3)
C5—H5⋯O3ii 0.95 2.54 3.308 (2) 138
C8—H8⋯O4 0.95 2.50 3.270 (3) 138
C13—H13⋯O2iii 0.95 2.51 3.350 (3) 148
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [x, -y+1, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The chemistry of hydrazones is being investigated continuously due to their excellent coordinating capability (Rodríguez-Argüelles et al., 2004) and biological activities (Zia-ur-Rehman et al., 2009; Galal et al., 2009; Bordoloi et al., 2009). In continuation of our studies on the synthesis of various heterocyclic compounds (Ahmad et al., 2010), the title compound, (I), has been synthesized and its crystal structure determined by X-ray crystallographic method which is presented in this article.

In the the title compound (Fig. 1) the bond distances and angles agree with the corresponding bond distances and angles reported in closely related compounds (Fun et al., 2008; Bessy et al., 2006). The benzene rings in (I) are linked through a methylidenehydrazide fragment, C6/C7/N2/N3/C8, which is fully extended with torsion angles C6–C7–N2–N3, C7–N2–N3\ C8 and N2–N3C8–C9 179.4 (2), 174.7 (2) and 178.3 (2)°, respectively. The dihedral angle between the two benzene rings is 7.01 (8)°. In the crystal structure, the water of hydration is extensively involved in hydrogen bonding. Thus, intermolecular O—H···O, N—H···O and O—H···N hydrogen bonds link the components of the structure into a two-dimensional network and additional stabilization is provided by weak intermolecular C—H···O hydrogen bonds; details have been provided in Table. 1. and Fig. 2.

Related literature top

For the synthesis of related compounds, see: Ahmad et al. (2010). For the coordinating capability of hydrazones, see: Rodríguez-Argüelles et al. (2004). For the biological activity of benzohydrazides, see: Zia-ur-Rehman et al. (2009); Galal et al. (2009); Bordoloi et al. (2009). For closely related structures, see: Fun et al. (2008); Bessy et al. (2006).

Experimental top

A mixture of para nitrobenzohydrazide (0.5 g, 2.76 mmoles), p-(diethylamino)benzaldehyde (0.49 g, 2.76 mmoles), orthophosphoric acid (0.2 ml) and methanol (50.0 ml) was refluxed for a period of 5.5 hours followed by removal of the solvent under vacuum. The contents were cooled and washed with cold methanol followed by crystallization from the same solvent at room temperature by slow evaporation. Yield: 91%. M.p. 491 K.

Refinement top

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively; the coordinates of the H-atoms bonded to N2 and O4 were allowed to refine. The Uiso(H) were allowed at 1.5Ueq(methyl-C and water-O) and 1.2Ueq(the rest of the parent atoms). The final difference map was essentially featurless.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997). Symmetry code * = x, 1-y, z+1/2.
[Figure 2] Fig. 2. The unit cell packing of the title compound; H-bonds have been plotted with dashed lines and H-atoms not involved in H-bonds have been excluded for clarity.
N'-[(E)-4-(Diethylamino)benzylidene]-4-nitrobenzohydrazide monohydrate top
Crystal data top
C18H20N4O3·H2OF(000) = 1520
Mr = 358.40Dx = 1.333 Mg m3
Monoclinic, C2/cMelting point: 491 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 38.3142 (12) ÅCell parameters from 3855 reflections
b = 7.4563 (3) Åθ = 1.0–27.5°
c = 12.6332 (5) ŵ = 0.10 mm1
β = 98.215 (2)°T = 173 K
V = 3572.0 (2) Å3Prism, orange
Z = 80.08 × 0.06 × 0.04 mm
Data collection top
Nonius KappaCCD
diffractometer
4048 independent reflections
Radiation source: fine-focus sealed tube3182 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 4949
Tmin = 0.992, Tmax = 0.996k = 69
5710 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: difference Fourier map
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0299P)2 + 6.8806P]
where P = (Fo2 + 2Fc2)/3
4048 reflections(Δ/σ)max < 0.001
246 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H20N4O3·H2OV = 3572.0 (2) Å3
Mr = 358.40Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.3142 (12) ŵ = 0.10 mm1
b = 7.4563 (3) ÅT = 173 K
c = 12.6332 (5) Å0.08 × 0.06 × 0.04 mm
β = 98.215 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4048 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3182 reflections with I > 2σ(I)
Tmin = 0.992, Tmax = 0.996Rint = 0.021
5710 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.29 e Å3
4048 reflectionsΔρmin = 0.19 e Å3
246 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.24370 (5)0.6548 (3)0.29158 (14)0.0491 (5)
H4A0.2524 (8)0.625 (5)0.236 (3)0.074*
H4B0.2376 (9)0.762 (5)0.289 (3)0.074*
O10.44265 (4)0.7990 (3)0.48843 (14)0.0504 (5)
O20.42219 (4)0.7098 (3)0.32907 (14)0.0529 (5)
O30.29243 (4)0.4979 (3)0.66984 (12)0.0470 (5)
N10.41920 (5)0.7349 (3)0.42338 (15)0.0382 (4)
N20.26157 (4)0.5178 (2)0.50392 (14)0.0309 (4)
H2N0.2601 (6)0.555 (3)0.4374 (19)0.037*
N30.23060 (4)0.4687 (2)0.54236 (14)0.0329 (4)
N40.06636 (4)0.2626 (3)0.54414 (14)0.0385 (5)
C10.35196 (5)0.6469 (3)0.60129 (16)0.0360 (5)
H10.34970.65460.67500.043*
C20.38313 (5)0.6981 (3)0.56723 (17)0.0376 (5)
H20.40230.74230.61650.045*
C30.38577 (5)0.6834 (3)0.45998 (16)0.0317 (4)
C40.35855 (5)0.6218 (3)0.38607 (16)0.0355 (5)
H40.36110.61340.31250.043*
C50.32730 (5)0.5720 (3)0.42139 (16)0.0331 (5)
H50.30810.52940.37160.040*
C60.32385 (5)0.5841 (3)0.52888 (15)0.0286 (4)
C70.29128 (5)0.5290 (3)0.57364 (16)0.0308 (4)
C80.20420 (5)0.4474 (3)0.46932 (17)0.0330 (4)
H80.20750.46270.39680.040*
C90.16922 (5)0.4008 (3)0.49284 (16)0.0313 (4)
C100.16034 (5)0.3932 (3)0.59596 (16)0.0324 (5)
H100.17780.41890.65530.039*
C110.12662 (5)0.3491 (3)0.61358 (16)0.0327 (5)
H110.12130.34540.68470.039*
C120.09998 (5)0.3094 (3)0.52795 (16)0.0326 (5)
C130.10887 (5)0.3192 (3)0.42407 (17)0.0371 (5)
H130.09150.29450.36440.044*
C140.14265 (6)0.3645 (3)0.40804 (17)0.0373 (5)
H140.14800.37110.33700.045*
C150.05774 (6)0.2167 (3)0.64950 (17)0.0387 (5)
H15A0.07880.16210.69220.046*
H15B0.03880.12530.64100.046*
C160.04582 (6)0.3745 (4)0.7111 (2)0.0502 (6)
H16A0.03920.33220.77890.075*
H16B0.02550.43210.66860.075*
H16C0.06510.46130.72560.075*
C170.03658 (6)0.2743 (4)0.45771 (18)0.0449 (6)
H17A0.04150.36970.40730.054*
H17B0.01520.30950.48840.054*
C180.02924 (7)0.1007 (4)0.3964 (2)0.0595 (8)
H18A0.04930.07140.35950.089*
H18B0.00800.11440.34380.089*
H18C0.02570.00400.44630.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0535 (10)0.0650 (12)0.0311 (8)0.0156 (9)0.0143 (7)0.0043 (9)
O10.0315 (8)0.0661 (12)0.0534 (10)0.0138 (8)0.0055 (7)0.0024 (9)
O20.0483 (10)0.0704 (13)0.0443 (9)0.0106 (9)0.0216 (8)0.0001 (9)
O30.0312 (8)0.0813 (13)0.0286 (7)0.0081 (8)0.0043 (6)0.0116 (8)
N10.0316 (9)0.0399 (11)0.0443 (10)0.0039 (8)0.0098 (8)0.0046 (9)
N20.0241 (8)0.0398 (10)0.0297 (8)0.0028 (7)0.0063 (7)0.0027 (8)
N30.0241 (8)0.0379 (10)0.0376 (9)0.0030 (7)0.0072 (7)0.0018 (8)
N40.0248 (8)0.0575 (13)0.0325 (9)0.0085 (8)0.0011 (7)0.0024 (9)
C10.0307 (10)0.0519 (14)0.0248 (9)0.0055 (10)0.0017 (8)0.0008 (9)
C20.0286 (10)0.0512 (14)0.0317 (10)0.0083 (10)0.0002 (8)0.0005 (10)
C30.0261 (9)0.0335 (11)0.0359 (10)0.0018 (8)0.0062 (8)0.0034 (9)
C40.0333 (11)0.0469 (13)0.0270 (10)0.0019 (9)0.0071 (8)0.0027 (9)
C50.0282 (10)0.0419 (12)0.0287 (10)0.0041 (9)0.0023 (8)0.0033 (9)
C60.0258 (9)0.0313 (10)0.0290 (9)0.0006 (8)0.0049 (8)0.0010 (8)
C70.0287 (10)0.0354 (11)0.0289 (10)0.0029 (8)0.0061 (8)0.0009 (8)
C80.0294 (10)0.0361 (11)0.0343 (10)0.0021 (9)0.0075 (8)0.0009 (9)
C90.0249 (9)0.0347 (11)0.0340 (10)0.0024 (8)0.0028 (8)0.0010 (9)
C100.0258 (9)0.0377 (11)0.0322 (10)0.0012 (8)0.0006 (8)0.0009 (9)
C110.0263 (10)0.0415 (12)0.0299 (10)0.0007 (9)0.0027 (8)0.0032 (9)
C120.0257 (9)0.0379 (11)0.0339 (10)0.0035 (8)0.0028 (8)0.0025 (9)
C130.0291 (10)0.0489 (13)0.0314 (10)0.0071 (9)0.0023 (8)0.0022 (10)
C140.0338 (11)0.0466 (13)0.0314 (10)0.0067 (10)0.0047 (9)0.0001 (9)
C150.0280 (10)0.0515 (14)0.0363 (11)0.0080 (10)0.0039 (8)0.0067 (10)
C160.0405 (13)0.0680 (18)0.0436 (13)0.0061 (12)0.0114 (11)0.0064 (13)
C170.0287 (10)0.0637 (16)0.0407 (12)0.0069 (11)0.0006 (9)0.0075 (11)
C180.0498 (15)0.080 (2)0.0464 (14)0.0243 (14)0.0024 (12)0.0023 (14)
Geometric parameters (Å, º) top
O4—H4A0.85 (3)C8—C91.456 (3)
O4—H4B0.83 (4)C8—H80.9500
O1—N11.225 (2)C9—C101.394 (3)
O2—N11.228 (2)C9—C141.395 (3)
O3—C71.232 (2)C10—C111.382 (3)
N1—C31.473 (3)C10—H100.9500
N2—C71.339 (2)C11—C121.409 (3)
N2—N31.394 (2)C11—H110.9500
N2—H2N0.88 (2)C12—C131.404 (3)
N3—C81.278 (3)C13—C141.380 (3)
N4—C121.378 (3)C13—H130.9500
N4—C151.457 (3)C14—H140.9500
N4—C171.465 (3)C15—C161.517 (4)
C1—C21.380 (3)C15—H15A0.9900
C1—C61.391 (3)C15—H15B0.9900
C1—H10.9500C16—H16A0.9800
C2—C31.377 (3)C16—H16B0.9800
C2—H20.9500C16—H16C0.9800
C3—C41.376 (3)C17—C181.514 (4)
C4—C51.387 (3)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C5—C61.386 (3)C18—H18A0.9800
C5—H50.9500C18—H18B0.9800
C6—C71.499 (3)C18—H18C0.9800
H4A—O4—H4B111 (3)C11—C10—H10119.4
O1—N1—O2123.34 (19)C9—C10—H10119.4
O1—N1—C3118.57 (18)C10—C11—C12121.19 (19)
O2—N1—C3118.09 (18)C10—C11—H11119.4
C7—N2—N3118.26 (17)C12—C11—H11119.4
C7—N2—H2N122.7 (15)N4—C12—C13120.59 (18)
N3—N2—H2N118.4 (15)N4—C12—C11121.96 (19)
C8—N3—N2113.98 (17)C13—C12—C11117.45 (18)
C12—N4—C15122.27 (17)C14—C13—C12120.52 (19)
C12—N4—C17121.30 (18)C14—C13—H13119.7
C15—N4—C17116.15 (17)C12—C13—H13119.7
C2—C1—C6120.75 (19)C13—C14—C9122.1 (2)
C2—C1—H1119.6C13—C14—H14118.9
C6—C1—H1119.6C9—C14—H14118.9
C3—C2—C1118.25 (19)N4—C15—C16114.2 (2)
C3—C2—H2120.9N4—C15—H15A108.7
C1—C2—H2120.9C16—C15—H15A108.7
C4—C3—C2122.61 (19)N4—C15—H15B108.7
C4—C3—N1118.86 (19)C16—C15—H15B108.7
C2—C3—N1118.52 (18)H15A—C15—H15B107.6
C3—C4—C5118.47 (19)C15—C16—H16A109.5
C3—C4—H4120.8C15—C16—H16B109.5
C5—C4—H4120.8H16A—C16—H16B109.5
C6—C5—C4120.35 (18)C15—C16—H16C109.5
C6—C5—H5119.8H16A—C16—H16C109.5
C4—C5—H5119.8H16B—C16—H16C109.5
C5—C6—C1119.55 (18)N4—C17—C18113.5 (2)
C5—C6—C7123.55 (17)N4—C17—H17A108.9
C1—C6—C7116.88 (18)C18—C17—H17A108.9
O3—C7—N2122.99 (18)N4—C17—H17B108.9
O3—C7—C6120.63 (17)C18—C17—H17B108.9
N2—C7—C6116.38 (17)H17A—C17—H17B107.7
N3—C8—C9122.62 (19)C17—C18—H18A109.5
N3—C8—H8118.7C17—C18—H18B109.5
C9—C8—H8118.7H18A—C18—H18B109.5
C10—C9—C14117.46 (18)C17—C18—H18C109.5
C10—C9—C8123.73 (18)H18A—C18—H18C109.5
C14—C9—C8118.80 (19)H18B—C18—H18C109.5
C11—C10—C9121.26 (18)
C7—N2—N3—C8174.7 (2)N2—N3—C8—C9178.3 (2)
C6—C1—C2—C30.7 (4)N3—C8—C9—C106.9 (3)
C1—C2—C3—C40.6 (4)N3—C8—C9—C14174.4 (2)
C1—C2—C3—N1178.9 (2)C14—C9—C10—C110.8 (3)
O1—N1—C3—C4176.0 (2)C8—C9—C10—C11179.6 (2)
O2—N1—C3—C44.6 (3)C9—C10—C11—C120.2 (3)
O1—N1—C3—C24.4 (3)C15—N4—C12—C13167.7 (2)
O2—N1—C3—C2175.0 (2)C17—N4—C12—C1318.6 (3)
C2—C3—C4—C50.2 (4)C15—N4—C12—C1112.3 (3)
N1—C3—C4—C5179.4 (2)C17—N4—C12—C11161.3 (2)
C3—C4—C5—C60.2 (3)C10—C11—C12—N4179.1 (2)
C4—C5—C6—C10.1 (3)C10—C11—C12—C131.0 (3)
C4—C5—C6—C7178.5 (2)N4—C12—C13—C14179.4 (2)
C2—C1—C6—C50.3 (3)C11—C12—C13—C140.6 (3)
C2—C1—C6—C7179.1 (2)C12—C13—C14—C90.5 (4)
N3—N2—C7—O30.1 (3)C10—C9—C14—C131.2 (3)
N3—N2—C7—C6179.4 (2)C8—C9—C14—C13179.9 (2)
C5—C6—C7—O3160.9 (2)C12—N4—C15—C1691.3 (3)
C1—C6—C7—O317.8 (3)C17—N4—C15—C1682.7 (3)
C5—C6—C7—N219.6 (3)C12—N4—C17—C1893.1 (3)
C1—C6—C7—N2161.7 (2)C15—N4—C17—C1892.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.83 (4)2.23 (4)3.009 (3)156 (3)
N2—H2N···O40.88 (2)2.00 (2)2.861 (2)165 (2)
O4—H4A···O3ii0.85 (3)2.06 (4)2.823 (2)149 (3)
O4—H4A···N3ii0.85 (3)2.57 (3)3.250 (3)138 (3)
C5—H5···O3ii0.952.543.308 (2)138
C8—H8···O40.952.503.270 (3)138
C13—H13···O2iii0.952.513.350 (3)148
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H20N4O3·H2O
Mr358.40
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)38.3142 (12), 7.4563 (3), 12.6332 (5)
β (°) 98.215 (2)
V3)3572.0 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.08 × 0.06 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.992, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
5710, 4048, 3182
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.138, 1.11
No. of reflections4048
No. of parameters246
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.19

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4B···O3i0.83 (4)2.23 (4)3.009 (3)156 (3)
N2—H2N···O40.88 (2)2.00 (2)2.861 (2)165 (2)
O4—H4A···O3ii0.85 (3)2.06 (4)2.823 (2)149 (3)
O4—H4A···N3ii0.85 (3)2.57 (3)3.250 (3)138 (3)
C5—H5···O3ii0.952.543.308 (2)138
C8—H8···O40.952.503.270 (3)138
C13—H13···O2iii0.952.513.350 (3)148
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z1/2; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

HLS is grateful to the Institute of Chemistry, University of the Punjab, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBessy, R. B. N., Prathapachandra, K. M. R. & Suresh, E. (2006). Struct. Chem. 17, 201–208.  CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBordoloi, M., Kotoky, R., Mahanta, J. J., Sarma, T. C. & Kanjilal, P. B. (2009). Eur. J. Med. Chem. 44, 2754–2757.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S. & Kalluraya, B. (2008). Acta Cryst. E64, o1907–o1908.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El-Khamry, A. A. & El Diwani, H. I. (2009). Eur. J. Med. Chem. 44, 1500–1508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRodríguez-Argüelles, M. C., Ferrari, M. B., Bisceglie, F., Pelizzi, C., Pelosi, G., Pinelli, S. & Sassi, M. (2004). J. Inorg. Biochem. 98, 313–321.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem. 44, 1311–1316.  Web of Science PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o1007-o1008
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds