organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sodium N,2-di­chloro­benzene­sulfonamidate sesquihydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 6 March 2010; accepted 16 March 2010; online 20 March 2010)

In the title compound, Na+·C6H4Cl2NO2S·1.5H2O, one of the water mol­ecules lies on a twofold axis. There is no inter­action between the N atom and the sodium ion. The sodium ion exhibits a pseudo-octa­hedral coordination defined by three water O atoms and three sulfonyl O atoms from three different anions. The S—N distance of 1.588 (2) Å is consistent with an S=N double bond. The crystal structure is stabilized by O—H⋯N and O—H⋯Cl hydrogen bonds.

Related literature

For background to N-haloaryl­sulfonamides, see: Gowda et al. (2005[Gowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572-582.]). For related structures, see: Gowda et al. (2007[Gowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m1644-m1645.], 2009[Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700.]); George et al. (2000[George, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208-1209.]); Olmstead & Power (1986[Olmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057-4058.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C6H4Cl2NO2S·1.5H2O

  • Mr = 275.08

  • Monoclinic, C 2/c

  • a = 11.1288 (7) Å

  • b = 6.6724 (4) Å

  • c = 28.144 (2) Å

  • β = 102.274 (6)°

  • V = 2042.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.87 mm−1

  • T = 299 K

  • 0.46 × 0.36 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.691, Tmax = 0.794

  • 6590 measured reflections

  • 2076 independent reflections

  • 1944 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.15

  • 2076 reflections

  • 141 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H31⋯N1i 0.79 (2) 2.15 (2) 2.926 (2) 166 (3)
O3—H32⋯Cl1ii 0.81 (2) 2.67 (2) 3.4782 (16) 171 (2)
O4—H41⋯N1ii 0.81 (2) 2.19 (2) 3.005 (2) 176 (2)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as a part of exploring the substituent effects on the solid-state structures of N-halo arylsulfonamidates (Gowda et al., 2005; 2007; 2009), the structure of sodium N-chloro-2-chloro- benzenesulfonamidate (I) has been determined (Fig. 1). The structure of (I) resembles the sodium salts of N-chloro-4-chlorobenzenesulfonamidate (Gowda et al., 2007), N-chloro-2-methylbenzenesulfonamidate (Gowda et al., 2009), and other sodium N-chloro- arylsulfonamidates (George et al., 2000; Olmstead & Power, 1986).

The sodium ion shows pseudo-octahedral coordination defined by three water-O atoms and by three sulfonyl-O atoms derived from three different anions. There is no interaction between the nitrogen and sodium ions. The S—N distance of 1.588 (2)Å is consistent with a S—N double bond and is in agreement with those observed with related N-chloro arylsulfonamides.

The Packing diagram consists of a two-dimensional polymeric layer running parallel to the ac plane (Fig. 2). The molecular packing is stabilized by N-H···O and O-H···Cl hydrogen bonds (Table 1)

Related literature top

For background to N-haloarylsulfonamides, see: Gowda et al. (2005). For related structures, see: Gowda et al. (2007, 2009); George et al. (2000); Olmstead & Power (1986).

Experimental top

The title compound was prepared according to the literature method (Gowda et al., 2005; 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of its chloroform solution at room temperature.

Refinement top

The O-bound H atoms were located in difference map and later restrained to O—H = 0.82 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonding shown as dashed lines.
Sodium N,2-dichlorobenzenesulfonamidate sesquihydrate top
Crystal data top
Na+·C6H4Cl2NO2S·1.5H2OF(000) = 1112
Mr = 275.08Dx = 1.789 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2816 reflections
a = 11.1288 (7) Åθ = 3.0–27.9°
b = 6.6724 (4) ŵ = 0.87 mm1
c = 28.144 (2) ÅT = 299 K
β = 102.274 (6)°Prism, colourless
V = 2042.1 (2) Å30.46 × 0.36 × 0.28 mm
Z = 8
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2076 independent reflections
Radiation source: fine-focus sealed tube1944 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Rotation method data acquisition using ω and phi scansθmax = 26.4°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.691, Tmax = 0.794k = 86
6590 measured reflectionsl = 3335
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0246P)2 + 3.4504P]
where P = (Fo2 + 2Fc2)/3
2076 reflections(Δ/σ)max = 0.006
141 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
Na+·C6H4Cl2NO2S·1.5H2OV = 2042.1 (2) Å3
Mr = 275.08Z = 8
Monoclinic, C2/cMo Kα radiation
a = 11.1288 (7) ŵ = 0.87 mm1
b = 6.6724 (4) ÅT = 299 K
c = 28.144 (2) Å0.46 × 0.36 × 0.28 mm
β = 102.274 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2076 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1944 reflections with I > 2σ(I)
Tmin = 0.691, Tmax = 0.794Rint = 0.014
6590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0293 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.36 e Å3
2076 reflectionsΔρmin = 0.28 e Å3
141 parameters
Special details top

Experimental. (CrysAlis RED; Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.31355 (16)0.8280 (3)0.10792 (6)0.0208 (4)
C20.39097 (18)0.8966 (3)0.07759 (7)0.0257 (4)
C30.3434 (2)0.9809 (3)0.03289 (8)0.0376 (5)
H30.39511.02610.01320.045*
C40.2181 (2)0.9965 (4)0.01810 (8)0.0454 (6)
H40.18431.05140.01220.054*
C50.1413 (2)0.9312 (4)0.04792 (9)0.0431 (6)
H50.05660.94460.03750.052*
C60.18813 (18)0.8472 (3)0.09260 (7)0.0301 (4)
H60.13580.80380.11220.036*
Cl10.38325 (5)0.35684 (8)0.123234 (19)0.03468 (14)
Cl20.54842 (5)0.88282 (9)0.09392 (2)0.04180 (16)
N10.45784 (14)0.5415 (2)0.16212 (6)0.0255 (3)
Na10.14395 (7)0.50352 (13)0.23560 (3)0.03065 (19)
O10.25555 (13)0.6627 (2)0.18286 (5)0.0329 (3)
O20.44039 (12)0.8680 (2)0.19636 (5)0.0295 (3)
O30.29191 (13)0.6793 (2)0.29703 (5)0.0333 (3)
H310.3538 (18)0.627 (4)0.3106 (9)0.040*
H320.258 (2)0.718 (4)0.3182 (8)0.040*
O40.00000.7742 (3)0.25000.0336 (5)
H410.013 (2)0.852 (3)0.2729 (7)0.040*
S10.36626 (4)0.71995 (7)0.166416 (15)0.02023 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0244 (9)0.0166 (8)0.0201 (8)0.0008 (7)0.0022 (7)0.0003 (7)
C20.0290 (10)0.0207 (9)0.0277 (9)0.0013 (8)0.0068 (8)0.0009 (8)
C30.0540 (14)0.0311 (11)0.0293 (11)0.0020 (10)0.0129 (10)0.0059 (9)
C40.0605 (15)0.0406 (13)0.0279 (11)0.0060 (12)0.0068 (10)0.0108 (10)
C50.0355 (12)0.0442 (13)0.0412 (12)0.0054 (10)0.0106 (9)0.0065 (11)
C60.0239 (9)0.0331 (11)0.0310 (10)0.0007 (8)0.0008 (8)0.0010 (9)
Cl10.0399 (3)0.0266 (3)0.0380 (3)0.0038 (2)0.0092 (2)0.0080 (2)
Cl20.0281 (3)0.0487 (3)0.0520 (3)0.0023 (2)0.0163 (2)0.0120 (3)
N10.0243 (8)0.0226 (8)0.0269 (8)0.0010 (7)0.0002 (6)0.0014 (7)
Na10.0281 (4)0.0325 (4)0.0328 (4)0.0052 (3)0.0097 (3)0.0006 (3)
O10.0272 (7)0.0430 (9)0.0309 (7)0.0009 (6)0.0116 (6)0.0065 (7)
O20.0295 (7)0.0308 (8)0.0252 (7)0.0014 (6)0.0007 (5)0.0081 (6)
O30.0245 (7)0.0408 (9)0.0333 (8)0.0014 (7)0.0035 (6)0.0031 (7)
O40.0432 (12)0.0244 (11)0.0291 (11)0.0000.0015 (9)0.000
S10.0197 (2)0.0233 (2)0.0173 (2)0.00026 (17)0.00302 (15)0.00009 (17)
Geometric parameters (Å, º) top
C1—C61.376 (3)Na1—O2i2.4710 (15)
C1—C21.412 (3)Na1—O2ii2.4759 (15)
C1—S11.7786 (18)Na1—O42.5035 (18)
C2—C31.377 (3)Na1—O3ii2.5120 (18)
C2—Cl21.717 (2)Na1—S1ii3.3661 (9)
C3—C41.372 (3)O1—S11.4562 (14)
C3—H30.9300O2—S11.4390 (14)
C4—C51.389 (4)O2—Na1iii2.4710 (15)
C4—H40.9300O2—Na1iv2.4759 (15)
C5—C61.374 (3)O3—Na1iv2.5120 (18)
C5—H50.9300O3—H310.792 (16)
C6—H60.9300O3—H320.811 (16)
Cl1—N11.7376 (16)O4—Na1v2.5035 (18)
N1—S11.5883 (16)O4—H410.814 (16)
Na1—O12.3785 (15)S1—Na1iv3.3661 (9)
Na1—O32.4220 (17)
C6—C1—C2119.28 (17)O2ii—Na1—O3ii98.75 (6)
C6—C1—S1116.14 (14)O4—Na1—O3ii157.17 (5)
C2—C1—S1124.58 (14)O1—Na1—S1ii151.07 (5)
C3—C2—C1121.30 (19)O3—Na1—S1ii79.85 (4)
C3—C2—Cl2116.02 (16)O2i—Na1—S1ii88.45 (4)
C1—C2—Cl2122.68 (15)O2ii—Na1—S1ii22.58 (3)
C4—C3—C2118.5 (2)O4—Na1—S1ii97.97 (3)
C4—C3—H3120.8O3ii—Na1—S1ii82.95 (4)
C2—C3—H3120.8S1—O1—Na1154.80 (9)
C3—C4—C5120.6 (2)S1—O2—Na1iii150.45 (9)
C3—C4—H4119.7S1—O2—Na1iv116.06 (8)
C5—C4—H4119.7Na1iii—O2—Na1iv89.02 (5)
C6—C5—C4121.3 (2)Na1—O3—Na1iv111.04 (6)
C6—C5—H5119.4Na1—O3—H31121.4 (19)
C4—C5—H5119.4Na1iv—O3—H31105.4 (19)
C5—C6—C1119.1 (2)Na1—O3—H32108.9 (19)
C5—C6—H6120.5Na1iv—O3—H32102.1 (19)
C1—C6—H6120.5H31—O3—H32106 (3)
S1—N1—Cl1110.56 (9)Na1v—O4—Na187.67 (8)
O1—Na1—O382.14 (6)Na1v—O4—H41109.7 (18)
O1—Na1—O2i115.80 (6)Na1—O4—H41125.3 (18)
O3—Na1—O2i156.33 (6)O2—S1—O1114.36 (9)
O1—Na1—O2ii168.48 (6)O2—S1—N1105.17 (8)
O3—Na1—O2ii86.38 (6)O1—S1—N1115.30 (9)
O2i—Na1—O2ii75.50 (6)O2—S1—C1107.39 (9)
O1—Na1—O4102.47 (6)O1—S1—C1105.41 (8)
O3—Na1—O484.05 (5)N1—S1—C1108.91 (8)
O2i—Na1—O477.23 (5)O2—S1—Na1iv41.36 (6)
O2ii—Na1—O477.14 (5)O1—S1—Na1iv73.08 (6)
O1—Na1—O3ii85.97 (6)N1—S1—Na1iv128.14 (6)
O3—Na1—O3ii118.37 (5)C1—S1—Na1iv117.93 (6)
O2i—Na1—O3ii79.99 (5)
C6—C1—C2—C30.5 (3)O2ii—Na1—O4—Na1v38.86 (3)
S1—C1—C2—C3179.26 (16)O3ii—Na1—O4—Na1v43.09 (13)
C6—C1—C2—Cl2178.96 (16)S1ii—Na1—O4—Na1v47.647 (17)
S1—C1—C2—Cl20.2 (2)Na1iii—O2—S1—O1141.67 (17)
C1—C2—C3—C40.2 (3)Na1iv—O2—S1—O13.82 (12)
Cl2—C2—C3—C4179.70 (18)Na1iii—O2—S1—N114.2 (2)
C2—C3—C4—C50.9 (4)Na1iv—O2—S1—N1131.33 (9)
C3—C4—C5—C60.8 (4)Na1iii—O2—S1—C1101.75 (18)
C4—C5—C6—C10.1 (4)Na1iv—O2—S1—C1112.77 (9)
C2—C1—C6—C50.5 (3)Na1iii—O2—S1—Na1iv145.5 (2)
S1—C1—C6—C5179.42 (17)Na1—O1—S1—O271.7 (2)
O3—Na1—O1—S150.3 (2)Na1—O1—S1—N150.4 (3)
O2i—Na1—O1—S1145.9 (2)Na1—O1—S1—C1170.6 (2)
O2ii—Na1—O1—S145.6 (5)Na1—O1—S1—Na1iv74.3 (2)
O4—Na1—O1—S1132.4 (2)Cl1—N1—S1—O2175.92 (9)
O3ii—Na1—O1—S169.0 (2)Cl1—N1—S1—O157.14 (12)
S1ii—Na1—O1—S11.5 (3)Cl1—N1—S1—C161.07 (11)
O1—Na1—O3—Na1iv31.28 (6)Cl1—N1—S1—Na1iv144.96 (6)
O2i—Na1—O3—Na1iv109.93 (14)C6—C1—S1—O2118.21 (15)
O2ii—Na1—O3—Na1iv149.66 (7)C2—C1—S1—O260.61 (18)
O4—Na1—O3—Na1iv72.23 (6)C6—C1—S1—O14.11 (17)
O3ii—Na1—O3—Na1iv112.35 (9)C2—C1—S1—O1177.07 (16)
S1ii—Na1—O3—Na1iv171.45 (6)C6—C1—S1—N1128.38 (15)
O1—Na1—O4—Na1v152.95 (5)C2—C1—S1—N152.80 (18)
O3—Na1—O4—Na1v126.49 (5)C6—C1—S1—Na1iv74.61 (16)
O2i—Na1—O4—Na1v38.93 (4)C2—C1—S1—Na1iv104.21 (15)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2; (v) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1vi0.79 (2)2.15 (2)2.926 (2)166 (3)
O3—H32···Cl1iv0.81 (2)2.67 (2)3.4782 (16)171 (2)
O4—H41···N1iv0.81 (2)2.19 (2)3.005 (2)176 (2)
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (vi) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaNa+·C6H4Cl2NO2S·1.5H2O
Mr275.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)299
a, b, c (Å)11.1288 (7), 6.6724 (4), 28.144 (2)
β (°) 102.274 (6)
V3)2042.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.87
Crystal size (mm)0.46 × 0.36 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.691, 0.794
No. of measured, independent and
observed [I > 2σ(I)] reflections
6590, 2076, 1944
Rint0.014
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.15
No. of reflections2076
No. of parameters141
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H31···N1i0.792 (16)2.151 (17)2.926 (2)166 (3)
O3—H32···Cl1ii0.811 (16)2.674 (17)3.4782 (16)171 (2)
O4—H41···N1ii0.814 (16)2.192 (16)3.005 (2)176 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGeorge, E., Vivekanandan, S. & Sivakumar, K. (2000). Acta Cryst. C56, 1208–1209.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Damodara, N. & Jyothi, K. (2005). Int. J. Chem. Kinet. 37, 572–582.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, m700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Foro, S., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, m1644–m1645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlmstead, M. M. & Power, P. P. (1986). Inorg. Chem. 25, 4057–4058.  CSD CrossRef CAS Web of Science Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds