organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Chloro­phen­yl)succinimide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 11 March 2010; accepted 20 March 2010; online 27 March 2010)

In the title compound, C10H8ClNO2, the dihedral angle between the aromatic benzene ring and the imide segment is 69.5 (1)°. In the crystal structure, mol­ecules are linked by very weak C—H⋯π inter­actions along the [001] direction.

Related literature

For our study of the effect of ring and side-chain substitutions on the structures of this class of compounds, see: Gowda et al. (2007[Gowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91-100.]); Saraswathi et al. (2010a[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o325.],b[Saraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o390.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClNO2

  • Mr = 209.62

  • Orthorhombic, P c a 21

  • a = 10.616 (1) Å

  • b = 11.191 (2) Å

  • c = 8.220 (1) Å

  • V = 976.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 299 K

  • 0.50 × 0.48 × 0.40 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.840, Tmax = 0.869

  • 2417 measured reflections

  • 1600 independent reflections

  • 1500 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.072

  • S = 1.04

  • 1600 reflections

  • 128 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 525 Friedel pairs

  • Flack parameter: 0.01 (7)

Table 1
C—H⋯π inter­action geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D— H⋯ A D— H H⋯ A D⋯ A D— H⋯ A
C3—H3⋯Cg1i 0.93 2.93 3.76 (2) 149
Symmetry code: (i) −x + 1, −y, z + [{1\over 2}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide moiety is an important constituent of many biologically significant compounds. As a part of studying the effect of ring and side chain substitutions on the structures of this class of compounds (Gowda et al., 2007; Saraswathi et al., 2010a,b), the crystal structure of N,N-(2-chlorophenyl)succinimide has been determined (Fig. 1). In the structure of the title compound, C10H8ClNO2 , the molecule is non-planar with the benzene and pyrrolidine rings tilted by 69.5 (1)° with respect to one another. In the crystal structure, the molecules are linked by weak C—H···π interactions.

Related literature top

For our study of the effect of ring and side-chain substitutions on the structures of this class of compounds, see: Gowda et al. (2007); Saraswathi et al. (2010a,b).

Experimental top

The solution of succinic anhydride (2.5 g) in toluene (25 ml) was treated dropwise with the solution of 2-chloroaniline (2.5 g) also in toluene(20 ml) with constant stirring. The resulting mixture was stirred for about one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 2-chloroaniline. The resultant solid N-(2-chlorophenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. It was recrystallized to constant melting point from ethanol. N-(2-chlorophenyl)succinamic acid was then heated for 2 hours and then allowed to cool slowly to room temperature to get crystals of N-(2-chlorophenyl)succinimide. The purity of the compound was checked and characterized by its infrared spectra.

The prism like colourless single crystals of the compound used in X-ray diffraction studies were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model with C—H in the range 0.93–0.97 Å. Uiso(H) values were set equal to 1.2Ueq(parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Molecular packing of the title compound.
N-(2-Chlorophenyl)succinimide top
Crystal data top
C10H8ClNO2F(000) = 432
Mr = 209.62Dx = 1.426 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 1700 reflections
a = 10.616 (1) Åθ = 2.6–27.7°
b = 11.191 (2) ŵ = 0.36 mm1
c = 8.220 (1) ÅT = 299 K
V = 976.6 (2) Å3Prism, colourless
Z = 40.50 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1600 independent reflections
Radiation source: fine-focus sealed tube1500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 613
Tmin = 0.840, Tmax = 0.869k = 138
2417 measured reflectionsl = 710
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.1451P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max < 0.001
S = 1.04Δρmax = 0.19 e Å3
1600 reflectionsΔρmin = 0.23 e Å3
128 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.036 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 525 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (7)
Crystal data top
C10H8ClNO2V = 976.6 (2) Å3
Mr = 209.62Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.616 (1) ŵ = 0.36 mm1
b = 11.191 (2) ÅT = 299 K
c = 8.220 (1) Å0.50 × 0.48 × 0.40 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1600 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1500 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.869Rint = 0.008
2417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.072Δρmax = 0.19 e Å3
S = 1.04Δρmin = 0.23 e Å3
1600 reflectionsAbsolute structure: Flack (1983), 525 Friedel pairs
128 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Experimental. (CrysAlis RED; Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.40098 (5)0.22415 (4)0.92831 (9)0.0664 (2)
O10.77333 (15)0.38146 (14)0.8513 (2)0.0691 (5)
O20.42907 (15)0.30911 (14)0.5374 (2)0.0625 (4)
N10.60155 (12)0.31896 (14)0.70608 (18)0.0386 (4)
C10.61026 (16)0.19473 (17)0.7438 (2)0.0388 (4)
C20.52257 (16)0.14047 (17)0.8445 (3)0.0438 (4)
C30.5306 (2)0.02002 (18)0.8789 (3)0.0507 (5)
H30.47080.01600.94550.061*
C40.6275 (2)0.04682 (19)0.8141 (3)0.0529 (5)
H40.63330.12790.83750.063*
C50.71622 (19)0.00642 (19)0.7144 (3)0.0540 (5)
H50.78170.03880.67120.065*
C60.70742 (17)0.12731 (18)0.6789 (3)0.0477 (5)
H60.76680.16310.61160.057*
C70.68670 (17)0.40365 (17)0.7621 (2)0.0437 (4)
C80.65005 (18)0.52249 (17)0.6916 (3)0.0481 (5)
H8A0.71610.55270.62110.058*
H8B0.63480.58020.77730.058*
C90.53041 (17)0.49950 (18)0.5953 (3)0.0495 (5)
H9A0.45990.54210.64280.059*
H9B0.54050.52510.48330.059*
C100.50941 (17)0.36713 (18)0.6038 (3)0.0429 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0671 (4)0.0458 (3)0.0864 (4)0.0093 (2)0.0334 (3)0.0081 (3)
O10.0631 (9)0.0671 (10)0.0771 (11)0.0155 (8)0.0345 (9)0.0026 (8)
O20.0574 (8)0.0553 (9)0.0749 (11)0.0085 (7)0.0267 (8)0.0040 (8)
N10.0364 (7)0.0401 (8)0.0394 (9)0.0075 (6)0.0032 (7)0.0028 (7)
C10.0378 (8)0.0416 (9)0.0370 (10)0.0080 (7)0.0070 (7)0.0018 (8)
C20.0422 (9)0.0431 (10)0.0461 (11)0.0087 (8)0.0032 (8)0.0038 (8)
C30.0550 (11)0.0439 (10)0.0531 (13)0.0117 (9)0.0033 (10)0.0039 (9)
C40.0633 (12)0.0419 (10)0.0535 (12)0.0019 (9)0.0108 (10)0.0058 (10)
C50.0504 (11)0.0549 (11)0.0565 (13)0.0114 (9)0.0025 (10)0.0015 (10)
C60.0408 (9)0.0567 (11)0.0457 (11)0.0003 (8)0.0001 (9)0.0052 (10)
C70.0433 (9)0.0465 (10)0.0414 (10)0.0120 (8)0.0020 (8)0.0039 (8)
C80.0518 (10)0.0430 (10)0.0495 (11)0.0090 (9)0.0068 (9)0.0039 (9)
C90.0443 (11)0.0441 (10)0.0601 (12)0.0007 (8)0.0014 (9)0.0021 (10)
C100.0401 (9)0.0447 (10)0.0439 (10)0.0024 (8)0.0001 (9)0.0005 (8)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C4—H40.9300
O1—C71.202 (2)C5—C61.387 (3)
O2—C101.203 (2)C5—H50.9300
N1—C71.388 (2)C6—H60.9300
N1—C101.398 (2)C7—C81.502 (3)
N1—C11.427 (2)C8—C91.519 (3)
C1—C61.385 (3)C8—H8A0.9700
C1—C21.386 (3)C8—H8B0.9700
C2—C31.380 (3)C9—C101.500 (3)
C3—C41.379 (3)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.383 (3)
C7—N1—C10113.08 (16)C5—C6—H6120.0
C7—N1—C1123.41 (15)O1—C7—N1124.02 (19)
C10—N1—C1123.47 (14)O1—C7—C8128.07 (18)
C6—C1—C2119.44 (18)N1—C7—C8107.91 (16)
C6—C1—N1119.70 (16)C7—C8—C9105.54 (15)
C2—C1—N1120.86 (17)C7—C8—H8A110.6
C3—C2—C1120.59 (18)C9—C8—H8A110.6
C3—C2—Cl1119.42 (15)C7—C8—H8B110.6
C1—C2—Cl1119.99 (15)C9—C8—H8B110.6
C4—C3—C2119.79 (19)H8A—C8—H8B108.8
C4—C3—H3120.1C10—C9—C8105.50 (16)
C2—C3—H3120.1C10—C9—H9A110.6
C3—C4—C5120.20 (19)C8—C9—H9A110.6
C3—C4—H4119.9C10—C9—H9B110.6
C5—C4—H4119.9C8—C9—H9B110.6
C4—C5—C6119.92 (19)H9A—C9—H9B108.8
C4—C5—H5120.0O2—C10—N1124.13 (18)
C6—C5—H5120.0O2—C10—C9128.10 (19)
C1—C6—C5120.06 (18)N1—C10—C9107.77 (16)
C1—C6—H6120.0
C7—N1—C1—C669.2 (2)C4—C5—C6—C10.2 (3)
C10—N1—C1—C6108.2 (2)C10—N1—C7—O1179.95 (19)
C7—N1—C1—C2110.9 (2)C1—N1—C7—O12.3 (3)
C10—N1—C1—C271.7 (2)C10—N1—C7—C80.1 (2)
C6—C1—C2—C30.8 (3)C1—N1—C7—C8177.56 (16)
N1—C1—C2—C3179.19 (17)O1—C7—C8—C9177.3 (2)
C6—C1—C2—Cl1179.40 (15)N1—C7—C8—C92.9 (2)
N1—C1—C2—Cl10.7 (2)C7—C8—C9—C104.4 (2)
C1—C2—C3—C40.8 (3)C7—N1—C10—O2177.3 (2)
Cl1—C2—C3—C4179.36 (17)C1—N1—C10—O20.3 (3)
C2—C3—C4—C50.3 (3)C7—N1—C10—C92.8 (2)
C3—C4—C5—C60.2 (3)C1—N1—C10—C9179.55 (16)
C2—C1—C6—C50.2 (3)C8—C9—C10—O2175.7 (2)
N1—C1—C6—C5179.71 (18)C8—C9—C10—N14.4 (2)

Experimental details

Crystal data
Chemical formulaC10H8ClNO2
Mr209.62
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)299
a, b, c (Å)10.616 (1), 11.191 (2), 8.220 (1)
V3)976.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.50 × 0.48 × 0.40
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.840, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
2417, 1600, 1500
Rint0.008
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.072, 1.04
No. of reflections1600
No. of parameters128
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23
Absolute structureFlack (1983), 525 Friedel pairs
Absolute structure parameter0.01 (7)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

C—H···π interaction geometry ( Å, ° ) top
Cg1 is the centroid of the C1–C6 ring.
D— H··· AD— HH··· AD··· AD— H··· A
C3—H3···Cg1i0.932.933.76 (2)149
Symmetry code: (i) -x+1, -y, z+1/2.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Kozisek, J., Svoboda, I. & Fuess, H. (2007). Z. Naturforsch. Teil A, 62, 91–100.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds