organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hydr­­oxy-4-meth­oxy­benzyl­­idene)isonicotinohydrazide

aModern Medical Research Center, Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
*Correspondence e-mail: czfph@126.com

(Received 16 March 2010; accepted 17 March 2010; online 20 March 2010)

The title compound, C14H13N3O3, was synthesized by the condensation reaction of 2-hydr­oxy-4-methoxy­benzaldehyde with isonicotinohydrazide in a methanol solution. The mol­ecule of the compound displays a trans configuration with respect to the C=N and C—N bonds. The dihedral angle between the benzene and the pyridine rings is 27.3 (2)°. In the crystal, mol­ecules are linked by N—H⋯N inter­actions into zigzag chains with graph-set notation C(7) along [010]. An intra­molecular O—H⋯N hydrogen bond is observed.

Related literature

For Schiff base compounds, see: Fan et al. (2007[Fan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535-538.]); Kim et al. (2005[Kim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776-16777.]); Nimitsiriwat et al. (2004[Nimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598-13599.]). For their biological activity, see: Chen et al. (1997[Chen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217-231.]); Ren et al. (2002[Ren, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410-419.]). For related structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Yang (2008[Yang, D.-S. (2008). Acta Cryst. E64, o1850.]); Zhi (2008[Zhi, F. (2008). Acta Cryst. E64, o150.], 2009[Zhi, F. (2009). Acta Cryst. E65, o623.]); Zhi & Yang (2007[Zhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N3O3

  • Mr = 271.27

  • Monoclinic, P 21 /n

  • a = 8.4704 (11) Å

  • b = 10.6866 (15) Å

  • c = 14.848 (2) Å

  • β = 104.929 (5)°

  • V = 1298.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.985

  • 7591 measured reflections

  • 2814 independent reflections

  • 2148 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.05

  • 2814 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯N3i 0.90 (1) 2.22 (1) 3.1000 (17) 169 (2)
O1—H1⋯N1 0.82 1.85 2.5720 (15) 146
Symmetry code: (i) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable interest has been focused on the Schiff base compounds (Fan et al., 2007; Kim et al., 2005; Nimitsiriwat et al., 2004). Some of the compounds have been found to have excellent pharmacological and antibacterial activity (Chen et al., 1997; Ren et al., 2002). we report here, the crystal structure of the title new Schiff base compound, Fig. 1, derived from the condensation reaction of 2-hydroxy-4-methoxybenzaldehyde with isonicotinohydrazide is reported. The molecular structure of the title compound displays a trans configuration with respect to the CN and C–N bonds. There is an intramolecular O—H···N hydrogen bond in the molecule. The dihedral angle between the benzene ring and the pyridine ring is 27.3 (2)°. All the bond lengths are within normal ranges and comparable to those in other similar compounds (Mohd Lair et al., 2009; Fun et al., 2008; Yang, 2008; Zhi, 2008; Zhi & Yang, 2007; Zhi, 2009). In the crystal, molecules are linked by interactions N—H···N into zigzag chains with graph-set notation C(7) along [010] (Bernstein, et al., 1995 ). An intramolecular O—H···N hydrogen bond is observed. (Table 1 and Fig. 2).

Related literature top

For Schiff base compounds, see: Fan et al. (2007); Kim et al. (2005); Nimitsiriwat et al. (2004). For their biological activity, see: Chen et al. (1997); Ren et al. (2002). For related structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Yang (2008); Zhi (2008); Zhi & Yang (2007).

For related literature, see: Bernstein et al. (1995); Zhi (2009).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (0.01 mol, 1.52 g) and isonicotinohydrazide (0.01 mol, 1.37 g) were dissolved in a methanol solution (50 ml). The mixture was stirred at room temperature to give a clear colorless solution. Crystals of the title compound were formed by gradual evaporation of the solvent for a week at room temperature.

Refinement top

H2 atom was located in a difference map and refined with N–H distance restrained to 0.90 (1) Å. All other H atoms were positioned geometrically [C–H = 0.93-0.96 Å, O–H = 0.82 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1 and C14).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound at the 30% probability level. Intramolecular O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis. Intermolecular hydrogen bonds are shown as dashed lines.
N'-(2-Hydroxy-4-methoxybenzylidene)isonicotinohydrazide top
Crystal data top
C14H13N3O3F(000) = 568
Mr = 271.27Dx = 1.387 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4704 (11) ÅCell parameters from 2534 reflections
b = 10.6866 (15) Åθ = 2.4–29.9°
c = 14.848 (2) ŵ = 0.10 mm1
β = 104.929 (5)°T = 298 K
V = 1298.7 (3) Å3Block, colourless
Z = 40.17 × 0.15 × 0.15 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2814 independent reflections
Radiation source: fine-focus sealed tube2148 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.983, Tmax = 0.985k = 1113
7591 measured reflectionsl = 1814
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.2097P]
where P = (Fo2 + 2Fc2)/3
2814 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C14H13N3O3V = 1298.7 (3) Å3
Mr = 271.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.4704 (11) ŵ = 0.10 mm1
b = 10.6866 (15) ÅT = 298 K
c = 14.848 (2) Å0.17 × 0.15 × 0.15 mm
β = 104.929 (5)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2814 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2148 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.985Rint = 0.021
7591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
2814 reflectionsΔρmin = 0.17 e Å3
186 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10385 (14)0.87232 (11)0.12848 (8)0.0425 (3)
N20.01859 (14)0.78408 (11)0.16392 (8)0.0422 (3)
N30.26459 (16)0.40486 (11)0.24523 (9)0.0491 (3)
O10.28189 (15)0.93517 (9)0.01927 (8)0.0554 (3)
H10.22840.88810.04360.083*
O20.12526 (15)0.62775 (10)0.09488 (9)0.0624 (3)
O30.40498 (14)1.36738 (9)0.00218 (8)0.0550 (3)
C10.17894 (16)1.08276 (12)0.11284 (10)0.0404 (3)
C20.26792 (16)1.05413 (12)0.04800 (9)0.0386 (3)
C30.34625 (17)1.14692 (12)0.01077 (10)0.0410 (3)
H30.40721.12630.03100.049*
C40.33345 (17)1.27035 (12)0.03599 (10)0.0421 (3)
C50.24469 (19)1.30187 (14)0.09935 (12)0.0518 (4)
H50.23561.38500.11590.062*
C60.17066 (19)1.20882 (14)0.13711 (11)0.0512 (4)
H60.11291.23010.18030.061*
C70.09706 (17)0.98671 (13)0.15257 (10)0.0446 (3)
H70.03931.00820.19580.054*
C80.03539 (16)0.66264 (13)0.14180 (9)0.0410 (3)
C90.06727 (16)0.57305 (12)0.17959 (9)0.0365 (3)
C100.12509 (18)0.46540 (13)0.13050 (10)0.0437 (3)
H100.09900.44720.07480.052*
C110.22227 (19)0.38542 (14)0.16569 (11)0.0493 (4)
H110.26070.31350.13190.059*
C120.20463 (18)0.50811 (13)0.29267 (10)0.0454 (3)
H120.23040.52310.34890.054*
C130.10710 (17)0.59344 (12)0.26321 (9)0.0395 (3)
H130.06840.66380.29890.047*
C140.4899 (2)1.34231 (15)0.06713 (12)0.0585 (4)
H14A0.58171.28900.04150.088*
H14B0.52761.41960.08730.088*
H14C0.41771.30150.11930.088*
H20.0540 (19)0.8096 (18)0.1945 (12)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0453 (7)0.0384 (6)0.0492 (7)0.0015 (5)0.0219 (5)0.0052 (5)
N20.0459 (7)0.0376 (6)0.0506 (7)0.0014 (5)0.0261 (5)0.0030 (5)
N30.0577 (8)0.0419 (7)0.0544 (7)0.0031 (6)0.0266 (6)0.0045 (6)
O10.0798 (8)0.0316 (5)0.0704 (7)0.0041 (5)0.0477 (6)0.0036 (5)
O20.0732 (7)0.0502 (6)0.0831 (8)0.0044 (5)0.0549 (7)0.0083 (6)
O30.0653 (7)0.0335 (5)0.0721 (7)0.0032 (5)0.0281 (6)0.0067 (5)
C10.0385 (7)0.0357 (7)0.0496 (8)0.0020 (6)0.0161 (6)0.0012 (6)
C20.0426 (7)0.0323 (7)0.0424 (7)0.0012 (5)0.0135 (6)0.0006 (6)
C30.0459 (7)0.0371 (7)0.0429 (7)0.0003 (6)0.0167 (6)0.0019 (6)
C40.0420 (7)0.0330 (7)0.0497 (8)0.0006 (6)0.0091 (6)0.0053 (6)
C50.0568 (9)0.0310 (7)0.0722 (10)0.0026 (6)0.0247 (8)0.0039 (7)
C60.0523 (9)0.0426 (8)0.0665 (10)0.0040 (6)0.0294 (8)0.0051 (7)
C70.0439 (8)0.0442 (8)0.0516 (8)0.0013 (6)0.0230 (7)0.0001 (6)
C80.0429 (7)0.0412 (8)0.0436 (7)0.0006 (6)0.0198 (6)0.0002 (6)
C90.0361 (7)0.0347 (7)0.0416 (7)0.0045 (5)0.0155 (6)0.0028 (5)
C100.0521 (8)0.0404 (7)0.0445 (8)0.0008 (6)0.0231 (7)0.0031 (6)
C110.0574 (9)0.0406 (8)0.0541 (9)0.0066 (7)0.0217 (7)0.0048 (7)
C120.0557 (9)0.0456 (8)0.0408 (8)0.0036 (7)0.0231 (7)0.0041 (6)
C130.0461 (8)0.0366 (7)0.0380 (7)0.0019 (6)0.0148 (6)0.0003 (6)
C140.0664 (10)0.0444 (9)0.0713 (11)0.0039 (7)0.0301 (9)0.0107 (8)
Geometric parameters (Å, º) top
N1—C71.2791 (18)C4—C51.388 (2)
N1—N21.3724 (15)C5—C61.370 (2)
N2—C81.3552 (18)C5—H50.9300
N2—H20.896 (9)C6—H60.9300
N3—C111.3358 (19)C7—H70.9300
N3—C121.3369 (19)C8—C91.4963 (18)
O1—C21.3558 (16)C9—C101.3823 (19)
O1—H10.8200C9—C131.3852 (18)
O2—C81.2153 (16)C10—C111.379 (2)
O3—C41.3606 (16)C10—H100.9300
O3—C141.4247 (19)C11—H110.9300
C1—C61.401 (2)C12—C131.3753 (19)
C1—C21.4009 (19)C12—H120.9300
C1—C71.4468 (19)C13—H130.9300
C2—C31.3849 (19)C14—H14A0.9600
C3—C41.3831 (19)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C7—N1—N2118.91 (12)N1—C7—H7119.9
C8—N2—N1117.81 (11)C1—C7—H7119.9
C8—N2—H2122.9 (13)O2—C8—N2123.59 (13)
N1—N2—H2118.9 (13)O2—C8—C9121.93 (13)
C11—N3—C12116.24 (12)N2—C8—C9114.48 (11)
C2—O1—H1109.5C10—C9—C13117.94 (12)
C4—O3—C14118.62 (11)C10—C9—C8119.73 (12)
C6—C1—C2117.28 (13)C13—C9—C8122.33 (12)
C6—C1—C7121.09 (13)C11—C10—C9118.74 (13)
C2—C1—C7121.63 (12)C11—C10—H10120.6
O1—C2—C3117.14 (12)C9—C10—H10120.6
O1—C2—C1121.81 (12)N3—C11—C10124.11 (14)
C3—C2—C1121.05 (12)N3—C11—H11117.9
C4—C3—C2119.72 (13)C10—C11—H11117.9
C4—C3—H3120.1N3—C12—C13123.88 (13)
C2—C3—H3120.1N3—C12—H12118.1
O3—C4—C3123.60 (13)C13—C12—H12118.1
O3—C4—C5115.81 (12)C12—C13—C9119.06 (13)
C3—C4—C5120.58 (13)C12—C13—H13120.5
C6—C5—C4119.07 (13)C9—C13—H13120.5
C6—C5—H5120.5O3—C14—H14A109.5
C4—C5—H5120.5O3—C14—H14B109.5
C5—C6—C1122.28 (14)H14A—C14—H14B109.5
C5—C6—H6118.9O3—C14—H14C109.5
C1—C6—H6118.9H14A—C14—H14C109.5
N1—C7—C1120.22 (13)H14B—C14—H14C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.90 (1)2.22 (1)3.1000 (17)169 (2)
O1—H1···N10.821.852.5720 (15)146
Symmetry code: (i) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N3O3
Mr271.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.4704 (11), 10.6866 (15), 14.848 (2)
β (°) 104.929 (5)
V3)1298.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
7591, 2814, 2148
Rint0.021
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05
No. of reflections2814
No. of parameters186
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···N3i0.896 (9)2.215 (10)3.1000 (17)169.3 (18)
O1—H1···N10.821.852.5720 (15)146.4
Symmetry code: (i) x1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Third Affiliated Hospital of Suzhou University is acknowledged.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, H. Q., Hall, S., Zheng, B. & Rhodes, J. (1997). Biodrugs, 7, 217–231.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFan, Y. H., He, X. T., Bi, C. F., Guo, F., Bao, Y. & Chen, R. (2007). Russ. J. Coord. Chem. 33, 535–538.  Web of Science CrossRef CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, H.-J., Kim, W., Lough, A. J., Kim, B. M. & Chin, J. (2005). J. Am. Chem. Soc. 127, 16776–16777.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNimitsiriwat, N., Marshall, E. L., Gibson, V. C., Elsegood, M. R. J. & Dale, S. H. (2004). J. Am. Chem. Soc. 126, 13598–13599.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, S., Wang, R., Komatsu, K., Bonaz-Krause, P., Zyrianov, Y., McKenna, C. E., Csipke, C., Tokes, Z. A. & Lien, E. J. (2002). J. Med. Chem. 45, 410–419.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2008). Acta Cryst. E64, o1850.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. (2008). Acta Cryst. E64, o150.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. (2009). Acta Cryst. E65, o623.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhi, F. & Yang, Y.-L. (2007). Acta Cryst. E63, o4471.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds