organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o800-o801

(E)-3-(Anthracen-9-yl)-1-(furan-2-yl)prop-2-en-1-one

aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: suchada.c@psu.ac.th

(Received 1 February 2010; accepted 14 February 2010; online 13 March 2010)

In the mol­ecule of the title heteroaryl chalcone derivative, C21H14O2, the almost planar prop-2-en-1-one unit [r.m.s. deviation = 0.0087 (1) Å] forms dihedral angles of 5.81 (7) and 49.85 (6)°, respectively, with the furan ring and anthracene ring system. In the crystal structure, the mol­ecules are linked into a two-dimensional network parallel to (100) by C—H⋯O hydrogen bonds and ππ inter­actions involving the furan rings [centroid–centroid distance = 3.7205 (6) Å].

Related literature

For background and applications of chalcones, see: Gaber et al. (2008[Gaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). Opt. Laser Tech. 40, 528-537.]); Niu et al. (2006[Niu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G. & Li, Z.-W. (2006). Anal. Chim. Acta, 577, 264-270.]); Xu et al. (2005[Xu, Z., Bai, G. & Dong, C. (2005). Spectrochim. Acta Part A, 62, 987-990.]). For related structures, see: Chantrapromma et al. (2009[Chantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673-o2674.], 2010[Chantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312-o313.]); Fun et al. (2009[Fun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168-o2169.]); Suwunwong et al. (2009[Suwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420-o421.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14O2

  • Mr = 298.32

  • Monoclinic, P 21 /c

  • a = 21.5743 (4) Å

  • b = 5.4571 (1) Å

  • c = 12.8394 (2) Å

  • β = 104.099 (1)°

  • V = 1466.09 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.55 × 0.25 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.994

  • 19468 measured reflections

  • 4251 independent reflections

  • 3549 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.118

  • S = 1.03

  • 4251 reflections

  • 264 parameters

  • All H-atom parameters refined

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1i 0.98 (2) 2.34 (2) 3.2871 (14) 165 (1)
C6—H6⋯O1i 0.94 (2) 2.40 (2) 3.3366 (13) 173 (1)
C19—H19⋯O1ii 0.98 (1) 2.47 (1) 3.3419 (13) 148 (1)
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones have been studied for their wide range of applications including laser activity (Gaber et al., 2008) and fluorescence properties (Niu et al., 2006; Xu et al., 2005). We have previously reported crystal structures of several chalcone derivatives containing the anthracene moiety which exist in E configuration (Suwunwong et al., 2009) or Z configuration (Chantrapromma et al., 2009, 2010; Fun et al., 2009). The title compound was synthesized on account of its fluorescence properties. The crystal structure determination was undertaken to elucidate its conformation and to study the structure and fluorescence activity relationship.

The molecule of the title chalcone derivative (Fig. 1) exists in an E configuration with respect to the C6C7 ethenyl bond, with a C5—C6—C7—C8 torsion angle of 178.00 (9)°. The anthracene ring system (C8–C21) is essentially planar (r.m.s. deviation = 0.0258 (1) Å). The prop-2-en-1-one unit (C5–C7/O1) is also planar (r.m.s. deviation = 0.0087 (1) Å; O1—C5—C6—C7 = 2.92 (15)°) and it forms dihedral angles of 5.81 (7) and 49.85 (6)°, respectively, with the furan ring and anthracene ring system. The interplanar angle between the furan ring and anthracene ring system is 48.53 (5)°. The bond distances show normal values (Allen et al., 1987) and are comparable with those in closely related structures (Chantrapromma, Horkaew et al., 2009; Chantrapromma, Suwunwong et al., 2010; Fun et al., 2009; Suwunwong et al., 2009).

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the (100) by C—H···O hydrogen bonds (Fig. 2 and Table 1) and π···π interactions between the furan rings at (x, y, z) and (-x, 1-y, -z) [centroid···centroid distance = 3.7205 (6) Å].

Related literature top

For background and applications of chalcones, see: Gaber et al. (2008); Niu et al. (2006); Xu et al. (2005). For related structures, see: Chantrapromma et al. (2009, 2010); Fun et al. (2009); Suwunwong et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the condensation of anthracene-9-carbaldehyde (0.41 g, 2 mmol) with 2-furylmethylketone (0.22 g, 2 mmol) in ethanol (30 ml) in the presence of 30 % aqueous NaOH (5 ml) at room temperature. The reaction mixture was stirred at 278 K for 3 h and then a yellow solid appeared was collected by filtration, washed with acetone and dried in air. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystalized from acetone-ethanol (1:1 v/v) by slow evaporation of the solvent at room temperature after several days (m.p. 423-424 K).

Refinement top

All H atoms were located in a difference map and refined isotropically [C–H = 0.941 (15)–1.009 (14) Å].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. C—H···O hydrogen bonds are shown as dashed lines.
(E)-3-(anthracen-9-yl)-1-(furan-2-yl)prop-2-en-1-one top
Crystal data top
C21H14O2F(000) = 624
Mr = 298.32Dx = 1.352 Mg m3
Monoclinic, P21/cMelting point = 423–424 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 21.5743 (4) ÅCell parameters from 4251 reflections
b = 5.4571 (1) Åθ = 2.9–30.0°
c = 12.8394 (2) ŵ = 0.09 mm1
β = 104.099 (1)°T = 100 K
V = 1466.09 (4) Å3Plate, yellow
Z = 40.55 × 0.25 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4251 independent reflections
Radiation source: sealed tube3549 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2630
Tmin = 0.955, Tmax = 0.994k = 77
19468 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0624P)2 + 0.4737P]
where P = (Fo2 + 2Fc2)/3
4251 reflections(Δ/σ)max = 0.001
264 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C21H14O2V = 1466.09 (4) Å3
Mr = 298.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.5743 (4) ŵ = 0.09 mm1
b = 5.4571 (1) ÅT = 100 K
c = 12.8394 (2) Å0.55 × 0.25 × 0.07 mm
β = 104.099 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4251 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3549 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.994Rint = 0.029
19468 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.03Δρmax = 0.37 e Å3
4251 reflectionsΔρmin = 0.22 e Å3
264 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13071 (4)0.32065 (14)0.15881 (6)0.02003 (17)
O20.00592 (3)0.46137 (14)0.12589 (6)0.01846 (17)
C10.04942 (5)0.5903 (2)0.11274 (9)0.0201 (2)
H10.0880 (7)0.489 (3)0.1018 (12)0.030 (4)*
C20.03863 (5)0.8346 (2)0.11454 (9)0.0208 (2)
H20.0701 (8)0.964 (3)0.1084 (13)0.034 (4)*
C30.02854 (5)0.8641 (2)0.12983 (8)0.0177 (2)
H30.0517 (7)1.019 (3)0.1342 (11)0.027 (4)*
C40.05367 (5)0.63332 (19)0.13651 (8)0.0152 (2)
C50.11877 (5)0.54141 (19)0.15040 (8)0.0150 (2)
C60.16862 (5)0.72918 (19)0.15159 (8)0.0163 (2)
C70.22914 (5)0.66214 (19)0.15739 (8)0.0159 (2)
C80.28183 (5)0.83333 (19)0.15569 (8)0.01475 (19)
C90.34004 (5)0.80973 (19)0.23544 (8)0.0153 (2)
C100.34956 (5)0.6249 (2)0.31680 (8)0.0183 (2)
C110.40571 (5)0.6100 (2)0.39433 (9)0.0214 (2)
C120.45582 (5)0.7804 (2)0.39679 (9)0.0231 (2)
C130.44862 (5)0.9614 (2)0.32146 (9)0.0214 (2)
C140.39083 (5)0.9814 (2)0.23836 (8)0.0166 (2)
C150.38256 (5)1.1693 (2)0.16251 (8)0.0181 (2)
C160.32655 (5)1.19033 (19)0.08122 (8)0.0164 (2)
C170.31916 (5)1.3816 (2)0.00291 (9)0.0201 (2)
C180.26502 (6)1.3994 (2)0.07801 (9)0.0218 (2)
C190.21559 (5)1.2226 (2)0.08673 (8)0.0209 (2)
C200.22049 (5)1.0396 (2)0.01267 (8)0.0183 (2)
C210.27525 (5)1.01872 (19)0.07639 (8)0.0154 (2)
H60.1563 (7)0.895 (3)0.1471 (11)0.021 (3)*
H70.2399 (6)0.482 (3)0.1653 (11)0.019 (3)*
H100.3158 (7)0.507 (3)0.3176 (11)0.024 (4)*
H110.4105 (8)0.479 (3)0.4498 (13)0.035 (4)*
H120.4960 (7)0.766 (3)0.4544 (13)0.033 (4)*
H130.4831 (8)1.086 (3)0.3216 (13)0.032 (4)*
H150.4171 (7)1.291 (3)0.1670 (11)0.024 (4)*
H170.3534 (7)1.501 (3)0.0097 (12)0.027 (4)*
H180.2611 (8)1.533 (3)0.1306 (13)0.036 (4)*
H190.1780 (7)1.232 (3)0.1469 (11)0.025 (4)*
H200.1864 (7)0.916 (3)0.0210 (11)0.025 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0184 (4)0.0134 (4)0.0265 (4)0.0007 (3)0.0020 (3)0.0008 (3)
O20.0144 (3)0.0166 (4)0.0236 (4)0.0032 (3)0.0031 (3)0.0005 (3)
C10.0134 (5)0.0248 (5)0.0216 (5)0.0011 (4)0.0031 (4)0.0001 (4)
C20.0154 (5)0.0222 (5)0.0244 (5)0.0021 (4)0.0042 (4)0.0002 (4)
C30.0165 (5)0.0165 (5)0.0196 (5)0.0007 (4)0.0034 (4)0.0002 (4)
C40.0142 (4)0.0148 (5)0.0161 (4)0.0026 (4)0.0027 (3)0.0000 (3)
C50.0147 (4)0.0143 (5)0.0149 (4)0.0017 (3)0.0016 (3)0.0006 (3)
C60.0161 (5)0.0125 (4)0.0199 (4)0.0013 (4)0.0038 (4)0.0004 (4)
C70.0163 (5)0.0139 (5)0.0170 (4)0.0011 (4)0.0030 (3)0.0004 (3)
C80.0136 (4)0.0137 (4)0.0175 (4)0.0003 (3)0.0047 (3)0.0019 (3)
C90.0140 (4)0.0155 (5)0.0173 (4)0.0008 (4)0.0051 (3)0.0012 (4)
C100.0162 (5)0.0180 (5)0.0212 (5)0.0012 (4)0.0054 (4)0.0007 (4)
C110.0190 (5)0.0232 (5)0.0219 (5)0.0047 (4)0.0049 (4)0.0032 (4)
C120.0156 (5)0.0286 (6)0.0232 (5)0.0024 (4)0.0011 (4)0.0001 (4)
C130.0139 (5)0.0248 (6)0.0245 (5)0.0009 (4)0.0027 (4)0.0015 (4)
C140.0135 (4)0.0177 (5)0.0192 (4)0.0002 (4)0.0050 (4)0.0026 (4)
C150.0157 (5)0.0184 (5)0.0213 (5)0.0025 (4)0.0067 (4)0.0012 (4)
C160.0167 (5)0.0153 (5)0.0190 (4)0.0003 (4)0.0075 (4)0.0014 (4)
C170.0217 (5)0.0176 (5)0.0234 (5)0.0010 (4)0.0105 (4)0.0013 (4)
C180.0259 (6)0.0213 (5)0.0207 (5)0.0027 (4)0.0106 (4)0.0039 (4)
C190.0204 (5)0.0243 (6)0.0175 (5)0.0024 (4)0.0038 (4)0.0011 (4)
C200.0170 (5)0.0193 (5)0.0184 (4)0.0003 (4)0.0037 (4)0.0003 (4)
C210.0150 (4)0.0149 (5)0.0168 (4)0.0006 (4)0.0049 (3)0.0011 (4)
Geometric parameters (Å, º) top
O1—C51.2312 (13)C10—H100.973 (15)
O2—C11.3606 (13)C11—C121.4209 (17)
O2—C41.3754 (12)C11—H110.997 (17)
C1—C21.3526 (16)C12—C131.3642 (17)
C1—H10.981 (16)C12—H120.996 (16)
C2—C31.4235 (15)C13—C141.4342 (14)
C2—H20.968 (17)C13—H131.007 (16)
C3—C41.3654 (14)C14—C151.3950 (15)
C3—H30.974 (15)C15—C161.3959 (14)
C4—C51.4609 (14)C15—H150.988 (15)
C5—C61.4827 (14)C16—C171.4310 (15)
C6—C71.3406 (14)C16—C211.4396 (14)
C6—H60.941 (15)C17—C181.3645 (16)
C7—C81.4757 (14)C17—H170.972 (15)
C7—H71.009 (14)C18—C191.4225 (17)
C8—C211.4176 (14)C18—H180.984 (17)
C8—C91.4196 (14)C19—C201.3653 (15)
C9—C101.4303 (14)C19—H190.975 (14)
C9—C141.4353 (14)C20—C211.4346 (14)
C10—C111.3701 (15)C20—H200.984 (15)
C1—O2—C4105.84 (8)C10—C11—H11118.7 (9)
C2—C1—O2111.43 (10)C12—C11—H11120.6 (9)
C2—C1—H1134.0 (9)C13—C12—C11120.23 (10)
O2—C1—H1114.6 (9)C13—C12—H12120.8 (9)
C1—C2—C3106.20 (10)C11—C12—H12119.0 (9)
C1—C2—H2127.0 (10)C12—C13—C14120.72 (10)
C3—C2—H2126.8 (10)C12—C13—H13122.1 (9)
C4—C3—C2106.24 (9)C14—C13—H13117.2 (9)
C4—C3—H3127.2 (9)C15—C14—C13121.04 (10)
C2—C3—H3126.6 (9)C15—C14—C9119.63 (9)
C3—C4—O2110.29 (9)C13—C14—C9119.30 (10)
C3—C4—C5132.80 (9)C14—C15—C16121.51 (10)
O2—C4—C5116.90 (9)C14—C15—H15119.0 (8)
O1—C5—C4121.40 (9)C16—C15—H15119.5 (8)
O1—C5—C6122.66 (9)C15—C16—C17120.89 (10)
C4—C5—C6115.93 (9)C15—C16—C21119.67 (9)
C7—C6—C5120.41 (10)C17—C16—C21119.43 (9)
C7—C6—H6121.6 (9)C18—C17—C16121.01 (10)
C5—C6—H6118.0 (9)C18—C17—H17120.7 (9)
C6—C7—C8124.74 (10)C16—C17—H17118.3 (9)
C6—C7—H7117.9 (8)C17—C18—C19119.86 (10)
C8—C7—H7117.4 (8)C17—C18—H18119.4 (9)
C21—C8—C9119.94 (9)C19—C18—H18120.8 (9)
C21—C8—C7121.30 (9)C20—C19—C18120.81 (10)
C9—C8—C7118.76 (9)C20—C19—H19120.0 (9)
C8—C9—C10122.36 (9)C18—C19—H19119.2 (9)
C8—C9—C14119.68 (9)C19—C20—C21121.48 (10)
C10—C9—C14117.92 (9)C19—C20—H20119.7 (8)
C11—C10—C9121.13 (10)C21—C20—H20118.8 (8)
C11—C10—H10118.9 (8)C8—C21—C20123.23 (9)
C9—C10—H10119.9 (8)C8—C21—C16119.46 (9)
C10—C11—C12120.68 (10)C20—C21—C16117.25 (9)
C4—O2—C1—C20.05 (12)C12—C13—C14—C15178.54 (10)
O2—C1—C2—C30.07 (13)C12—C13—C14—C90.46 (16)
C1—C2—C3—C40.16 (12)C8—C9—C14—C150.25 (15)
C2—C3—C4—O20.20 (11)C10—C9—C14—C15177.91 (9)
C2—C3—C4—C5179.04 (10)C8—C9—C14—C13177.85 (9)
C1—O2—C4—C30.16 (11)C10—C9—C14—C130.20 (15)
C1—O2—C4—C5179.20 (8)C13—C14—C15—C16179.91 (10)
C3—C4—C5—O1176.89 (11)C9—C14—C15—C162.01 (16)
O2—C4—C5—O14.33 (14)C14—C15—C16—C17178.97 (10)
C3—C4—C5—C64.22 (16)C14—C15—C16—C211.51 (15)
O2—C4—C5—C6174.56 (8)C15—C16—C17—C18178.56 (10)
O1—C5—C6—C72.92 (15)C21—C16—C17—C181.92 (16)
C4—C5—C6—C7175.95 (9)C16—C17—C18—C191.51 (17)
C5—C6—C7—C8178.00 (9)C17—C18—C19—C202.45 (17)
C6—C7—C8—C2149.44 (15)C18—C19—C20—C210.14 (17)
C6—C7—C8—C9130.63 (11)C9—C8—C21—C20173.77 (9)
C21—C8—C9—C10179.46 (9)C7—C8—C21—C206.16 (15)
C7—C8—C9—C100.48 (15)C9—C8—C21—C163.49 (15)
C21—C8—C9—C142.99 (15)C7—C8—C21—C16176.57 (9)
C7—C8—C9—C14177.07 (9)C19—C20—C21—C8179.21 (10)
C8—C9—C10—C11178.45 (10)C19—C20—C21—C163.47 (15)
C14—C9—C10—C110.86 (15)C15—C16—C21—C81.27 (15)
C9—C10—C11—C120.87 (17)C17—C16—C21—C8178.26 (9)
C10—C11—C12—C130.18 (18)C15—C16—C21—C20176.16 (9)
C11—C12—C13—C140.48 (18)C17—C16—C21—C204.31 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.98 (2)2.34 (2)3.2871 (14)165 (1)
C6—H6···O1i0.94 (2)2.40 (2)3.3366 (13)173 (1)
C19—H19···O1ii0.98 (1)2.47 (1)3.3419 (13)148 (1)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H14O2
Mr298.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)21.5743 (4), 5.4571 (1), 12.8394 (2)
β (°) 104.099 (1)
V3)1466.09 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.25 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.955, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
19468, 4251, 3549
Rint0.029
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.118, 1.03
No. of reflections4251
No. of parameters264
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.37, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1i0.98 (2)2.34 (2)3.2871 (14)165 (1)
C6—H6···O1i0.94 (2)2.40 (2)3.3366 (13)173 (1)
C19—H19···O1ii0.98 (1)2.47 (1)3.3419 (13)148 (1)
Symmetry codes: (i) x, y+1, z; (ii) x, y+3/2, z1/2.
 

Footnotes

This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) for his sustainable development of the country.

Thomson Reuters ResearcherID: A-5085-2009.

§Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Thailand Research Fund (TRF) for research grant (RSA 5280033) and Prince of Songkla University for financial support. They also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Horkaew, J., Suwunwong, T. & Fun, H.-K. (2009). Acta Cryst. E65, o2673–o2674.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChantrapromma, S., Suwunwong, T., Boonnak, N. & Fun, H.-K. (2010). Acta Cryst. E66, o312–o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Suwunwong, T., Boonnak, N. & Chantrapromma, S. (2009). Acta Cryst. E65, o2168–o2169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGaber, M., El-Daly, S. A., Fayed, T. A. & El-Sayed, Y. S. (2008). Opt. Laser Tech. 40, 528–537.  Web of Science CrossRef CAS Google Scholar
First citationNiu, C.-G., Guan, A.-L., Zeng, G.-M., Liu, Y.-G. & Li, Z.-W. (2006). Anal. Chim. Acta, 577, 264–270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwunwong, T., Chantrapromma, S., Karalai, C., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, o420–o421.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, Z., Bai, G. & Dong, C. (2005). Spectrochim. Acta Part A, 62, 987–990.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o800-o801
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds