organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o781-o782

2-Amino-4-methyl­pyridinium tri­fluoro­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 February 2010; accepted 3 March 2010; online 10 March 2010)

The asymmetric unit of the title compound, C6H9N2+·C2F3O2, contains two independent 2-amino-4-methyl­pyridinium cations and two independent trifluoro­acetate anions. The F atoms of both anions are disordered over two sets of sites, with site occupancies of 0.50 (3) and 0.50 (3) in one of the anions, and 0.756 (9) and 0.244 (9) in the other. In the crystal, the cations and anions are linked into chains along the b axis by N—H⋯O hydrogen bonds and these chains are cross-linked by C—H⋯O hydrogen bonds, forming a two-dimensional network lying parallel to (101). The crystal structure is further stabilized by ππ inter­actions between the pyridinium rings [centroid–centroid distances = 3.5842 (13) and 3.5665 (16) Å].

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles In Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Kvick & Noordik (1977[Kvick, Å. & Noordik, J. (1977). Acta Cryst. B33, 2862-2866.]); Shen et al. (2008[Shen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1129.]); Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o335.]). For trifluoro­acetic acid, see: Rodrigues et al. (2001[Rodrigues, V. H., Paixão, J. A., Costa, M. M. R. R. & Matos Beja, A. (2001). Acta Cryst. C57, 417-420.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C2F3O2

  • Mr = 222.17

  • Triclinic, [P \overline 1]

  • a = 8.5229 (2) Å

  • b = 11.0649 (3) Å

  • c = 11.6573 (3) Å

  • α = 81.208 (1)°

  • β = 72.199 (2)°

  • γ = 74.647 (1)°

  • V = 1006.26 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 296 K

  • 0.56 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.989

  • 21533 measured reflections

  • 5803 independent reflections

  • 3405 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.187

  • S = 1.06

  • 5803 reflections

  • 357 parameters

  • 114 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O2Ai 0.89 (3) 1.85 (3) 2.740 (3) 173 (2)
N2A—H2NA⋯O1Ai 0.85 (2) 2.02 (2) 2.871 (3) 176 (2)
N2A—H3NA⋯O2Bii 0.85 (2) 2.04 (2) 2.835 (3) 156 (2)
N1B—H1NB⋯O2Bii 0.87 (3) 1.86 (3) 2.734 (3) 175 (2)
N2B—H2NB⋯O1Bii 0.85 (2) 2.01 (2) 2.858 (3) 176 (3)
N2B—H3NB⋯O2Aiii 0.83 (3) 2.04 (2) 2.848 (3) 164 (3)
C4A—H4AA⋯O1Biv 0.93 2.57 3.423 (3) 153
C6B—H6BA⋯O1Av 0.96 2.57 3.518 (5) 169
Symmetry codes: (i) x-1, y+1, z; (ii) x, y, z-1; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1; (v) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Trifluoroacetic acid (TFA) is a very strong carboxylic acid, easily volatile, and used for protein purifications. Several trifluoroacetate salts and their crystal structures have been reported (Rodrigues et al., 2001). The crystal structures of 2-amino-4-methylpyridine (Kvick & Noordik, 1977), 2-amino-4-methylpyridinium 4-aminobenzoate (Shen et al., 2008) have also been reported. We have recently reported the crystal structure of 2-amino-4-methylpyridinium 4-nitrobenzoate (Hemamalini & Fun, 2010). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-4-methylpyridinium cations (A and B) and two trifluoroacetate anions (A and B) (Fig. 1). Each 2-amino-4-methylpyridinium cation is planar, with a maximum deviation of 0.007 (3) Å for atom C6A in cation A and 0.011 (5) Å for atom C6B in cation B. The protonation of atoms N1A and N1B lead to a slight increase in C1A—N1A—C5A [122.3 (2)°] and C1B—N1B—C5B [121.7 (2)°] angles.

In the crystal packing (Fig. 2), the A (and B)-type 2-amino-4-methylpyridinium cations interact with the carboxylate groups of A (and B)-type trifluoroacetate anions through a pair of N—H···O hydrogen bonds, forming an R22(8) motif (Bernstein et al., 1995). The cation-anion pairs are linked into a chain along the b axis by N—H···O hydrogen bonds. The crystal structure is further stabilized by C—H···O (Table 1) hydrogen bonds and ππ interactions involving the N1A/C1A–C5A and N1A/C1A–C5A pyridine rings [centoid-to-centroid separation = 3.5842 (13) Å], and N1B/C1B–C5B and N1B/C1B–C5B rings [centoid-to-centroid separation = 3.5665 (16) Å].

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Kvick & Noordik (1977); Shen et al. (2008); Hemamalini & Fun (2010). For trifluoroacetic acid, see: Rodrigues et al. (2001). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a hot methanol solution (20 ml) of 2-amino-4-methylpyridine (27 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement top

Atoms H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located in a difference Fourier map and refined; the N–H distances of the NH2 groups were restrained to be equal. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The F atoms of both anions are disordered over two positions, with site occupancies of 0.50 (3) and 0.50 (3) in one of the anions, and 0.756 (9) and 0.244 (9) in the other anion. In each anion, the C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the hydrogen-bonded (dashed lines) network.
2-Amino-4-methylpyridinium trifluoroacetate top
Crystal data top
C6H9N2+·C2F3O2Z = 4
Mr = 222.17F(000) = 456
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5229 (2) ÅCell parameters from 4908 reflections
b = 11.0649 (3) Åθ = 2.6–30.0°
c = 11.6573 (3) ŵ = 0.14 mm1
α = 81.208 (1)°T = 296 K
β = 72.199 (2)°Plate, colourless
γ = 74.647 (1)°0.56 × 0.19 × 0.08 mm
V = 1006.26 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5803 independent reflections
Radiation source: fine-focus sealed tube3405 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.925, Tmax = 0.989k = 1515
21533 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.3844P]
where P = (Fo2 + 2Fc2)/3
5803 reflections(Δ/σ)max = 0.001
357 parametersΔρmax = 0.25 e Å3
114 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H9N2+·C2F3O2γ = 74.647 (1)°
Mr = 222.17V = 1006.26 (4) Å3
Triclinic, P1Z = 4
a = 8.5229 (2) ÅMo Kα radiation
b = 11.0649 (3) ŵ = 0.14 mm1
c = 11.6573 (3) ÅT = 296 K
α = 81.208 (1)°0.56 × 0.19 × 0.08 mm
β = 72.199 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5803 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3405 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.989Rint = 0.028
21533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.070114 restraints
wR(F2) = 0.187H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
5803 reflectionsΔρmin = 0.26 e Å3
357 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N1A0.3581 (3)0.99313 (18)0.21338 (18)0.0510 (5)
N2A0.2610 (3)0.8369 (2)0.1674 (2)0.0672 (6)
C1A0.4811 (3)1.0518 (2)0.2081 (2)0.0589 (6)
H1AA0.45381.12370.24900.071*
C2A0.6422 (3)1.0074 (3)0.1447 (2)0.0605 (6)
H2AA0.72581.04850.14120.073*
C3A0.6831 (3)0.8980 (2)0.0835 (2)0.0553 (6)
C4A0.5572 (3)0.8401 (2)0.0901 (2)0.0548 (6)
H4AA0.58290.76780.05000.066*
C5A0.3900 (3)0.8882 (2)0.1564 (2)0.0500 (6)
C6A0.8627 (4)0.8466 (3)0.0138 (3)0.0779 (8)
H6AA0.87210.76620.01250.117*
H6AB0.93580.83730.06450.117*
H6AC0.89510.90330.05540.117*
N1B0.2268 (3)0.49192 (19)0.32553 (19)0.0529 (5)
N2B0.1215 (4)0.3395 (2)0.2805 (2)0.0708 (7)
C1B0.2776 (3)0.5451 (3)0.4013 (2)0.0600 (7)
H1BB0.309 (4)0.622 (3)0.367 (3)0.072 (8)*
C2B0.2732 (3)0.4938 (3)0.5135 (3)0.0634 (7)
H2BA0.30740.53150.56480.076*
C3B0.2162 (3)0.3817 (3)0.5533 (2)0.0612 (6)
C4B0.1643 (3)0.3302 (2)0.4769 (2)0.0581 (6)
H4BA0.12480.25720.50270.070*
C5B0.1695 (3)0.3855 (2)0.3598 (2)0.0508 (6)
C6B0.2136 (6)0.3216 (4)0.6779 (3)0.0997 (12)
H6BA0.18250.24260.68770.149*
H6BB0.13260.37590.73650.149*
H6BC0.32400.30790.68940.149*
F1A0.7612 (16)0.1532 (10)0.5327 (7)0.084 (2)0.50 (3)
F2A0.6477 (14)0.1650 (13)0.3757 (10)0.102 (3)0.50 (3)
F3A0.6788 (15)0.0165 (9)0.5069 (8)0.093 (3)0.50 (3)
F1C0.7539 (17)0.1841 (16)0.5129 (13)0.110 (4)0.50 (3)
F2C0.6745 (18)0.2046 (15)0.3790 (11)0.122 (4)0.50 (3)
F3C0.6439 (18)0.0349 (13)0.4851 (15)0.117 (4)0.50 (3)
O1A0.9324 (3)0.0511 (2)0.3165 (2)0.0937 (7)
O2A1.0382 (2)0.10073 (17)0.34606 (19)0.0712 (6)
C7A0.9242 (3)0.0450 (2)0.3593 (2)0.0562 (6)
C8A0.7515 (3)0.1063 (3)0.4389 (2)0.0636 (7)
F1B0.4287 (6)0.6567 (4)0.8679 (3)0.0917 (13)0.756 (9)
F2B0.1802 (5)0.6740 (7)0.8575 (4)0.136 (2)0.756 (9)
F3B0.3737 (6)0.5082 (4)0.8111 (4)0.1062 (14)0.756 (9)
F1D0.310 (2)0.7120 (8)0.8858 (9)0.101 (4)0.244 (9)
F2D0.1842 (14)0.6008 (13)0.8405 (11)0.094 (4)0.244 (9)
F3D0.4324 (15)0.5237 (15)0.8247 (14)0.122 (5)0.244 (9)
O1B0.2191 (3)0.4371 (2)1.03426 (19)0.0899 (7)
O2B0.2503 (3)0.60549 (17)1.09745 (16)0.0786 (6)
C7B0.2531 (3)0.5397 (2)1.0201 (2)0.0566 (6)
C8B0.3048 (3)0.5954 (3)0.8898 (2)0.0649 (7)
H1NA0.252 (4)1.022 (2)0.257 (2)0.057 (7)*
H2NA0.161 (3)0.869 (2)0.209 (2)0.062 (8)*
H3NA0.276 (4)0.775 (2)0.127 (2)0.077 (9)*
H1NB0.238 (3)0.524 (2)0.251 (3)0.058 (7)*
H2NB0.146 (4)0.368 (3)0.2065 (19)0.079 (10)*
H3NB0.078 (3)0.278 (2)0.301 (3)0.070 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N1A0.0562 (13)0.0494 (11)0.0466 (11)0.0169 (9)0.0063 (10)0.0099 (8)
N2A0.0761 (17)0.0585 (14)0.0704 (15)0.0299 (13)0.0057 (13)0.0204 (12)
C1A0.0699 (17)0.0555 (14)0.0587 (15)0.0232 (13)0.0167 (13)0.0136 (11)
C2A0.0599 (16)0.0667 (16)0.0606 (15)0.0210 (13)0.0189 (13)0.0064 (12)
C3A0.0599 (15)0.0566 (14)0.0451 (13)0.0056 (12)0.0168 (11)0.0005 (10)
C4A0.0710 (16)0.0439 (12)0.0463 (13)0.0077 (11)0.0160 (12)0.0049 (10)
C5A0.0684 (16)0.0418 (11)0.0407 (11)0.0174 (11)0.0143 (11)0.0007 (9)
C6A0.0636 (18)0.084 (2)0.076 (2)0.0031 (15)0.0145 (15)0.0103 (16)
N1B0.0631 (13)0.0487 (11)0.0455 (11)0.0230 (10)0.0047 (10)0.0029 (9)
N2B0.0989 (19)0.0645 (15)0.0620 (15)0.0456 (14)0.0189 (14)0.0039 (12)
C1B0.0676 (17)0.0579 (15)0.0575 (15)0.0305 (13)0.0076 (12)0.0056 (12)
C2B0.0653 (16)0.0714 (17)0.0621 (16)0.0281 (14)0.0186 (13)0.0066 (13)
C3B0.0603 (15)0.0629 (15)0.0607 (15)0.0179 (12)0.0191 (12)0.0055 (12)
C4B0.0627 (15)0.0490 (13)0.0619 (15)0.0228 (12)0.0122 (12)0.0048 (11)
C5B0.0505 (13)0.0451 (12)0.0545 (14)0.0159 (10)0.0054 (10)0.0068 (10)
C6B0.140 (3)0.101 (3)0.079 (2)0.054 (2)0.058 (2)0.0303 (19)
F1A0.096 (4)0.091 (4)0.054 (3)0.014 (3)0.010 (2)0.012 (3)
F2A0.083 (4)0.122 (5)0.092 (4)0.007 (4)0.037 (3)0.012 (4)
F3A0.076 (4)0.117 (4)0.073 (4)0.038 (3)0.000 (3)0.015 (3)
F1C0.101 (5)0.114 (6)0.127 (6)0.038 (4)0.010 (4)0.068 (5)
F2C0.100 (5)0.125 (6)0.103 (5)0.013 (4)0.025 (3)0.023 (4)
F3C0.080 (4)0.131 (6)0.146 (7)0.068 (4)0.001 (4)0.024 (4)
O1A0.0789 (14)0.0947 (16)0.1201 (19)0.0387 (12)0.0099 (13)0.0498 (14)
O2A0.0621 (11)0.0612 (11)0.0907 (14)0.0314 (9)0.0031 (10)0.0147 (10)
C7A0.0600 (15)0.0598 (14)0.0554 (14)0.0271 (12)0.0143 (12)0.0044 (11)
C8A0.0613 (16)0.0771 (19)0.0573 (16)0.0277 (14)0.0137 (13)0.0049 (13)
F1B0.098 (3)0.100 (2)0.0800 (17)0.053 (2)0.0076 (16)0.0035 (15)
F2B0.086 (2)0.174 (4)0.093 (2)0.023 (3)0.0136 (18)0.040 (3)
F3B0.119 (3)0.130 (3)0.0665 (18)0.051 (2)0.0142 (19)0.0440 (16)
F1D0.146 (8)0.084 (5)0.079 (5)0.052 (5)0.025 (5)0.008 (4)
F2D0.105 (6)0.113 (7)0.084 (5)0.030 (5)0.062 (5)0.012 (5)
F3D0.078 (6)0.148 (8)0.112 (7)0.006 (5)0.002 (5)0.010 (6)
O1B0.140 (2)0.0703 (13)0.0708 (13)0.0528 (14)0.0189 (13)0.0111 (10)
O2B0.1372 (19)0.0565 (11)0.0532 (11)0.0412 (12)0.0259 (11)0.0054 (8)
C7B0.0670 (16)0.0506 (13)0.0537 (14)0.0165 (12)0.0137 (12)0.0094 (11)
C8B0.0657 (18)0.0713 (18)0.0547 (15)0.0147 (15)0.0106 (13)0.0108 (13)
Geometric parameters (Å, º) top
N1A—C5A1.350 (3)C2B—H2BA0.93
N1A—C1A1.354 (3)C3B—C4B1.356 (4)
N1A—H1NA0.89 (3)C3B—C6B1.499 (4)
N2A—C5A1.330 (3)C4B—C5B1.401 (3)
N2A—H2NA0.855 (18)C4B—H4BA0.93
N2A—H3NA0.850 (19)C6B—H6BA0.96
C1A—C2A1.344 (4)C6B—H6BB0.96
C1A—H1AA0.93C6B—H6BC0.96
C2A—C3A1.408 (4)F1A—C8A1.314 (6)
C2A—H2AA0.93F2A—C8A1.301 (6)
C3A—C4A1.366 (3)F3A—C8A1.336 (6)
C3A—C6A1.499 (4)F1C—C8A1.316 (6)
C4A—C5A1.401 (3)F2C—C8A1.331 (6)
C4A—H4AA0.93F3C—C8A1.306 (6)
C6A—H6AA0.96O1A—C7A1.219 (3)
C6A—H6AB0.96O2A—C7A1.243 (3)
C6A—H6AC0.96C7A—C8A1.522 (4)
N1B—C5B1.351 (3)F1B—C8B1.343 (4)
N1B—C1B1.356 (3)F2B—C8B1.296 (4)
N1B—H1NB0.88 (3)F3B—C8B1.326 (4)
N2B—C5B1.329 (3)F1D—C8B1.297 (6)
N2B—H2NB0.854 (19)F2D—C8B1.307 (7)
N2B—H3NB0.830 (19)F3D—C8B1.269 (8)
C1B—C2B1.338 (4)O1B—C7B1.220 (3)
C1B—H1BB0.95 (3)O2B—C7B1.233 (3)
C2B—C3B1.412 (4)C7B—C8B1.526 (4)
C5A—N1A—C1A122.3 (2)C4B—C3B—C2B118.8 (2)
C5A—N1A—H1NA116.6 (16)C4B—C3B—C6B121.1 (3)
C1A—N1A—H1NA121.0 (16)C2B—C3B—C6B120.0 (3)
C5A—N2A—H2NA121.2 (18)C3B—C4B—C5B120.9 (2)
C5A—N2A—H3NA119 (2)C3B—C4B—H4BA119.5
H2NA—N2A—H3NA119 (3)C5B—C4B—H4BA119.5
C2A—C1A—N1A120.9 (2)N2B—C5B—N1B118.1 (2)
C2A—C1A—H1AA119.5N2B—C5B—C4B123.9 (2)
N1A—C1A—H1AA119.5N1B—C5B—C4B118.0 (2)
C1A—C2A—C3A119.3 (2)C3B—C6B—H6BA109.5
C1A—C2A—H2AA120.3C3B—C6B—H6BB109.5
C3A—C2A—H2AA120.3H6BA—C6B—H6BB109.5
C4A—C3A—C2A118.9 (2)C3B—C6B—H6BC109.5
C4A—C3A—C6A121.2 (2)H6BA—C6B—H6BC109.5
C2A—C3A—C6A119.9 (3)H6BB—C6B—H6BC109.5
C3A—C4A—C5A120.8 (2)O1A—C7A—O2A128.6 (3)
C3A—C4A—H4AA119.6O1A—C7A—C8A116.2 (2)
C5A—C4A—H4AA119.6O2A—C7A—C8A115.2 (2)
N2A—C5A—N1A117.9 (2)F2A—C8A—F1A122.3 (9)
N2A—C5A—C4A124.3 (2)F3C—C8A—F1C114.7 (11)
N1A—C5A—C4A117.7 (2)F3C—C8A—F2C106.7 (7)
C3A—C6A—H6AA109.5F1C—C8A—F2C88.3 (16)
C3A—C6A—H6AB109.5F2A—C8A—F3A104.7 (7)
H6AA—C6A—H6AB109.5F1A—C8A—F3A93.2 (7)
C3A—C6A—H6AC109.5F2A—C8A—C7A112.1 (6)
H6AA—C6A—H6AC109.5F1A—C8A—C7A112.8 (6)
H6AB—C6A—H6AC109.5F3A—C8A—C7A108.9 (5)
C5B—N1B—C1B121.7 (2)O1B—C7B—O2B128.6 (3)
C5B—N1B—H1NB118.8 (17)O1B—C7B—C8B116.2 (2)
C1B—N1B—H1NB119.3 (16)O2B—C7B—C8B115.2 (2)
C5B—N2B—H2NB120 (2)F3D—C8B—F1D116.9 (9)
C5B—N2B—H3NB120 (2)F3D—C8B—F2D103.4 (9)
H2NB—N2B—H3NB120 (3)F1D—C8B—F2D103.7 (7)
C2B—C1B—N1B121.1 (2)F2B—C8B—F3B108.5 (4)
C2B—C1B—H1BB125.9 (17)F2B—C8B—F1B106.5 (4)
N1B—C1B—H1BB112.9 (17)F3B—C8B—F1B101.8 (3)
C1B—C2B—C3B119.4 (2)F2B—C8B—C7B113.0 (3)
C1B—C2B—H2BA120.3F3B—C8B—C7B112.8 (3)
C3B—C2B—H2BA120.3F1B—C8B—C7B113.5 (2)
C5A—N1A—C1A—C2A0.2 (4)O1A—C7A—C8A—F3C20.8 (11)
N1A—C1A—C2A—C3A0.3 (4)O2A—C7A—C8A—F3C159.7 (11)
C1A—C2A—C3A—C4A0.2 (4)O1A—C7A—C8A—F1A141.7 (6)
C1A—C2A—C3A—C6A179.2 (3)O2A—C7A—C8A—F1A38.8 (6)
C2A—C3A—C4A—C5A0.0 (4)O1A—C7A—C8A—F1C159.8 (10)
C6A—C3A—C4A—C5A179.4 (2)O2A—C7A—C8A—F1C20.6 (10)
C1A—N1A—C5A—N2A179.6 (2)O1A—C7A—C8A—F2C101.8 (11)
C1A—N1A—C5A—C4A0.0 (3)O2A—C7A—C8A—F2C77.7 (11)
C3A—C4A—C5A—N2A179.7 (2)O1A—C7A—C8A—F3A39.7 (6)
C3A—C4A—C5A—N1A0.1 (3)O2A—C7A—C8A—F3A140.8 (6)
C5B—N1B—C1B—C2B0.1 (4)O1B—C7B—C8B—F3D57.7 (10)
N1B—C1B—C2B—C3B0.6 (4)O2B—C7B—C8B—F3D122.7 (10)
C1B—C2B—C3B—C4B1.2 (4)O1B—C7B—C8B—F2B96.6 (5)
C1B—C2B—C3B—C6B178.8 (3)O2B—C7B—C8B—F2B83.0 (5)
C2B—C3B—C4B—C5B1.1 (4)O1B—C7B—C8B—F1D169.3 (10)
C6B—C3B—C4B—C5B179.0 (3)O2B—C7B—C8B—F1D10.3 (10)
C1B—N1B—C5B—N2B179.7 (3)O1B—C7B—C8B—F2D55.9 (8)
C1B—N1B—C5B—C4B0.3 (4)O2B—C7B—C8B—F2D123.7 (7)
C3B—C4B—C5B—N2B179.6 (3)O1B—C7B—C8B—F3B26.9 (4)
C3B—C4B—C5B—N1B0.3 (4)O2B—C7B—C8B—F3B153.5 (3)
O1A—C7A—C8A—F2A75.6 (8)O1B—C7B—C8B—F1B142.0 (3)
O2A—C7A—C8A—F2A103.9 (8)O2B—C7B—C8B—F1B38.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O2Ai0.89 (3)1.85 (3)2.740 (3)173 (2)
N2A—H2NA···O1Ai0.85 (2)2.02 (2)2.871 (3)176 (2)
N2A—H3NA···O2Bii0.85 (2)2.04 (2)2.835 (3)156 (2)
N1B—H1NB···O2Bii0.87 (3)1.86 (3)2.734 (3)175 (2)
N2B—H2NB···O1Bii0.85 (2)2.01 (2)2.858 (3)176 (3)
N2B—H3NB···O2Aiii0.83 (3)2.04 (2)2.848 (3)164 (3)
C4A—H4AA···O1Biv0.932.573.423 (3)153
C6B—H6BA···O1Av0.962.573.518 (5)169
Symmetry codes: (i) x1, y+1, z; (ii) x, y, z1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C2F3O2
Mr222.17
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.5229 (2), 11.0649 (3), 11.6573 (3)
α, β, γ (°)81.208 (1), 72.199 (2), 74.647 (1)
V3)1006.26 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.56 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.925, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
21533, 5803, 3405
Rint0.028
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.187, 1.06
No. of reflections5803
No. of parameters357
No. of restraints114
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O2Ai0.89 (3)1.85 (3)2.740 (3)173 (2)
N2A—H2NA···O1Ai0.85 (2)2.02 (2)2.871 (3)176 (2)
N2A—H3NA···O2Bii0.85 (2)2.04 (2)2.835 (3)156 (2)
N1B—H1NB···O2Bii0.87 (3)1.86 (3)2.734 (3)175 (2)
N2B—H2NB···O1Bii0.85 (2)2.01 (2)2.858 (3)176 (3)
N2B—H3NB···O2Aiii0.83 (3)2.04 (2)2.848 (3)164 (3)
C4A—H4AA···O1Biv0.932.573.423 (3)153
C6B—H6BA···O1Av0.962.573.518 (5)169
Symmetry codes: (i) x1, y+1, z; (ii) x, y, z1; (iii) x1, y, z; (iv) x+1, y+1, z+1; (v) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationKvick, Å. & Noordik, J. (1977). Acta Cryst. B33, 2862–2866.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles In Life and Society. New York: Wiley.  Google Scholar
First citationRodrigues, V. H., Paixão, J. A., Costa, M. M. R. R. & Matos Beja, A. (2001). Acta Cryst. C57, 417–420.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, H., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, o1129.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o781-o782
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds