metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(N-iso­propyl-N-methyl­di­thio­carbamato-κ2S,S′)di­phenyl­tin(IV)

aSchool of Chemical Sciences, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 February 2010; accepted 26 February 2010; online 3 March 2010)

The dithio­carbamate anions in the title compound, [Sn(C6H5)2(C5H10NS2)2], chelate to the SnIV atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol­ecule lies across a twofold rotation axis.

Related literature

For other diphenyl­tin bis­(dithio­carbamate) compounds, see: Alcock et al. (1992[Alcock, N. W., Culver, J. & Roe, S. M. (1992). J. Chem. Soc. Dalton Trans. pp. 1477-1484.]); Farina et al. (2001a[Farina, Y., Baba, I., Othman, A. H., Razak, I. A., Fun, H.-K. & Ng, S. W. (2001a). Acta Cryst. E57, m41-m42.],b[Farina, Y., Othman, A. H., Razak, I. A., Fun, H.-K., Ng, S. W. & Baba, I. (2001b). Acta Cryst. E57, m46-m47.]); Hook et al. (1994[Hook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293-311.]). For a discussion of the geometry of tin in diorganotin bis­chelates, see: Ng et al. (1987[Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295-305.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C5H10NS2)2]

  • Mr = 569.41

  • Orthorhombic, P b c n

  • a = 18.8797 (10) Å

  • b = 9.2067 (5) Å

  • c = 14.5694 (8) Å

  • V = 2532.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.35 mm−1

  • T = 293 K

  • 0.35 × 0.35 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.649, Tmax = 0.774

  • 15127 measured reflections

  • 2785 independent reflections

  • 2291 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.089

  • S = 1.10

  • 2785 reflections

  • 135 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.167 (3)
Sn1—S1 2.5820 (7)
Sn1—S2 2.6910 (8)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For other diphenyltin bis(dithiocarbamate) compounds, see: Alcock et al. (1992); Farina et al. (2001a,b); Hook et al. (1994). For a discussion of the geometry of tin in diorganotin bischelates, see: Ng et al. (1987).

Experimental top

Diphenyltin dichloride (10 mmol), isopropylmethylamine (10 mmol) and carbon disulfide (10 mmol) were reacted in ethanol (50 ml) at 277 K to produce a white solid. The mixture was stirred for 1 h. The solid was collected and recrystallized from ethanol.

Refinement top

H atoms were placed in calculated positions (C–H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of [Sn(C6H5)2(C5H10NS2)2] at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, y, 1/2 - z).
Bis(N-isopropyl-N-methyldithiocarbamato- κ2S,S')diphenyltin(IV) top
Crystal data top
[Sn(C6H5)2(C5H10NS2)2]F(000) = 1160
Mr = 569.41Dx = 1.493 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 6898 reflections
a = 18.8797 (10) Åθ = 2.4–28.3°
b = 9.2067 (5) ŵ = 1.35 mm1
c = 14.5694 (8) ÅT = 293 K
V = 2532.4 (2) Å3Block, colourless
Z = 40.35 × 0.35 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube2291 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.649, Tmax = 0.774k = 1111
15127 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.044P)2 + 2.0829P]
where P = (Fo2 + 2Fc2)/3
2785 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Sn(C6H5)2(C5H10NS2)2]V = 2532.4 (2) Å3
Mr = 569.41Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 18.8797 (10) ŵ = 1.35 mm1
b = 9.2067 (5) ÅT = 293 K
c = 14.5694 (8) Å0.35 × 0.35 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
2785 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2291 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.774Rint = 0.022
15127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
2785 reflectionsΔρmin = 0.30 e Å3
135 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.71348 (3)0.25000.03365 (10)
S10.44810 (4)0.65957 (8)0.41039 (4)0.04395 (18)
S20.40918 (5)0.48826 (9)0.24740 (4)0.04373 (19)
N10.36739 (12)0.4240 (3)0.41754 (14)0.0388 (5)
C10.42071 (15)0.8630 (3)0.19862 (19)0.0404 (6)
C20.44326 (19)0.9844 (4)0.1519 (3)0.0648 (10)
H20.49110.99450.13820.078*
C30.3962 (2)1.0925 (4)0.1246 (3)0.0802 (12)
H30.41281.17450.09410.096*
C40.3258 (2)1.0776 (4)0.1429 (3)0.0722 (11)
H40.29431.15050.12580.087*
C50.3015 (2)0.9560 (4)0.1861 (3)0.0692 (10)
H50.25330.94480.19690.083*
C60.34853 (18)0.8492 (4)0.2139 (2)0.0544 (8)
H60.33140.76680.24340.065*
C70.40355 (14)0.5130 (3)0.36386 (17)0.0356 (5)
C80.36473 (18)0.4480 (4)0.51766 (19)0.0518 (8)
H8A0.40880.48890.53790.078*
H8B0.35680.35710.54820.078*
H8C0.32680.51370.53190.078*
C90.33678 (18)0.2865 (3)0.3824 (2)0.0486 (7)
H90.33240.29580.31560.058*
C100.2637 (2)0.2584 (5)0.4203 (3)0.0784 (12)
H10A0.24250.17870.38800.118*
H10B0.23510.34370.41280.118*
H10C0.26720.23500.48440.118*
C110.3871 (3)0.1643 (5)0.4012 (4)0.1013 (17)
H11A0.37230.07950.36810.152*
H11B0.38750.14360.46580.152*
H11C0.43390.19160.38180.152*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03059 (17)0.03725 (15)0.03310 (15)0.0000.00153 (9)0.000
S10.0463 (4)0.0523 (4)0.0332 (3)0.0086 (3)0.0028 (3)0.0052 (3)
S20.0555 (5)0.0467 (4)0.0290 (3)0.0106 (3)0.0052 (3)0.0015 (3)
N10.0427 (13)0.0454 (12)0.0282 (10)0.0041 (10)0.0043 (9)0.0025 (9)
C10.0377 (16)0.0452 (14)0.0383 (14)0.0004 (11)0.0031 (11)0.0004 (11)
C20.050 (2)0.063 (2)0.082 (2)0.0027 (17)0.0015 (18)0.0269 (19)
C30.085 (3)0.062 (2)0.093 (3)0.006 (2)0.007 (2)0.037 (2)
C40.072 (3)0.072 (2)0.073 (2)0.029 (2)0.021 (2)0.0082 (19)
C50.042 (2)0.082 (3)0.084 (3)0.0168 (18)0.0038 (18)0.008 (2)
C60.0450 (19)0.0591 (19)0.0591 (19)0.0038 (15)0.0025 (15)0.0092 (16)
C70.0346 (14)0.0408 (13)0.0315 (12)0.0029 (11)0.0014 (10)0.0024 (10)
C80.057 (2)0.0659 (19)0.0327 (13)0.0092 (16)0.0060 (13)0.0025 (13)
C90.060 (2)0.0449 (16)0.0413 (15)0.0084 (13)0.0040 (14)0.0043 (12)
C100.058 (3)0.090 (3)0.087 (3)0.026 (2)0.004 (2)0.004 (2)
C110.103 (4)0.052 (2)0.148 (5)0.016 (2)0.014 (3)0.014 (3)
Geometric parameters (Å, º) top
Sn1—C1i2.167 (3)C4—C51.364 (6)
Sn1—C12.167 (3)C4—H40.93
Sn1—S1i2.5820 (7)C5—C61.386 (5)
Sn1—S12.5820 (7)C5—H50.93
Sn1—S22.6910 (8)C6—H60.93
Sn1—S2i2.6909 (8)C8—H8A0.96
S1—C71.728 (3)C8—H8B0.96
S2—C71.715 (3)C8—H8C0.96
N1—C71.323 (3)C9—C101.508 (5)
N1—C81.476 (3)C9—C111.498 (5)
N1—C91.483 (4)C9—H90.98
C1—C21.376 (4)C10—H10A0.96
C1—C61.387 (4)C10—H10B0.96
C2—C31.392 (5)C10—H10C0.96
C2—H20.93C11—H11A0.96
C3—C41.362 (6)C11—H11B0.96
C3—H30.93C11—H11C0.96
C1i—Sn1—C1101.13 (15)C4—C5—H5119.9
C1i—Sn1—S1i99.94 (8)C6—C5—H5119.9
C1—Sn1—S1i94.10 (7)C1—C6—C5121.1 (3)
C1i—Sn1—S194.10 (7)C1—C6—H6119.4
C1—Sn1—S199.94 (8)C5—C6—H6119.4
S1i—Sn1—S1157.84 (4)N1—C7—S2122.3 (2)
C1i—Sn1—S2159.15 (7)N1—C7—S1120.20 (19)
C1—Sn1—S292.55 (8)S2—C7—S1117.49 (15)
S1i—Sn1—S294.64 (2)N1—C8—H8A109.5
S1—Sn1—S267.84 (2)N1—C8—H8B109.5
C1i—Sn1—S2i92.55 (8)H8A—C8—H8B109.5
C1—Sn1—S2i159.15 (7)N1—C8—H8C109.5
S1i—Sn1—S2i67.84 (2)H8A—C8—H8C109.5
S1—Sn1—S2i94.64 (2)H8B—C8—H8C109.5
S2—Sn1—S2i79.19 (4)N1—C9—C10112.1 (3)
C7—S1—Sn188.84 (9)N1—C9—C11109.3 (3)
C7—S2—Sn185.58 (10)C10—C9—C11112.6 (3)
C7—N1—C8120.6 (2)N1—C9—H9107.5
C7—N1—C9121.7 (2)C10—C9—H9107.5
C8—N1—C9117.1 (2)C11—C9—H9107.5
C2—C1—C6117.3 (3)C9—C10—H10A109.5
C2—C1—Sn1118.2 (2)C9—C10—H10B109.5
C6—C1—Sn1124.4 (2)H10A—C10—H10B109.5
C1—C2—C3121.7 (3)C9—C10—H10C109.5
C1—C2—H2119.2H10A—C10—H10C109.5
C3—C2—H2119.2H10B—C10—H10C109.5
C4—C3—C2119.6 (4)C9—C11—H11A109.5
C4—C3—H3120.2C9—C11—H11B109.5
C2—C3—H3120.2H11A—C11—H11B109.5
C3—C4—C5120.1 (3)C9—C11—H11C109.5
C3—C4—H4120.0H11A—C11—H11C109.5
C5—C4—H4120.0H11B—C11—H11C109.5
C4—C5—C6120.2 (3)
C1i—Sn1—S1—C7166.32 (12)C6—C1—C2—C32.9 (6)
C1—Sn1—S1—C791.61 (12)Sn1—C1—C2—C3173.6 (3)
S1i—Sn1—S1—C736.91 (9)C1—C2—C3—C41.2 (7)
S2—Sn1—S1—C72.91 (9)C2—C3—C4—C51.3 (7)
S2i—Sn1—S1—C773.43 (9)C3—C4—C5—C61.9 (6)
C1i—Sn1—S2—C728.6 (2)C2—C1—C6—C52.2 (5)
C1—Sn1—S2—C7102.64 (12)Sn1—C1—C6—C5174.0 (3)
S1i—Sn1—S2—C7163.03 (9)C4—C5—C6—C10.1 (6)
S1—Sn1—S2—C72.94 (9)C8—N1—C7—S2179.1 (2)
S2i—Sn1—S2—C796.66 (9)C9—N1—C7—S27.8 (4)
C1i—Sn1—C1—C241.2 (2)C8—N1—C7—S10.2 (4)
S1i—Sn1—C1—C259.7 (3)C9—N1—C7—S1171.5 (2)
S1—Sn1—C1—C2137.5 (3)Sn1—S2—C7—N1174.7 (2)
S2—Sn1—C1—C2154.6 (3)Sn1—S2—C7—S14.59 (14)
S2i—Sn1—C1—C288.8 (3)Sn1—S1—C7—N1174.6 (2)
C1i—Sn1—C1—C6135.0 (3)Sn1—S1—C7—S24.77 (15)
S1i—Sn1—C1—C6124.0 (3)C7—N1—C9—C10139.3 (3)
S1—Sn1—C1—C638.8 (3)C8—N1—C9—C1049.2 (4)
S2—Sn1—C1—C629.2 (3)C7—N1—C9—C1195.2 (4)
S2i—Sn1—C1—C694.9 (3)C8—N1—C9—C1176.4 (4)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C5H10NS2)2]
Mr569.41
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)18.8797 (10), 9.2067 (5), 14.5694 (8)
V3)2532.4 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.35 × 0.35 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.649, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
15127, 2785, 2291
Rint0.022
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.089, 1.10
No. of reflections2785
No. of parameters135
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.167 (3)Sn1—S22.6910 (8)
Sn1—S12.5820 (7)
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

References

First citationAlcock, N. W., Culver, J. & Roe, S. M. (1992). J. Chem. Soc. Dalton Trans. pp. 1477–1484.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarina, Y., Baba, I., Othman, A. H., Razak, I. A., Fun, H.-K. & Ng, S. W. (2001a). Acta Cryst. E57, m41–m42.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarina, Y., Othman, A. H., Razak, I. A., Fun, H.-K., Ng, S. W. & Baba, I. (2001b). Acta Cryst. E57, m46–m47.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHook, J. M., Linahan, B. M., Taylor, R. L., Tiekink, E. R. T., van Gorkom, L. & Webster, L. K. (1994). Main Group Met. Chem. 17, 293–311.  CrossRef CAS Google Scholar
First citationNg, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295–305.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds