metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-tert-butyl­bis­(N-iso­propyl-N-methyl­di­thio­carbamato-κ2S,S′)tin(IV)

aSchool of Chemical Sciences, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 February 2010; accepted 26 February 2010; online 3 March 2010)

The dithio­carbamate anions in the title compound, [Sn(C4H9)2(C5H10NS2)2], chelate to the SnIV atom, which is six-coordinated in a skew-trapezoidal-bipyramidal geometry. The mol­ecule lies across a twofold rotation axis. The crystal studied was a non-merohedral twin, the ratio of the twin components being 0.82 (1):0.18 (1).

Related literature

For the crystal structure of di(tert-but­yl)bis­(N,N-dimethyl­dithio­carbamato)tin(IV), see: Kim et al. (1987[Kim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317-2319.]). For a discussion of the geometry of tin in diorganotin bis­chelates, see: Ng et al. (1987[Ng, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295-305.]). For the treatment of non-merohedral twinning, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C5H10NS2)2]

  • Mr = 529.43

  • Monoclinic, P 2/n

  • a = 11.2934 (11) Å

  • b = 7.0175 (7) Å

  • c = 15.6894 (15) Å

  • β = 95.016 (1)°

  • V = 1238.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.37 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.610, Tmax = 0.875

  • 7346 measured reflections

  • 2838 independent reflections

  • 2199 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.186

  • S = 1.09

  • 2838 reflections

  • 121 parameters

  • H-atom parameters constrained

  • Δρmax = 1.76 e Å−3

  • Δρmin = −1.58 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—C1 2.233 (7)
Sn1—S1 2.5444 (18)
Sn1—S2 2.9911 (17)
C1i—Sn1—C1 142.5 (4)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For the crystal structure of di(tert-butyl)bis(N,N-dimethyldithiocarbamato)tin(IV), see: Kim et al. (1987). For a discussion of the geometry of tin in diorganotin bischelates, see: Ng et al. (1987). For the treatment of non-merohedral twinning, see: Spek (2009).

Experimental top

Di-t-butyltin dichloride (10 mmol), isopropylmethylamine (10 mmol) and carbon disulfide (10 mmol) were reacted in ethanol (50 ml) at 277 K to produce a white solid. The mixture was stirred for 1 h. The solid was collected and recrystallized from ethanol.

Refinement top

H atoms were placed in calculated positions (C–H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2-1.5Ueq(C). The structure is a non-merohedral twin. The diffraction data were separated into two components by using PLATON (Spek, 2009). The final difference Fourier map had a peak near S2 and a hole near Sn1. The twin matrix is (0.293 0 0.707, 0 -1 0, 1.293 0 -0.293).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of [Sn(C6H5)2(C5H11NS2)2] at 50% probability level. H atoms are drawn as spheres of arbitrary radii. Unlabelled atoms are related to labelled atoms by the symmetry operation (3/2 - x, y, 3/2 - z).
Di-tert-butylbis(N-isopropyl-N-methyldithiocarbamato- κ2S,S')tin(IV) top
Crystal data top
[Sn(C4H9)2(C5H10NS2)2]F(000) = 548
Mr = 529.43Dx = 1.420 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 4020 reflections
a = 11.2934 (11) Åθ = 2.6–28.1°
b = 7.0175 (7) ŵ = 1.37 mm1
c = 15.6894 (15) ÅT = 293 K
β = 95.016 (1)°Block, colourless
V = 1238.6 (2) Å30.40 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX
diffractometer
2838 independent reflections
Radiation source: fine-focus sealed tube2199 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.610, Tmax = 0.875k = 89
7346 measured reflectionsl = 1120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.186H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0968P)2 + 1.7978P]
where P = (Fo2 + 2Fc2)/3
2838 reflections(Δ/σ)max = 0.001
121 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.58 e Å3
Crystal data top
[Sn(C4H9)2(C5H10NS2)2]V = 1238.6 (2) Å3
Mr = 529.43Z = 2
Monoclinic, P2/nMo Kα radiation
a = 11.2934 (11) ŵ = 1.37 mm1
b = 7.0175 (7) ÅT = 293 K
c = 15.6894 (15) Å0.40 × 0.20 × 0.10 mm
β = 95.016 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2838 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2199 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.875Rint = 0.065
7346 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.186H-atom parameters constrained
S = 1.09Δρmax = 1.76 e Å3
2838 reflectionsΔρmin = 1.58 e Å3
121 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.75000.42189 (9)0.75000.0369 (2)
S10.77107 (19)0.1454 (3)0.64749 (11)0.0514 (5)
S20.82366 (17)0.5223 (3)0.57705 (11)0.0469 (4)
N10.8073 (5)0.2052 (8)0.4857 (3)0.0402 (12)
C10.5675 (6)0.5241 (11)0.7062 (4)0.0426 (15)
C20.4811 (7)0.3967 (12)0.7504 (5)0.059 (2)
H2A0.40210.44740.74090.089*
H2B0.50430.39250.81070.089*
H2C0.48280.27020.72710.089*
C30.5406 (8)0.5079 (17)0.6112 (5)0.070 (2)
H3A0.45810.53510.59630.105*
H3B0.55800.38090.59320.105*
H3C0.58860.59720.58310.105*
C40.5556 (7)0.7310 (12)0.7355 (6)0.060 (2)
H4A0.47890.77930.71480.090*
H4B0.61640.80710.71310.090*
H4C0.56420.73620.79680.090*
C50.8030 (5)0.2889 (9)0.5620 (4)0.0373 (13)
C60.8255 (8)0.3238 (13)0.4121 (5)0.059 (2)
H6A0.77720.43610.41340.089*
H6B0.80380.25390.36050.089*
H6C0.90770.35980.41380.089*
C70.7887 (7)0.0018 (11)0.4715 (5)0.0501 (17)
H7A0.80450.06200.52690.060*
C80.6609 (11)0.0364 (16)0.4406 (10)0.102 (4)
H8A0.61020.00900.48220.153*
H8B0.64940.17100.43250.153*
H8C0.64180.02830.38720.153*
C90.8748 (12)0.0792 (14)0.4117 (7)0.097 (4)
H9A0.95050.01740.42220.145*
H9B0.84420.05790.35340.145*
H9C0.88410.21360.42160.145*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0481 (4)0.0382 (4)0.0266 (3)0.0000.0163 (2)0.000
S10.0883 (13)0.0388 (9)0.0311 (8)0.0034 (9)0.0284 (8)0.0010 (7)
S20.0678 (11)0.0352 (9)0.0400 (9)0.0041 (8)0.0169 (8)0.0007 (7)
N10.053 (3)0.040 (3)0.029 (3)0.000 (2)0.017 (2)0.001 (2)
C10.041 (3)0.051 (4)0.038 (3)0.004 (3)0.010 (3)0.004 (3)
C20.053 (4)0.076 (6)0.051 (4)0.014 (4)0.015 (3)0.001 (4)
C30.059 (5)0.110 (8)0.041 (4)0.007 (5)0.003 (4)0.000 (5)
C40.064 (5)0.052 (5)0.064 (5)0.009 (4)0.005 (4)0.004 (4)
C50.046 (3)0.038 (3)0.030 (3)0.004 (3)0.015 (2)0.005 (3)
C60.087 (5)0.060 (5)0.033 (3)0.007 (4)0.020 (4)0.006 (3)
C70.080 (5)0.037 (4)0.035 (3)0.001 (4)0.014 (3)0.003 (3)
C80.095 (8)0.071 (7)0.134 (12)0.026 (6)0.018 (8)0.007 (7)
C90.159 (12)0.064 (7)0.075 (7)0.013 (6)0.062 (7)0.014 (5)
Geometric parameters (Å, º) top
Sn1—C1i2.233 (7)C3—H3B0.96
Sn1—C12.233 (7)C3—H3C0.96
Sn1—S12.5444 (18)C4—H4A0.96
Sn1—S1i2.5444 (18)C4—H4B0.96
Sn1—S2i2.9911 (17)C4—H4C0.96
Sn1—S22.9911 (17)C6—H6A0.96
S1—C51.739 (6)C6—H6B0.96
S2—C51.669 (7)C6—H6C0.96
N1—C51.338 (8)C7—C81.506 (13)
N1—C61.453 (9)C7—C91.520 (12)
N1—C71.457 (10)C7—H7A0.98
C1—C31.500 (10)C8—H8A0.96
C1—C21.533 (10)C8—H8B0.96
C1—C41.532 (11)C8—H8C0.96
C2—H2A0.96C9—H9A0.96
C2—H2B0.96C9—H9B0.96
C2—H2C0.96C9—H9C0.96
C3—H3A0.96
C1i—Sn1—C1142.5 (4)H3A—C3—H3C109.5
C1i—Sn1—S1107.74 (18)H3B—C3—H3C109.5
C1—Sn1—S1100.7 (2)C1—C4—H4A109.5
C1i—Sn1—S1i100.7 (2)C1—C4—H4B109.5
C1—Sn1—S1i107.74 (19)H4A—C4—H4B109.5
S1—Sn1—S1i80.64 (8)C1—C4—H4C109.5
S1—Sn1—S263.73 (6)H4A—C4—H4C109.5
S1—Sn1—S2i143.31 (6)H4B—C4—H4C109.5
C1—Sn1—S288.14 (17)N1—C5—S2122.8 (5)
C1i—Sn1—S2i88.14 (17)N1—C5—S1117.5 (5)
S1i—Sn1—S2143.31 (6)S2—C5—S1119.7 (4)
S2i—Sn1—S2152.75 (6)N1—C6—H6A109.5
C1—Sn1—S2i83.17 (17)N1—C6—H6B109.5
C1i—Sn1—S283.17 (17)H6A—C6—H6B109.5
S1i—Sn1—S2i63.73 (6)N1—C6—H6C109.5
C5—S1—Sn194.8 (2)H6A—C6—H6C109.5
C5—N1—C6118.6 (6)H6B—C6—H6C109.5
C5—N1—C7123.4 (5)N1—C7—C8110.2 (7)
C6—N1—C7117.9 (6)N1—C7—C9111.7 (7)
C3—C1—C2108.9 (7)C8—C7—C9112.4 (9)
C3—C1—C4110.8 (7)N1—C7—H7A107.4
C2—C1—C4110.0 (6)C8—C7—H7A107.4
C3—C1—Sn1112.5 (5)C9—C7—H7A107.4
C2—C1—Sn1106.3 (5)C7—C8—H8A109.5
C4—C1—Sn1108.3 (5)C7—C8—H8B109.5
C1—C2—H2A109.5H8A—C8—H8B109.5
C1—C2—H2B109.5C7—C8—H8C109.5
H2A—C2—H2B109.5H8A—C8—H8C109.5
C1—C2—H2C109.5H8B—C8—H8C109.5
H2A—C2—H2C109.5C7—C9—H9A109.5
H2B—C2—H2C109.5C7—C9—H9B109.5
C1—C3—H3A109.5H9A—C9—H9B109.5
C1—C3—H3B109.5C7—C9—H9C109.5
H3A—C3—H3B109.5H9A—C9—H9C109.5
C1—C3—H3C109.5H9B—C9—H9C109.5
C1i—Sn1—S1—C576.5 (3)S1i—Sn1—C1—C4117.8 (5)
C1—Sn1—S1—C578.8 (3)C6—N1—C5—S22.8 (9)
S1i—Sn1—S1—C5174.8 (2)C7—N1—C5—S2179.6 (5)
C1i—Sn1—C1—C3103.1 (6)C6—N1—C5—S1175.8 (5)
S1—Sn1—C1—C335.9 (6)C7—N1—C5—S11.0 (8)
S1i—Sn1—C1—C3119.4 (6)Sn1—S1—C5—N1171.6 (5)
C1i—Sn1—C1—C2137.8 (5)Sn1—S1—C5—S27.0 (4)
S1—Sn1—C1—C283.1 (5)C5—N1—C7—C895.0 (9)
S1i—Sn1—C1—C20.3 (5)C6—N1—C7—C881.9 (9)
C1i—Sn1—C1—C419.7 (4)C5—N1—C7—C9139.4 (8)
S1—Sn1—C1—C4158.7 (5)C6—N1—C7—C943.8 (10)
Symmetry code: (i) x+3/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C5H10NS2)2]
Mr529.43
Crystal system, space groupMonoclinic, P2/n
Temperature (K)293
a, b, c (Å)11.2934 (11), 7.0175 (7), 15.6894 (15)
β (°) 95.016 (1)
V3)1238.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.37
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.610, 0.875
No. of measured, independent and
observed [I > 2σ(I)] reflections
7346, 2838, 2199
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.186, 1.09
No. of reflections2838
No. of parameters121
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.76, 1.58

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—C12.233 (7)Sn1—S22.9911 (17)
Sn1—S12.5444 (18)
C1i—Sn1—C1142.5 (4)
Symmetry code: (i) x+3/2, y, z+3/2.
 

Acknowledgements

The authors thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKim, K., Ibers, J. A., Jung, O.-S. & Sohn, Y. S. (1987). Acta Cryst. C43, 2317–2319.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W., Chen, W., Kumar Das, V. G. & Mak, T. C. W. (1987). J. Organomet. Chem. 334, 295–305.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds