organic compounds
2-Amino-5-bromopyridinium trifluoroacetate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C5H6BrN2+·C2F3O2−, the F atoms of the anion are disordered over two sets of sites, with occupancies of 0.59 (2):0.41 (2). In the the anions and cations are linked into a two-dimensional network parallel to (100) by N—H⋯O and C—H⋯O hydrogen bonds. Within this network, the N—H⋯O hydrogen bonds generate R22(8) ring motifs.
Related literature
For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810008184/ci5042sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008184/ci5042Isup2.hkl
To a hot methanol solution (20 ml) of 2-amino-5-bromopyridine (44 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.
Atoms H1N1, H1N2 and H2N2 were located in a difference Fourier map and refined; the N–H distances of the NH2 group were restrained to be equal. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The F atoms of the anion are disordered over two positions with occupancies of 0.59 (2):0.41 (2). The C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6BrN2+·C2F3O2− | F(000) = 560 |
Mr = 287.05 | Dx = 1.871 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 1994 reflections |
a = 17.5852 (13) Å | θ = 2.9–22.5° |
b = 11.3010 (9) Å | µ = 4.06 mm−1 |
c = 5.1264 (4) Å | T = 296 K |
V = 1018.77 (14) Å3 | Plate, colourless |
Z = 4 | 0.73 × 0.41 × 0.09 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2899 independent reflections |
Radiation source: fine-focus sealed tube | 1547 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
ϕ and ω scans | θmax = 30.1°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −24→24 |
Tmin = 0.156, Tmax = 0.709 | k = −14→15 |
8343 measured reflections | l = −7→7 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | w = 1/[σ2(Fo2) + (0.0247P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.93 | (Δ/σ)max = 0.001 |
2899 reflections | Δρmax = 0.46 e Å−3 |
176 parameters | Δρmin = −0.28 e Å−3 |
56 restraints | Absolute structure: Flack (1983), 1254 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.024 (12) |
C5H6BrN2+·C2F3O2− | V = 1018.77 (14) Å3 |
Mr = 287.05 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 17.5852 (13) Å | µ = 4.06 mm−1 |
b = 11.3010 (9) Å | T = 296 K |
c = 5.1264 (4) Å | 0.73 × 0.41 × 0.09 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 2899 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1547 reflections with I > 2σ(I) |
Tmin = 0.156, Tmax = 0.709 | Rint = 0.056 |
8343 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.099 | Δρmax = 0.46 e Å−3 |
S = 0.93 | Δρmin = −0.28 e Å−3 |
2899 reflections | Absolute structure: Flack (1983), 1254 Friedel pairs |
176 parameters | Absolute structure parameter: 0.024 (12) |
56 restraints |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Br1 | 0.93625 (2) | 0.38997 (4) | 0.26064 (12) | 0.0770 (2) | |
N1 | 0.80785 (16) | 0.5888 (2) | 0.7575 (9) | 0.0462 (6) | |
N2 | 0.7800 (2) | 0.7862 (3) | 0.8112 (8) | 0.0631 (11) | |
C1 | 0.8432 (2) | 0.4973 (3) | 0.6357 (8) | 0.0489 (8) | |
H1A | 0.8355 | 0.4204 | 0.6947 | 0.059* | |
C2 | 0.8889 (2) | 0.5166 (4) | 0.4322 (8) | 0.0540 (9) | |
C3 | 0.9016 (2) | 0.6353 (4) | 0.3492 (8) | 0.0585 (11) | |
H3A | 0.9342 | 0.6507 | 0.2106 | 0.070* | |
C4 | 0.8661 (2) | 0.7253 (4) | 0.4722 (8) | 0.0563 (10) | |
H4A | 0.8743 | 0.8029 | 0.4183 | 0.068* | |
C5 | 0.81681 (19) | 0.7018 (3) | 0.6821 (7) | 0.0474 (9) | |
O1 | 0.70895 (14) | 0.5277 (2) | 0.1425 (6) | 0.0589 (7) | |
O2 | 0.67948 (17) | 0.7148 (2) | 0.2175 (8) | 0.0751 (9) | |
F1A | 0.6204 (5) | 0.5331 (17) | 0.6225 (16) | 0.120 (4) | 0.59 (2) |
F2A | 0.5460 (5) | 0.6483 (7) | 0.419 (3) | 0.104 (3) | 0.59 (2) |
F3A | 0.5673 (5) | 0.4758 (8) | 0.273 (3) | 0.095 (3) | 0.59 (2) |
F1B | 0.5407 (6) | 0.6290 (16) | 0.294 (4) | 0.115 (5) | 0.41 (2) |
F2B | 0.5819 (10) | 0.4561 (7) | 0.392 (4) | 0.105 (5) | 0.41 (2) |
F3B | 0.6028 (10) | 0.6030 (19) | 0.6312 (19) | 0.113 (5) | 0.41 (2) |
C6 | 0.5992 (2) | 0.5688 (3) | 0.3866 (8) | 0.0636 (11) | |
C7 | 0.66887 (19) | 0.6091 (3) | 0.2336 (9) | 0.0510 (9) | |
H1N1 | 0.7730 (19) | 0.576 (3) | 0.891 (7) | 0.041 (9)* | |
H1N2 | 0.785 (2) | 0.856 (3) | 0.767 (11) | 0.060 (11)* | |
H2N2 | 0.748 (2) | 0.773 (4) | 0.927 (7) | 0.067 (14)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0861 (3) | 0.0606 (3) | 0.0842 (3) | 0.0050 (2) | 0.0152 (3) | −0.0136 (3) |
N1 | 0.0546 (15) | 0.0281 (14) | 0.0561 (15) | −0.0047 (11) | 0.002 (2) | −0.004 (2) |
N2 | 0.085 (2) | 0.0291 (17) | 0.075 (3) | 0.0045 (18) | 0.014 (2) | 0.0079 (18) |
C1 | 0.058 (2) | 0.0280 (18) | 0.061 (2) | −0.0045 (16) | −0.0053 (18) | −0.0018 (17) |
C2 | 0.059 (2) | 0.040 (2) | 0.063 (2) | 0.0022 (17) | −0.0031 (18) | −0.0071 (18) |
C3 | 0.061 (2) | 0.054 (3) | 0.061 (3) | −0.007 (2) | 0.0016 (18) | 0.0057 (19) |
C4 | 0.067 (2) | 0.037 (2) | 0.064 (2) | −0.0068 (19) | −0.004 (2) | 0.013 (2) |
C5 | 0.0519 (18) | 0.0322 (19) | 0.058 (2) | −0.0045 (16) | −0.0059 (16) | 0.0088 (16) |
O1 | 0.0679 (15) | 0.0319 (14) | 0.0768 (16) | 0.0077 (12) | 0.0135 (14) | 0.0109 (13) |
O2 | 0.0987 (19) | 0.0303 (14) | 0.096 (3) | 0.0012 (13) | 0.0185 (18) | 0.0044 (18) |
F1A | 0.115 (5) | 0.166 (9) | 0.078 (4) | −0.013 (5) | 0.011 (3) | 0.046 (5) |
F2A | 0.093 (4) | 0.080 (4) | 0.139 (8) | 0.018 (3) | 0.040 (4) | −0.019 (4) |
F3A | 0.083 (3) | 0.082 (4) | 0.119 (6) | −0.036 (3) | 0.008 (4) | −0.011 (5) |
F1B | 0.069 (5) | 0.143 (8) | 0.132 (9) | 0.030 (5) | 0.009 (6) | −0.004 (7) |
F2B | 0.119 (7) | 0.062 (6) | 0.133 (9) | −0.011 (5) | 0.047 (7) | −0.001 (5) |
F3B | 0.130 (8) | 0.121 (9) | 0.088 (6) | −0.024 (6) | 0.036 (5) | −0.009 (6) |
C6 | 0.065 (3) | 0.045 (2) | 0.080 (3) | 0.002 (2) | 0.005 (2) | −0.007 (2) |
C7 | 0.062 (2) | 0.037 (2) | 0.054 (2) | 0.0022 (16) | −0.005 (2) | 0.001 (2) |
Br1—C2 | 1.875 (4) | C4—C5 | 1.407 (5) |
N1—C5 | 1.344 (4) | C4—H4A | 0.93 |
N1—C1 | 1.358 (5) | O1—C7 | 1.250 (4) |
N1—H1N1 | 0.93 (4) | O2—C7 | 1.212 (4) |
N2—C5 | 1.330 (5) | F1A—C6 | 1.329 (6) |
N2—H1N2 | 0.82 (3) | F2A—C6 | 1.307 (6) |
N2—H2N2 | 0.84 (3) | F3A—C6 | 1.327 (6) |
C1—C2 | 1.334 (5) | F1B—C6 | 1.321 (7) |
C1—H1A | 0.93 | F2B—C6 | 1.310 (7) |
C2—C3 | 1.425 (6) | F3B—C6 | 1.314 (7) |
C3—C4 | 1.349 (6) | C6—C7 | 1.524 (6) |
C3—H3A | 0.93 | ||
C5—N1—C1 | 122.5 (4) | N2—C5—N1 | 118.8 (3) |
C5—N1—H1N1 | 116 (2) | N2—C5—C4 | 123.0 (4) |
C1—N1—H1N1 | 121 (2) | N1—C5—C4 | 118.1 (4) |
C5—N2—H1N2 | 120 (4) | F2B—C6—F3B | 106.2 (8) |
C5—N2—H2N2 | 124 (3) | F2B—C6—F1B | 109.0 (10) |
H1N2—N2—H2N2 | 116 (5) | F3B—C6—F1B | 103.2 (9) |
C2—C1—N1 | 120.7 (4) | F2A—C6—F3A | 107.3 (7) |
C2—C1—H1A | 119.6 | F2A—C6—F1A | 107.2 (6) |
N1—C1—H1A | 119.6 | F3A—C6—F1A | 106.1 (6) |
C1—C2—C3 | 118.8 (4) | F2A—C6—C7 | 115.8 (6) |
C1—C2—Br1 | 120.6 (3) | F2B—C6—C7 | 119.1 (7) |
C3—C2—Br1 | 120.6 (3) | F3B—C6—C7 | 111.4 (7) |
C4—C3—C2 | 119.8 (4) | F1B—C6—C7 | 106.8 (8) |
C4—C3—H3A | 120.1 | F3A—C6—C7 | 110.4 (6) |
C2—C3—H3A | 120.1 | F1A—C6—C7 | 109.5 (5) |
C3—C4—C5 | 120.0 (4) | O2—C7—O1 | 127.8 (4) |
C3—C4—H4A | 120.0 | O2—C7—C6 | 116.9 (4) |
C5—C4—H4A | 120.0 | O1—C7—C6 | 115.2 (3) |
C5—N1—C1—C2 | −0.2 (6) | F2B—C6—C7—O2 | 174.5 (14) |
N1—C1—C2—C3 | 1.7 (5) | F3B—C6—C7—O2 | −61.4 (13) |
N1—C1—C2—Br1 | −178.9 (3) | F1B—C6—C7—O2 | 50.6 (12) |
C1—C2—C3—C4 | −1.6 (6) | F3A—C6—C7—O2 | 142.0 (8) |
Br1—C2—C3—C4 | 179.0 (3) | F1A—C6—C7—O2 | −101.5 (10) |
C2—C3—C4—C5 | 0.1 (6) | F2A—C6—C7—O1 | −161.2 (9) |
C1—N1—C5—N2 | 179.8 (3) | F2B—C6—C7—O1 | −6.5 (14) |
C1—N1—C5—C4 | −1.4 (6) | F3B—C6—C7—O1 | 117.6 (12) |
C3—C4—C5—N2 | −179.8 (4) | F1B—C6—C7—O1 | −130.4 (12) |
C3—C4—C5—N1 | 1.4 (5) | F3A—C6—C7—O1 | −39.0 (8) |
F2A—C6—C7—O2 | 19.8 (10) | F1A—C6—C7—O1 | 77.5 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1i | 0.93 (3) | 1.80 (3) | 2.720 (5) | 171 (3) |
N2—H1N2···O1ii | 0.83 (4) | 2.05 (4) | 2.870 (4) | 176 (5) |
N2—H2N2···O2i | 0.83 (4) | 2.03 (4) | 2.849 (5) | 170 (4) |
C1—H1A···O2iii | 0.93 | 2.34 | 3.245 (4) | 164 |
Symmetry codes: (i) x, y, z+1; (ii) −x+3/2, y+1/2, z+1/2; (iii) −x+3/2, y−1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6BrN2+·C2F3O2− |
Mr | 287.05 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 17.5852 (13), 11.3010 (9), 5.1264 (4) |
V (Å3) | 1018.77 (14) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 4.06 |
Crystal size (mm) | 0.73 × 0.41 × 0.09 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.156, 0.709 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8343, 2899, 1547 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.705 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.099, 0.93 |
No. of reflections | 2899 |
No. of parameters | 176 |
No. of restraints | 56 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.46, −0.28 |
Absolute structure | Flack (1983), 1254 Friedel pairs |
Absolute structure parameter | 0.024 (12) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1i | 0.93 (3) | 1.80 (3) | 2.720 (5) | 171 (3) |
N2—H1N2···O1ii | 0.83 (4) | 2.05 (4) | 2.870 (4) | 176 (5) |
N2—H2N2···O2i | 0.83 (4) | 2.03 (4) | 2.849 (5) | 170 (4) |
C1—H1A···O2iii | 0.93 | 2.34 | 3.245 (4) | 164 |
Symmetry codes: (i) x, y, z+1; (ii) −x+3/2, y+1/2, z+1/2; (iii) −x+3/2, y−1/2, z+1/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181. Web of Science CSD CrossRef CAS Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press. Google Scholar
Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer. Google Scholar
Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press. Google Scholar
Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley. Google Scholar
Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151. CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In order to study hydrogen bonding interactions, the title salt was prepared and its crystal structure is reported here.
The asymmetric unit of (I) (Fig. 1) contains one 2-amino-5-bromopyridinium cation and one trifluoroacetate anion, indicating that proton transfer has occurred during the co-crystallisation. The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.016 (4) Å for atom C1; As a result of protonation, the C1—N1—C5 angle is widened to 122.5 (4)°. The bond lengths and angles are normal (Allen et al., 1987).
In the crystal packing (Fig. 2), the cations and anions are linked via N—H···O hydrogen bonds to form R22(8) ring motifs (Bernstein et al., 1995). The ionic units are linked into a two-dimensional network parallel to the (100) by N—H···O and C—H···O hydrogen bonds (Table 1).