organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridinium tri­fluoro­acetate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 February 2010; accepted 3 March 2010; online 6 March 2010)

In the title compound, C5H6BrN2+·C2F3O2, the F atoms of the anion are disordered over two sets of sites, with occupancies of 0.59 (2):0.41 (2). In the crystal structure, the anions and cations are linked into a two-dimensional network parallel to (100) by N—H⋯O and C—H⋯O hydrogen bonds. Within this network, the N—H⋯O hydrogen bonds generate R22(8) ring motifs.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For related structures, see: Goubitz et al. (2001[Goubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176-181.]); Vaday & Foxman (1999[Vaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145-151.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C2F3O2

  • Mr = 287.05

  • Orthorhombic, P n a 21

  • a = 17.5852 (13) Å

  • b = 11.3010 (9) Å

  • c = 5.1264 (4) Å

  • V = 1018.77 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.06 mm−1

  • T = 296 K

  • 0.73 × 0.41 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.156, Tmax = 0.709

  • 8343 measured reflections

  • 2899 independent reflections

  • 1547 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.099

  • S = 0.93

  • 2899 reflections

  • 176 parameters

  • 56 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1254 Friedel pairs

  • Flack parameter: 0.024 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.93 (3) 1.80 (3) 2.720 (5) 171 (3)
N2—H1N2⋯O1ii 0.83 (4) 2.05 (4) 2.870 (4) 176 (5)
N2—H2N2⋯O2i 0.83 (4) 2.03 (4) 2.849 (5) 170 (4)
C1—H1A⋯O2iii 0.93 2.34 3.245 (4) 164
Symmetry codes: (i) x, y, z+1; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-bromopyridine (Goubitz et al., 2001) and 2-amino-5-bromopyridinium propynoate (Vaday & Foxman, 1999) have been reported. In order to study hydrogen bonding interactions, the title salt was prepared and its crystal structure is reported here.

The asymmetric unit of (I) (Fig. 1) contains one 2-amino-5-bromopyridinium cation and one trifluoroacetate anion, indicating that proton transfer has occurred during the co-crystallisation. The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.016 (4) Å for atom C1; As a result of protonation, the C1—N1—C5 angle is widened to 122.5 (4)°. The bond lengths and angles are normal (Allen et al., 1987).

In the crystal packing (Fig. 2), the cations and anions are linked via N—H···O hydrogen bonds to form R22(8) ring motifs (Bernstein et al., 1995). The ionic units are linked into a two-dimensional network parallel to the (100) by N—H···O and C—H···O hydrogen bonds (Table 1).

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For related structures, see: Goubitz et al. (2001); Vaday & Foxman (1999). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

To a hot methanol solution (20 ml) of 2-amino-5-bromopyridine (44 mg, Aldrich) was added a few drops of trifluoroacetic acid. The solution was warmed over a water bath for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H1N2 and H2N2 were located in a difference Fourier map and refined; the N–H distances of the NH2 group were restrained to be equal. The remaining H atoms were positioned geometrically [C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The F atoms of the anion are disordered over two positions with occupancies of 0.59 (2):0.41 (2). The C—F distances were restrained to be equal and the Uij components of F atoms were restrained to an approximate isotropic behaviour.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks.
2-Amino-5-bromopyridinium trifluoroacetate top
Crystal data top
C5H6BrN2+·C2F3O2F(000) = 560
Mr = 287.05Dx = 1.871 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1994 reflections
a = 17.5852 (13) Åθ = 2.9–22.5°
b = 11.3010 (9) ŵ = 4.06 mm1
c = 5.1264 (4) ÅT = 296 K
V = 1018.77 (14) Å3Plate, colourless
Z = 40.73 × 0.41 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2899 independent reflections
Radiation source: fine-focus sealed tube1547 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2424
Tmin = 0.156, Tmax = 0.709k = 1415
8343 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0247P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
2899 reflectionsΔρmax = 0.46 e Å3
176 parametersΔρmin = 0.28 e Å3
56 restraintsAbsolute structure: Flack (1983), 1254 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.024 (12)
Crystal data top
C5H6BrN2+·C2F3O2V = 1018.77 (14) Å3
Mr = 287.05Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 17.5852 (13) ŵ = 4.06 mm1
b = 11.3010 (9) ÅT = 296 K
c = 5.1264 (4) Å0.73 × 0.41 × 0.09 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2899 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
1547 reflections with I > 2σ(I)
Tmin = 0.156, Tmax = 0.709Rint = 0.056
8343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099Δρmax = 0.46 e Å3
S = 0.93Δρmin = 0.28 e Å3
2899 reflectionsAbsolute structure: Flack (1983), 1254 Friedel pairs
176 parametersAbsolute structure parameter: 0.024 (12)
56 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.93625 (2)0.38997 (4)0.26064 (12)0.0770 (2)
N10.80785 (16)0.5888 (2)0.7575 (9)0.0462 (6)
N20.7800 (2)0.7862 (3)0.8112 (8)0.0631 (11)
C10.8432 (2)0.4973 (3)0.6357 (8)0.0489 (8)
H1A0.83550.42040.69470.059*
C20.8889 (2)0.5166 (4)0.4322 (8)0.0540 (9)
C30.9016 (2)0.6353 (4)0.3492 (8)0.0585 (11)
H3A0.93420.65070.21060.070*
C40.8661 (2)0.7253 (4)0.4722 (8)0.0563 (10)
H4A0.87430.80290.41830.068*
C50.81681 (19)0.7018 (3)0.6821 (7)0.0474 (9)
O10.70895 (14)0.5277 (2)0.1425 (6)0.0589 (7)
O20.67948 (17)0.7148 (2)0.2175 (8)0.0751 (9)
F1A0.6204 (5)0.5331 (17)0.6225 (16)0.120 (4)0.59 (2)
F2A0.5460 (5)0.6483 (7)0.419 (3)0.104 (3)0.59 (2)
F3A0.5673 (5)0.4758 (8)0.273 (3)0.095 (3)0.59 (2)
F1B0.5407 (6)0.6290 (16)0.294 (4)0.115 (5)0.41 (2)
F2B0.5819 (10)0.4561 (7)0.392 (4)0.105 (5)0.41 (2)
F3B0.6028 (10)0.6030 (19)0.6312 (19)0.113 (5)0.41 (2)
C60.5992 (2)0.5688 (3)0.3866 (8)0.0636 (11)
C70.66887 (19)0.6091 (3)0.2336 (9)0.0510 (9)
H1N10.7730 (19)0.576 (3)0.891 (7)0.041 (9)*
H1N20.785 (2)0.856 (3)0.767 (11)0.060 (11)*
H2N20.748 (2)0.773 (4)0.927 (7)0.067 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0861 (3)0.0606 (3)0.0842 (3)0.0050 (2)0.0152 (3)0.0136 (3)
N10.0546 (15)0.0281 (14)0.0561 (15)0.0047 (11)0.002 (2)0.004 (2)
N20.085 (2)0.0291 (17)0.075 (3)0.0045 (18)0.014 (2)0.0079 (18)
C10.058 (2)0.0280 (18)0.061 (2)0.0045 (16)0.0053 (18)0.0018 (17)
C20.059 (2)0.040 (2)0.063 (2)0.0022 (17)0.0031 (18)0.0071 (18)
C30.061 (2)0.054 (3)0.061 (3)0.007 (2)0.0016 (18)0.0057 (19)
C40.067 (2)0.037 (2)0.064 (2)0.0068 (19)0.004 (2)0.013 (2)
C50.0519 (18)0.0322 (19)0.058 (2)0.0045 (16)0.0059 (16)0.0088 (16)
O10.0679 (15)0.0319 (14)0.0768 (16)0.0077 (12)0.0135 (14)0.0109 (13)
O20.0987 (19)0.0303 (14)0.096 (3)0.0012 (13)0.0185 (18)0.0044 (18)
F1A0.115 (5)0.166 (9)0.078 (4)0.013 (5)0.011 (3)0.046 (5)
F2A0.093 (4)0.080 (4)0.139 (8)0.018 (3)0.040 (4)0.019 (4)
F3A0.083 (3)0.082 (4)0.119 (6)0.036 (3)0.008 (4)0.011 (5)
F1B0.069 (5)0.143 (8)0.132 (9)0.030 (5)0.009 (6)0.004 (7)
F2B0.119 (7)0.062 (6)0.133 (9)0.011 (5)0.047 (7)0.001 (5)
F3B0.130 (8)0.121 (9)0.088 (6)0.024 (6)0.036 (5)0.009 (6)
C60.065 (3)0.045 (2)0.080 (3)0.002 (2)0.005 (2)0.007 (2)
C70.062 (2)0.037 (2)0.054 (2)0.0022 (16)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C21.875 (4)C4—C51.407 (5)
N1—C51.344 (4)C4—H4A0.93
N1—C11.358 (5)O1—C71.250 (4)
N1—H1N10.93 (4)O2—C71.212 (4)
N2—C51.330 (5)F1A—C61.329 (6)
N2—H1N20.82 (3)F2A—C61.307 (6)
N2—H2N20.84 (3)F3A—C61.327 (6)
C1—C21.334 (5)F1B—C61.321 (7)
C1—H1A0.93F2B—C61.310 (7)
C2—C31.425 (6)F3B—C61.314 (7)
C3—C41.349 (6)C6—C71.524 (6)
C3—H3A0.93
C5—N1—C1122.5 (4)N2—C5—N1118.8 (3)
C5—N1—H1N1116 (2)N2—C5—C4123.0 (4)
C1—N1—H1N1121 (2)N1—C5—C4118.1 (4)
C5—N2—H1N2120 (4)F2B—C6—F3B106.2 (8)
C5—N2—H2N2124 (3)F2B—C6—F1B109.0 (10)
H1N2—N2—H2N2116 (5)F3B—C6—F1B103.2 (9)
C2—C1—N1120.7 (4)F2A—C6—F3A107.3 (7)
C2—C1—H1A119.6F2A—C6—F1A107.2 (6)
N1—C1—H1A119.6F3A—C6—F1A106.1 (6)
C1—C2—C3118.8 (4)F2A—C6—C7115.8 (6)
C1—C2—Br1120.6 (3)F2B—C6—C7119.1 (7)
C3—C2—Br1120.6 (3)F3B—C6—C7111.4 (7)
C4—C3—C2119.8 (4)F1B—C6—C7106.8 (8)
C4—C3—H3A120.1F3A—C6—C7110.4 (6)
C2—C3—H3A120.1F1A—C6—C7109.5 (5)
C3—C4—C5120.0 (4)O2—C7—O1127.8 (4)
C3—C4—H4A120.0O2—C7—C6116.9 (4)
C5—C4—H4A120.0O1—C7—C6115.2 (3)
C5—N1—C1—C20.2 (6)F2B—C6—C7—O2174.5 (14)
N1—C1—C2—C31.7 (5)F3B—C6—C7—O261.4 (13)
N1—C1—C2—Br1178.9 (3)F1B—C6—C7—O250.6 (12)
C1—C2—C3—C41.6 (6)F3A—C6—C7—O2142.0 (8)
Br1—C2—C3—C4179.0 (3)F1A—C6—C7—O2101.5 (10)
C2—C3—C4—C50.1 (6)F2A—C6—C7—O1161.2 (9)
C1—N1—C5—N2179.8 (3)F2B—C6—C7—O16.5 (14)
C1—N1—C5—C41.4 (6)F3B—C6—C7—O1117.6 (12)
C3—C4—C5—N2179.8 (4)F1B—C6—C7—O1130.4 (12)
C3—C4—C5—N11.4 (5)F3A—C6—C7—O139.0 (8)
F2A—C6—C7—O219.8 (10)F1A—C6—C7—O177.5 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.93 (3)1.80 (3)2.720 (5)171 (3)
N2—H1N2···O1ii0.83 (4)2.05 (4)2.870 (4)176 (5)
N2—H2N2···O2i0.83 (4)2.03 (4)2.849 (5)170 (4)
C1—H1A···O2iii0.932.343.245 (4)164
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C2F3O2
Mr287.05
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)17.5852 (13), 11.3010 (9), 5.1264 (4)
V3)1018.77 (14)
Z4
Radiation typeMo Kα
µ (mm1)4.06
Crystal size (mm)0.73 × 0.41 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.156, 0.709
No. of measured, independent and
observed [I > 2σ(I)] reflections
8343, 2899, 1547
Rint0.056
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.099, 0.93
No. of reflections2899
No. of parameters176
No. of restraints56
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.28
Absolute structureFlack (1983), 1254 Friedel pairs
Absolute structure parameter0.024 (12)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.93 (3)1.80 (3)2.720 (5)171 (3)
N2—H1N2···O1ii0.83 (4)2.05 (4)2.870 (4)176 (5)
N2—H2N2···O2i0.83 (4)2.03 (4)2.849 (5)170 (4)
C1—H1A···O2iii0.932.343.245 (4)164
Symmetry codes: (i) x, y, z+1; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoubitz, K., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 176–181.  Web of Science CSD CrossRef CAS Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaday, S. & Foxman, M. B. (1999). Cryst. Eng. 2, 145–151.  CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds