organic compounds
3-(2,4-Dichlorophenyl)-5-methyl-1,2,4-oxadiazole
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSyngene International Ltd, Biocon Park, Plot Nos 2 & 3, Bommasandra 4th Phase, Jigani Link Rd, Bangalore 560100, India, cDepartment of Chemistry, Organic Chemistry Division, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and dDepartment of Printing, Manipal Institute of Technology, Manipal 576 104, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C9H6Cl2N2O, the dihedral angle between the oxadiazole and benzene rings is 1.7 (2)°. In the crystal, the molecules are linked into chains along the b axis by short intermolecular Cl⋯O contacts [3.019 (3) Å].
Related literature
For general background and the biological activity of oxadiazole compounds, see: Andersen et al. (1994); Clitherow et al. (1996); Showell et al. (1991); Swain et al. (1991); Watjen et al. (1989). For a related structure, see: Wang et al. (2006). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536810007932/ci5045sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810007932/ci5045Isup2.hkl
The title compound was prepared by heating a solution of 2,4-dichloro-N'-hydroxy-benzamidine (1 g, 0.0042 mol) and acetyl chloride (0.38 g, 0.004 mol) in pyridine (30 ml) at 387 K for 1.5 h and the contents were concentrated under vacuum. Further purification was done by
The solid obtained was recrystallized using dichloromethane (yield: 1.0 g (76%); m.p. 371-372 K).H atoms were placed in calculated positions [C–H = 0.93–0.96 Å] and refined as riding with Uiso(H) = 1.2eq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C9H6Cl2N2O | F(000) = 464 |
Mr = 229.06 | Dx = 1.657 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3719 reflections |
a = 3.8252 (7) Å | θ = 2.6–31.1° |
b = 21.678 (4) Å | µ = 0.67 mm−1 |
c = 11.0833 (19) Å | T = 100 K |
β = 92.421 (4)° | Block, colourless |
V = 918.3 (3) Å3 | 0.28 × 0.17 × 0.11 mm |
Z = 4 |
Bruker SMART APEXII CCD area-detector diffractometer | 2076 independent reflections |
Radiation source: fine-focus sealed tube | 1709 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.048 |
ϕ and ω scans | θmax = 27.5°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −4→4 |
Tmin = 0.833, Tmax = 0.929 | k = −26→28 |
7920 measured reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0428P)2 + 4.0517P] where P = (Fo2 + 2Fc2)/3 |
2076 reflections | (Δ/σ)max = 0.001 |
128 parameters | Δρmax = 0.72 e Å−3 |
0 restraints | Δρmin = −0.56 e Å−3 |
C9H6Cl2N2O | V = 918.3 (3) Å3 |
Mr = 229.06 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 3.8252 (7) Å | µ = 0.67 mm−1 |
b = 21.678 (4) Å | T = 100 K |
c = 11.0833 (19) Å | 0.28 × 0.17 × 0.11 mm |
β = 92.421 (4)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2076 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1709 reflections with I > 2σ(I) |
Tmin = 0.833, Tmax = 0.929 | Rint = 0.048 |
7920 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.155 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.72 e Å−3 |
2076 reflections | Δρmin = −0.56 e Å−3 |
128 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.2530 (2) | 0.40084 (4) | 0.92173 (8) | 0.0163 (2) | |
Cl2 | 0.1238 (3) | 0.63730 (4) | 0.78985 (9) | 0.0185 (3) | |
O1 | −0.2054 (8) | 0.27327 (13) | 0.6574 (3) | 0.0220 (7) | |
N1 | −0.3467 (8) | 0.35961 (15) | 0.5636 (3) | 0.0158 (7) | |
N2 | −0.0709 (10) | 0.32171 (16) | 0.7322 (3) | 0.0194 (7) | |
C1 | −0.3637 (11) | 0.30045 (18) | 0.5605 (4) | 0.0173 (8) | |
C2 | −0.1651 (10) | 0.37119 (18) | 0.6715 (3) | 0.0140 (8) | |
C3 | −0.0869 (9) | 0.43519 (17) | 0.7088 (3) | 0.0124 (7) | |
C4 | 0.0928 (10) | 0.45392 (18) | 0.8165 (3) | 0.0137 (8) | |
C5 | 0.1523 (9) | 0.51553 (18) | 0.8418 (4) | 0.0136 (7) | |
H5A | 0.2684 | 0.5272 | 0.9136 | 0.016* | |
C6 | 0.0369 (10) | 0.56000 (17) | 0.7588 (3) | 0.0127 (7) | |
C7 | −0.1429 (10) | 0.54398 (18) | 0.6533 (4) | 0.0151 (8) | |
H7A | −0.2240 | 0.5740 | 0.5990 | 0.018* | |
C8 | −0.1993 (10) | 0.48214 (18) | 0.6303 (4) | 0.0153 (8) | |
H8A | −0.3186 | 0.4712 | 0.5586 | 0.018* | |
C9 | −0.5226 (12) | 0.2592 (2) | 0.4666 (4) | 0.0237 (9) | |
H9A | −0.6428 | 0.2835 | 0.4055 | 0.036* | |
H9B | −0.6856 | 0.2319 | 0.5028 | 0.036* | |
H9C | −0.3422 | 0.2354 | 0.4308 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0168 (5) | 0.0182 (5) | 0.0138 (5) | 0.0028 (3) | −0.0011 (3) | 0.0023 (4) |
Cl2 | 0.0197 (5) | 0.0140 (4) | 0.0219 (5) | −0.0024 (3) | 0.0025 (4) | −0.0017 (4) |
O1 | 0.0309 (17) | 0.0139 (14) | 0.0213 (15) | −0.0017 (12) | 0.0017 (12) | −0.0018 (12) |
N1 | 0.0130 (15) | 0.0175 (16) | 0.0172 (17) | 0.0000 (12) | 0.0018 (12) | −0.0022 (13) |
N2 | 0.0257 (19) | 0.0147 (16) | 0.0178 (18) | −0.0002 (14) | 0.0018 (14) | −0.0032 (13) |
C1 | 0.0148 (19) | 0.0194 (19) | 0.018 (2) | 0.0000 (15) | 0.0051 (15) | −0.0007 (15) |
C2 | 0.0103 (17) | 0.0185 (19) | 0.0138 (18) | 0.0022 (14) | 0.0081 (14) | 0.0000 (14) |
C3 | 0.0078 (17) | 0.0152 (18) | 0.0150 (18) | 0.0009 (13) | 0.0080 (14) | −0.0011 (14) |
C4 | 0.0126 (18) | 0.0171 (19) | 0.0119 (19) | 0.0043 (13) | 0.0054 (14) | 0.0016 (14) |
C5 | 0.0070 (16) | 0.0208 (19) | 0.0132 (18) | 0.0017 (14) | 0.0022 (13) | −0.0021 (15) |
C6 | 0.0106 (17) | 0.0134 (17) | 0.0144 (18) | −0.0008 (13) | 0.0033 (13) | −0.0027 (14) |
C7 | 0.0106 (18) | 0.0174 (19) | 0.0177 (19) | 0.0033 (14) | 0.0056 (14) | 0.0033 (15) |
C8 | 0.0114 (17) | 0.0181 (19) | 0.017 (2) | 0.0005 (14) | 0.0055 (14) | 0.0004 (15) |
C9 | 0.025 (2) | 0.018 (2) | 0.029 (2) | −0.0030 (16) | 0.0041 (18) | −0.0072 (17) |
Cl1—C4 | 1.732 (4) | C4—C5 | 1.382 (5) |
Cl2—C6 | 1.740 (4) | C5—C6 | 1.391 (5) |
O1—C1 | 1.346 (5) | C5—H5A | 0.93 |
O1—N2 | 1.421 (4) | C6—C7 | 1.376 (5) |
N1—C1 | 1.285 (5) | C7—C8 | 1.380 (6) |
N1—C2 | 1.381 (5) | C7—H7A | 0.93 |
N2—C2 | 1.308 (5) | C8—H8A | 0.93 |
C1—C9 | 1.483 (6) | C9—H9A | 0.96 |
C2—C3 | 1.475 (5) | C9—H9B | 0.96 |
C3—C8 | 1.396 (5) | C9—H9C | 0.96 |
C3—C4 | 1.411 (5) | ||
C1—O1—N2 | 106.4 (3) | C6—C5—H5A | 120.3 |
C1—N1—C2 | 103.2 (3) | C7—C6—C5 | 121.3 (4) |
C2—N2—O1 | 102.8 (3) | C7—C6—Cl2 | 119.7 (3) |
N1—C1—O1 | 113.3 (4) | C5—C6—Cl2 | 119.0 (3) |
N1—C1—C9 | 129.8 (4) | C6—C7—C8 | 118.1 (4) |
O1—C1—C9 | 116.9 (4) | C6—C7—H7A | 121.0 |
N2—C2—N1 | 114.4 (4) | C8—C7—H7A | 121.0 |
N2—C2—C3 | 125.4 (4) | C7—C8—C3 | 123.5 (4) |
N1—C2—C3 | 120.2 (3) | C7—C8—H8A | 118.3 |
C8—C3—C4 | 116.4 (3) | C3—C8—H8A | 118.3 |
C8—C3—C2 | 117.2 (3) | C1—C9—H9A | 109.5 |
C4—C3—C2 | 126.4 (3) | C1—C9—H9B | 109.5 |
C5—C4—C3 | 121.3 (3) | H9A—C9—H9B | 109.5 |
C5—C4—Cl1 | 117.1 (3) | C1—C9—H9C | 109.5 |
C3—C4—Cl1 | 121.6 (3) | H9A—C9—H9C | 109.5 |
C4—C5—C6 | 119.4 (3) | H9B—C9—H9C | 109.5 |
C4—C5—H5A | 120.3 | ||
C1—O1—N2—C2 | 0.1 (4) | C8—C3—C4—C5 | 0.0 (5) |
C2—N1—C1—O1 | −0.4 (5) | C2—C3—C4—C5 | 179.8 (3) |
C2—N1—C1—C9 | −179.1 (4) | C8—C3—C4—Cl1 | −179.1 (3) |
N2—O1—C1—N1 | 0.2 (5) | C2—C3—C4—Cl1 | 0.6 (5) |
N2—O1—C1—C9 | 179.1 (3) | C3—C4—C5—C6 | −0.8 (6) |
O1—N2—C2—N1 | −0.4 (4) | Cl1—C4—C5—C6 | 178.4 (3) |
O1—N2—C2—C3 | −179.3 (3) | C4—C5—C6—C7 | 1.6 (6) |
C1—N1—C2—N2 | 0.5 (5) | C4—C5—C6—Cl2 | −178.3 (3) |
C1—N1—C2—C3 | 179.5 (3) | C5—C6—C7—C8 | −1.5 (6) |
N2—C2—C3—C8 | 178.0 (4) | Cl2—C6—C7—C8 | 178.4 (3) |
N1—C2—C3—C8 | −0.8 (5) | C6—C7—C8—C3 | 0.7 (6) |
N2—C2—C3—C4 | −1.8 (6) | C4—C3—C8—C7 | 0.1 (6) |
N1—C2—C3—C4 | 179.4 (4) | C2—C3—C8—C7 | −179.7 (4) |
Experimental details
Crystal data | |
Chemical formula | C9H6Cl2N2O |
Mr | 229.06 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 3.8252 (7), 21.678 (4), 11.0833 (19) |
β (°) | 92.421 (4) |
V (Å3) | 918.3 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.67 |
Crystal size (mm) | 0.28 × 0.17 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.833, 0.929 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7920, 2076, 1709 |
Rint | 0.048 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.155, 1.20 |
No. of reflections | 2076 |
No. of parameters | 128 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.72, −0.56 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
HKF and MMR thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). AMI is grateful to Professor Sandeep Sancheti, Director, National Institute of Technology-Karnataka, India, for providing research facilities and encouragement.
References
Andersen, K. E., Jørgensen, A. S. & Bræstrup, C. (1994). Eur. J. Med. Chem. 29, 393-399. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clitherow, J. W., Beswick, P., Irving, W. J., Scopes, D. I. C., Barnes, J. C., Clapham, J., Brown, J. D., Evans, D. J. & Hayes, A. G. (1996). Bioorg. Med. Chem. Lett. 6, 833–838. CrossRef CAS Web of Science Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Showell, G. A., Gibbons, T. L., Kneen, C. O., MacLeod, A. M., Merchant, K., Saunders, J., Freedman, S. B., Patel, S. & Baker, R. (1991). J. Med. Chem. 34, 1086–1094. CSD CrossRef CAS PubMed Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Swain, C. J., Baker, R., Kneen, C., Moseley, J., Saunders, J., Seward, E. M., Stevenson, G., Beer, M., Stanton, J. & Watling, K. (1991). J. Med. Chem. 34, 140–151. CrossRef PubMed CAS Web of Science Google Scholar
Wang, H.-B., Liu, Z.-Q., Wang, H.-B. & Yan, X.-C. (2006). Acta Cryst. E62, o4715–o4716. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watjen, F., Baker, R., Engelstoff, M., Herbert, R., MacLeod, A., Knight, A., Merchant, K., Moseley, J., Saunders, J., Swain, C. J., Wang, E. & Springer, J. P. (1989). J. Med. Chem. 32, 282–2291. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocyclic compounds are important in recent years due to pharmacological activities. Nitrogen, oxygen containing five- and six-membered heterocyclic compounds have enormous significance in the field of medicinal chemistry. Oxadiazoles play a very vital role in the preparation of various biologically active drugs with anti-inflammatory (Andersen et al., 1994), anti-cancer (Showell et al., 1991), anti-HIV (Watjen et al., 1989), anti-diabetic and anti-microbial (Swain et al., 1991) properties. The results of biological studies showed that oxadiazole derivatives are molecules with maximum anti-inflammatory, analgesic and minimum ulcerogenic and lipid per-oxidation (Clitherow et al., 1996) properties.
Bond lengths and angles are normal (Wang et al., 2006). The mean plane of the oxadiazole ring (C1/C2/N1/N2/O1) is almost coplanar with the mean plane of the C3–C8 benzene ring (Fig. 1), with a dihedral angle of 1.7 (2)°.
The molecules are linked by Cl2···O1(-x, 1/2+y, 3/2-z) short contacts [3.019 (3) Å;] to form chains along the b axis (Fig.2).