metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(Piperidin-1-yl)ethyl­amine]di­thio­cyanato­zinc(II)

aDepartment of Chemistry, Huzhou University, Huzhou 313000, People's Republic of China
*Correspondence e-mail: chenyi_wang@163.com

(Received 25 February 2010; accepted 25 February 2010; online 3 March 2010)

In the mononuclear title compound, [Zn(NCS)2(C7H16N2)], the ZnII atom is four-coordinated by two N atoms of the chelating 2-(piperidin-1-yl)ethyl­amine ligand and two N atoms from two thio­cyanate ligands in a distorted tetra­hedral geometry. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯S hydrogen bonds, forming chains along the b axis.

Related literature

For related structures, see: Wang et al. (2009a[Wang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem. 39, 78-82.],b[Wang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem. 62, 2164-2171.]); Wang (2009[Wang, C.-Y. (2009). J. Coord. Chem. 62, 2860-2868.]). For bond-length and angle data, see: Cameron et al. (1998[Cameron, E. M., Louch, W. E., Cameron, T. S. & Knop, O. (1998). Z. Anorg. Allg. Chem. 624, 1629-1641.]); Hong (2007[Hong, Z. (2007). Acta Cryst. E63, m132-m134.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C7H16N2)]

  • Mr = 309.75

  • Monoclinic, P 21 /c

  • a = 9.561 (2) Å

  • b = 10.310 (2) Å

  • c = 14.398 (3) Å

  • β = 97.367 (3)°

  • V = 1407.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.712

  • 7615 measured reflections

  • 3029 independent reflections

  • 2196 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.04

  • 3029 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.90 2.65 3.523 (3) 165
N1—H1B⋯S2ii 0.90 2.71 3.509 (3) 148
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our investigations into novel urease inhibitors (Wang et al., 2009a,b; Wang, 2009), we have synthesized the title compound, a new ZnII complex, and its crystal structure is reported here.

The ZnII atom in the complex is chelated by the two N atoms of 2-piperidin-1-ylethylamine ligand and two N atoms from two thiocyanate ligands, giving a distorted tetrahedral geometry (Fig. 1). The coordinate bond lengths and angles are typical and are comparable with those observed in other related zinc(II) complexes (Cameron et al., 1998; Hong, 2007).

In the crystal structure, molecules are linked through intermolecular N—H···S hydrogen bonds (Table 1), forming chains running along the b axis (Fig. 2).

Related literature top

For related structures, see: Wang et al. (2009a,b); Wang (2009). For bond-length and angle data, see: Cameron et al. (1998); Hong (2007).

Experimental top

2-Piperidin-1-ylethylamine (1.0 mmol, 128 mg), ammonium thiocyanate (1.0 mmol, 76 mg), and Zn(NO3)2.6H2O (1.0 mmol, 290 mg) were dissolved in MeOH (30 ml). The mixture was stirred at room temperature for 10 min to give a clear colourless solution. After keeping the solution in air for a week, colourless block-shaped crystals were formed at the bottom of the vessel.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound, viewed along the a axis. Intermolecular N—H···S hydrogen bonds are shown as dashed lines.
[2-(Piperidin-1-yl)ethylamine]dithiocyanatozinc(II) top
Crystal data top
[Zn(NCS)2(C7H16N2)]F(000) = 640
Mr = 309.75Dx = 1.462 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2403 reflections
a = 9.561 (2) Åθ = 2.4–25.0°
b = 10.310 (2) ŵ = 2.02 mm1
c = 14.398 (3) ÅT = 298 K
β = 97.367 (3)°Block, colourless
V = 1407.6 (5) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3029 independent reflections
Radiation source: fine-focus sealed tube2196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scanθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1211
Tmin = 0.688, Tmax = 0.712k = 1313
7615 measured reflectionsl = 918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0475P)2 + 0.1775P]
where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Zn(NCS)2(C7H16N2)]V = 1407.6 (5) Å3
Mr = 309.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.561 (2) ŵ = 2.02 mm1
b = 10.310 (2) ÅT = 298 K
c = 14.398 (3) Å0.20 × 0.20 × 0.18 mm
β = 97.367 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3029 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2196 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.712Rint = 0.028
7615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.32 e Å3
3029 reflectionsΔρmin = 0.39 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.10783 (3)0.24465 (3)0.24635 (2)0.05057 (13)
S10.28910 (10)0.60126 (8)0.42530 (6)0.0791 (3)
S20.19929 (8)0.06124 (9)0.43790 (6)0.0750 (3)
N10.0345 (3)0.2689 (2)0.10961 (16)0.0620 (6)
H1A0.05560.24180.09790.074*
H1B0.03820.35300.09360.074*
N20.2756 (2)0.1410 (2)0.20451 (14)0.0495 (5)
N30.1803 (3)0.4000 (2)0.31175 (18)0.0706 (7)
N40.0197 (3)0.1600 (3)0.32020 (17)0.0676 (6)
C10.1265 (4)0.1900 (4)0.0560 (2)0.0756 (9)
H1C0.12620.22620.00620.091*
H1D0.09070.10200.04950.091*
C20.2741 (3)0.1887 (3)0.1060 (2)0.0671 (8)
H2A0.31310.27560.10680.081*
H2B0.33250.13280.07280.081*
C30.2624 (3)0.0025 (3)0.2047 (2)0.0678 (8)
H3A0.33710.04020.17380.081*
H3B0.17290.02720.16950.081*
C40.2706 (4)0.0557 (3)0.3028 (2)0.0791 (9)
H4A0.26660.14970.30010.095*
H4B0.19000.02550.33130.095*
C50.4045 (4)0.0145 (4)0.3625 (2)0.0883 (11)
H5A0.40310.04390.42640.106*
H5B0.48530.05330.33880.106*
C60.4168 (3)0.1305 (4)0.3608 (2)0.0826 (10)
H6A0.50480.15680.39700.099*
H6B0.34000.16890.38920.099*
C70.4124 (3)0.1786 (3)0.2614 (2)0.0691 (8)
H7A0.42220.27230.26150.083*
H7B0.49050.14180.23340.083*
C80.2262 (3)0.4841 (3)0.35825 (19)0.0552 (7)
C90.0958 (3)0.1204 (3)0.36869 (18)0.0499 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0569 (2)0.0542 (2)0.04129 (19)0.00372 (13)0.00884 (14)0.00022 (13)
S10.0986 (6)0.0605 (5)0.0736 (5)0.0117 (4)0.0061 (5)0.0036 (4)
S20.0604 (4)0.0944 (6)0.0750 (5)0.0167 (4)0.0277 (4)0.0161 (4)
N10.0697 (15)0.0669 (16)0.0479 (13)0.0098 (11)0.0013 (12)0.0075 (11)
N20.0570 (12)0.0496 (12)0.0432 (11)0.0032 (10)0.0111 (10)0.0058 (9)
N30.101 (2)0.0521 (15)0.0585 (15)0.0003 (13)0.0080 (13)0.0040 (12)
N40.0633 (14)0.0833 (18)0.0583 (14)0.0052 (13)0.0162 (12)0.0001 (13)
C10.107 (3)0.080 (2)0.0385 (15)0.022 (2)0.0079 (16)0.0045 (15)
C20.080 (2)0.075 (2)0.0511 (17)0.0150 (17)0.0243 (15)0.0135 (15)
C30.082 (2)0.0526 (17)0.0687 (19)0.0049 (15)0.0069 (16)0.0014 (14)
C40.091 (2)0.063 (2)0.087 (2)0.0138 (17)0.0214 (19)0.0278 (18)
C50.087 (2)0.113 (3)0.066 (2)0.039 (2)0.0130 (19)0.028 (2)
C60.0624 (18)0.118 (3)0.063 (2)0.0176 (19)0.0094 (15)0.003 (2)
C70.0511 (16)0.073 (2)0.084 (2)0.0015 (14)0.0122 (16)0.0011 (17)
C80.0658 (17)0.0499 (16)0.0513 (16)0.0069 (13)0.0126 (13)0.0116 (13)
C90.0413 (13)0.0584 (16)0.0494 (15)0.0024 (11)0.0031 (11)0.0129 (12)
Geometric parameters (Å, º) top
Zn1—N41.927 (3)C2—H2A0.97
Zn1—N31.940 (3)C2—H2B0.97
Zn1—N12.019 (2)C3—C41.508 (4)
Zn1—N22.080 (2)C3—H3A0.97
S1—C81.614 (3)C3—H3B0.97
S2—C91.611 (3)C4—C51.509 (5)
N1—C11.485 (4)C4—H4A0.97
N1—H1A0.90C4—H4B0.97
N1—H1B0.90C5—C61.500 (5)
N2—C31.485 (3)C5—H5A0.97
N2—C21.500 (3)C5—H5B0.97
N2—C71.503 (3)C6—C71.510 (5)
N3—C81.148 (3)C6—H6A0.97
N4—C91.146 (3)C6—H6B0.97
C1—C21.500 (4)C7—H7A0.97
C1—H1C0.97C7—H7B0.97
C1—H1D0.97
N4—Zn1—N3108.54 (11)N2—C3—C4111.7 (3)
N4—Zn1—N1115.39 (10)N2—C3—H3A109.3
N3—Zn1—N1115.40 (10)C4—C3—H3A109.3
N4—Zn1—N2119.57 (10)N2—C3—H3B109.3
N3—Zn1—N2108.90 (10)C4—C3—H3B109.3
N1—Zn1—N288.02 (9)H3A—C3—H3B107.9
C1—N1—Zn1106.51 (17)C3—C4—C5111.7 (3)
C1—N1—H1A110.4C3—C4—H4A109.3
Zn1—N1—H1A110.4C5—C4—H4A109.3
C1—N1—H1B110.4C3—C4—H4B109.3
Zn1—N1—H1B110.4C5—C4—H4B109.3
H1A—N1—H1B108.6H4A—C4—H4B107.9
C3—N2—C2109.8 (2)C6—C5—C4109.5 (3)
C3—N2—C7108.9 (2)C6—C5—H5A109.8
C2—N2—C7109.4 (2)C4—C5—H5A109.8
C3—N2—Zn1116.27 (17)C6—C5—H5B109.8
C2—N2—Zn1101.04 (16)C4—C5—H5B109.8
C7—N2—Zn1111.06 (17)H5A—C5—H5B108.2
C8—N3—Zn1173.1 (2)C5—C6—C7110.5 (3)
C9—N4—Zn1173.6 (3)C5—C6—H6A109.5
N1—C1—C2109.8 (3)C7—C6—H6A109.5
N1—C1—H1C109.7C5—C6—H6B109.5
C2—C1—H1C109.7C7—C6—H6B109.5
N1—C1—H1D109.7H6A—C6—H6B108.1
C2—C1—H1D109.7N2—C7—C6110.4 (2)
H1C—C1—H1D108.2N2—C7—H7A109.6
C1—C2—N2110.5 (2)C6—C7—H7A109.6
C1—C2—H2A109.5N2—C7—H7B109.6
N2—C2—H2A109.5C6—C7—H7B109.6
C1—C2—H2B109.5H7A—C7—H7B108.1
N2—C2—H2B109.5N3—C8—S1178.9 (3)
H2A—C2—H2B108.1N4—C9—S2178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.902.653.523 (3)165
N1—H1B···S2ii0.902.713.509 (3)148
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C7H16N2)]
Mr309.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.561 (2), 10.310 (2), 14.398 (3)
β (°) 97.367 (3)
V3)1407.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.688, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
7615, 3029, 2196
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.04
No. of reflections3029
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.902.653.523 (3)165
N1—H1B···S2ii0.902.713.509 (3)148
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Natural Science Foundation of China (grant No. 30771696), the Natural Science Foundation of Zhejiang Province (grant No. Y407318) and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCameron, E. M., Louch, W. E., Cameron, T. S. & Knop, O. (1998). Z. Anorg. Allg. Chem. 624, 1629–1641.  CrossRef CAS Google Scholar
First citationHong, Z. (2007). Acta Cryst. E63, m132–m134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, C.-Y. (2009). J. Coord. Chem. 62, 2860–2868.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem. 39, 78–82.  CAS Google Scholar
First citationWang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem. 62, 2164–2171.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds