organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Bromo-2-chloro-4,5-di­meth­oxy­benzene

aCollege of Pharmaceutical Sciences, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Southwest University, Chong Qing 400716, People's Republic of China, bUniversity of Kentucky, Department of Chemistry, Lexington, KY 40506-0055, USA, and cThe University of Iowa, Department of Occupational and Environmental Health, 100 Oakdale Campus, 124 IREH, Iowa City, IA 52242-5000, USA
*Correspondence e-mail: hans-joachim-lehmler@uiowa.edu

(Received 2 March 2010; accepted 4 March 2010; online 13 March 2010)

The two meth­oxy groups of the title compound, C8H8BrClO2, are approximately coplanar with the benzene ring, the dihedral angles in all four mol­ecules in the asymmetric unit ranging from of 0.9 (3) to 12.3 (3)°. All four independent mol­ecules are disordered by different amounts about non-crystallographic twofold axes which nearly superimpose the Cl and Br sites.

Related literature

For similar structures of halogenated meth­oxy benzenes, see: Iimura et al. (1984[Iimura, Y., Sakurai, T., Asahi, K.-i., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058-2061.]); Rissanen et al. (1987[Rissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966-1968.], 1988a[Rissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682-684.],b[Rissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684-686.]); Song et al. (2008[Song, Y., Buettner, G. R., Parkin, S., Wagner, B. A., Robertson, L. W. & Lehmler, H.-J. (2008). J. Org. Chem. 73, 8296-8304.], 2010a[Song, Y., Parkin, S. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o339.],b[Song, Y., Parkin, S. & Lehmler, H.-J. (2010b). Acta Cryst. E66, o487.]); Telu et al. (2008[Telu, S., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o424.]); Weller & Gerstner (1995[Weller, F. & Gerstner, E. (1995). Z. Kristallogr. 210, 629-629.]); Wieczorek (1980[Wieczorek, M. W. (1980). Acta Cryst. B36, 1515-1517.]). For general background to halogenated meth­oxy benzenes, see: Ballschmiter, (2003[Ballschmiter, K. (2003). Chemosphere, 52, 313-324.]); Brownlee et al. (1993[Brownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol. 27, 2450-2455.]); Curtis et al. (1972[Curtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223-224.]); Pereira et al. (2000[Pereira, C. S., Marques, J. J. F. & San Romao, M. V. (2000). Crit. Rev. Microbiol. 26, 147-162.]); Vlachos et al. (2007[Vlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol. 225, 653-663.]).

[Scheme 1]

Experimental

Crystal data
  • C8H8BrClO2

  • Mr = 251.50

  • Triclinic, [P \overline 1]

  • a = 9.9264 (2) Å

  • b = 9.9410 (2) Å

  • c = 19.7219 (5) Å

  • α = 75.9259 (8)°

  • β = 75.9323 (8)°

  • γ = 79.9479 (10)°

  • V = 1817.26 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.77 mm−1

  • T = 90 K

  • 0.22 × 0.22 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.360, Tmax = 0.385

  • 14754 measured reflections

  • 8202 independent reflections

  • 6065 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.070

  • S = 1.04

  • 8202 reflections

  • 471 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Halogenated methoxy benzenes are an important group of volatile organic pollutants (Ballschmiter, 2003) that cause off-flavors in water, fish, chicken and wine (Brownlee et al., 1993; Curtis et al., 1972; Pereira et al., 2000; Vlachos et al., 2007). Although the conformation of the methoxy groups relative to the aromatic ring system plays an important role in the biological and olfactory properties of this class of compounds, only a few crystal structures of brominated and/or chlorinated methoxy benzenes have been published. Here we report the crystal structure of the title compound, a halogenated dimethoxy benzene, to aid in quantitative structure activity relationship studies.

The asymmetric unit of the title compound contains four independent molecules (A, B, C and D). All methoxy groups are approximately co-planar with the attached benzene ring, with dihedral angles between benzene ring (C1-C6) and methoxy plane (C4/O1/C7 or C5/O2/C8) ranging from 0.9 (3)° to 5.0 (3)°. One exception is the dihedral angle between C1C–C6C and C5C/O2C/C8C planes of 12.3 (3)°. This comparatively large dihedral angle is most likely a result of crystal packing effects. Analogously, the methoxy groups of structurally related compounds with no or one substituent ortho to the methoxy group typically lie within the plane of the benzene ring (Rissanen et al., 1988a; Song et al., 2010a). In contrast, much larger dihedral angles are observed for halogenated methoxy benzenes with two (chlorine) substituents ortho to the methoxy group (Rissanen et al., 1987, 1988b; Song et al. 2010b; Telu et al., 2008; Weller & Gerstner, 1995; Wieczorek, 1980). For example, in 1-bromo-2,3,6-trichloro-4,5-dimethoxybenzene, a structurally related dimethoxy benzene, the dihedral angles involving the two methoxy groups are much larger [68.5 (3)° and 84.7 (3)°; Song et al., 2010b].

Related literature top

For similar structures of halogenated methoxy benzenes, see: Iimura et al. (1984); Rissanen et al. (1987, 1988a,b); Song et al. (2008, 2010a,b); Telu et al. (2008); Weller & Gerstner (1995); Wieczorek (1980). For general background to halogenated methoxy benzenes, see: Ballschmiter, (2003); Brownlee et al. (1993); Curtis et al. (1972); Pereira et al. (2000); Vlachos et al. (2007).

Experimental top

The title compound was synthesized by chlorination of 1-bromo-3,4-dimethoxy-benzene with HCl/H2O2 as chlorination reagent as described previously (Song et al., 2008). Crystals suitable for X-ray diffraction were grown by slow evaporation of a saturated solution of the title compound in CHCl3.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained C–H distances of 0.98 Å (RCH3), 0.95 Å (CArH), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3) of the attached C atom. Each of the four independent molecules was found to be disordered by a non-crystallographic twofold rotation about an axis running approximately through the bisectors of bonds C1—C2 and C4—C5. This disorder nearly superimposes Cl and Br at the halogen sites. The occupancy ratios for the major and minor components of molecules A, B, C and D are 0.7451 (15):0.2549 (15), 0.5438 (15):0.4562 (15), 0.5027 (15):0.4973 (15) and 0.6246 (15):0.3754 (15), respectively. As a result of the disorder, a number of constraints and restraints were required to ensure that the refinement was stable. The displacement parameters of Cl and Br atoms that are roughly superimposed by the disorder were constrained to be the same. The C—Cl and C—Br distances were restrained using a free variable.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. One of the four independent molecules of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder component is shown.
1-Bromo-2-chloro-4,5-dimethoxybenzene top
Crystal data top
C8H8BrClO2Z = 8
Mr = 251.50F(000) = 992
Triclinic, P1Dx = 1.839 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9264 (2) ÅCell parameters from 7193 reflections
b = 9.9410 (2) Åθ = 1.0–27.5°
c = 19.7219 (5) ŵ = 4.77 mm1
α = 75.9259 (8)°T = 90 K
β = 75.9323 (8)°Block, colourless
γ = 79.9479 (10)°0.22 × 0.22 × 0.20 mm
V = 1817.26 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
8202 independent reflections
Radiation source: fine-focus sealed tube6065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scans at fixed χ = 55°h = 1212
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
k = 1212
Tmin = 0.360, Tmax = 0.385l = 2525
14754 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0154P)2 + 1.1857P]
where P = (Fo2 + 2Fc2)/3
8202 reflections(Δ/σ)max = 0.004
471 parametersΔρmax = 0.43 e Å3
16 restraintsΔρmin = 0.42 e Å3
Crystal data top
C8H8BrClO2γ = 79.9479 (10)°
Mr = 251.50V = 1817.26 (7) Å3
Triclinic, P1Z = 8
a = 9.9264 (2) ÅMo Kα radiation
b = 9.9410 (2) ŵ = 4.77 mm1
c = 19.7219 (5) ÅT = 90 K
α = 75.9259 (8)°0.22 × 0.22 × 0.20 mm
β = 75.9323 (8)°
Data collection top
Nonius KappaCCD
diffractometer
8202 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
6065 reflections with I > 2σ(I)
Tmin = 0.360, Tmax = 0.385Rint = 0.035
14754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03616 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.04Δρmax = 0.43 e Å3
8202 reflectionsΔρmin = 0.42 e Å3
471 parameters
Special details top

Experimental. The triclinic cell appears to transform to a C-centered monoclinic cell but the data fail to merge in a satisfactory way in that setting. The structure solved and refined well with the triclinic setting in spite of the extensive disorder. The refined model does not transform to any monoclinic C model either manually or by use of missed symmetry algorithms such as ADDSYM as implemented in Platon (Spek).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.0045 (2)0.9524 (3)0.89744 (16)0.0246 (2)0.7451 (15)
Cl1A0.0944 (17)0.6347 (17)0.9666 (8)0.0225 (9)0.7451 (15)
Br1E0.096 (2)0.618 (2)0.9722 (9)0.0225 (9)0.2549 (15)
Cl1E0.0103 (17)0.954 (2)0.8902 (13)0.0246 (2)0.2549 (15)
O1A0.54879 (19)0.65270 (19)0.77345 (10)0.0217 (5)
O2A0.47578 (19)0.90927 (19)0.71339 (10)0.0228 (5)
C1A0.1671 (3)0.8534 (3)0.85998 (15)0.0192 (6)
C2A0.2065 (3)0.7175 (3)0.89182 (14)0.0177 (6)
C3A0.3335 (3)0.6477 (3)0.86393 (15)0.0177 (6)
H3A0.35990.55380.88600.021*
C4A0.4218 (3)0.7129 (3)0.80463 (15)0.0177 (6)
C5A0.3819 (3)0.8520 (3)0.77156 (15)0.0189 (6)
C6A0.2548 (3)0.9211 (3)0.79966 (15)0.0194 (6)
H6A0.22731.01480.77770.023*
C7A0.5938 (3)0.5126 (3)0.80712 (16)0.0214 (7)
H7A10.60380.51110.85550.032*
H7A20.68410.47940.77920.032*
H7A30.52430.45170.80960.032*
C8A0.4342 (3)1.0479 (3)0.67626 (16)0.0249 (7)
H8A10.34681.04940.66110.037*
H8A20.50761.07560.63410.037*
H8A30.42001.11320.70810.037*
Br1B0.4007 (8)0.3438 (5)1.0251 (4)0.0247 (4)0.5438 (15)
Cl1B0.698 (2)0.2075 (19)0.9410 (8)0.0245 (6)0.5438 (15)
Br1F0.7056 (10)0.2212 (9)0.9393 (4)0.0245 (6)0.4562 (15)
Cl1F0.400 (2)0.3317 (15)1.0310 (12)0.0247 (4)0.4562 (15)
O1B0.41582 (19)0.1413 (2)1.20683 (10)0.0233 (5)
O2B0.65841 (19)0.23454 (19)1.14057 (10)0.0219 (5)
C1B0.6106 (3)0.1110 (3)1.02176 (14)0.0182 (6)
C2B0.4826 (3)0.1619 (3)1.05831 (15)0.0186 (6)
C3B0.4143 (3)0.0807 (3)1.12061 (15)0.0201 (6)
H3B0.32630.11691.14550.024*
C4B0.4733 (3)0.0519 (3)1.14657 (15)0.0168 (6)
C5B0.6059 (3)0.1041 (3)1.10984 (15)0.0170 (6)
C6B0.6721 (3)0.0233 (3)1.04787 (15)0.0175 (6)
H6B0.76020.05881.02270.021*
C7B0.2835 (3)0.0911 (3)1.24616 (16)0.0291 (7)
H7B10.29360.01021.26390.044*
H7B20.25030.16521.28670.044*
H7B30.21590.06351.21490.044*
C8B0.7944 (3)0.2893 (3)1.10553 (16)0.0247 (7)
H8B10.79070.29801.05760.037*
H8B20.82270.38151.13340.037*
H8B30.86240.22591.10170.037*
Br1C1.2543 (5)0.6563 (7)0.4287 (3)0.0254 (4)0.5027 (15)
Cl1C1.3717 (15)0.357 (2)0.5194 (12)0.0222 (4)0.5027 (15)
Br1G1.3817 (6)0.3453 (8)0.5159 (5)0.0222 (4)0.4973 (15)
Cl1G1.2350 (13)0.6548 (19)0.4322 (7)0.0254 (4)0.4973 (15)
O1C0.83249 (19)0.63322 (19)0.65073 (10)0.0217 (5)
O2C0.9333 (2)0.3954 (2)0.71708 (10)0.0233 (5)
C1C1.2099 (3)0.4433 (3)0.55384 (15)0.0174 (6)
C2C1.1566 (3)0.5695 (3)0.51819 (14)0.0186 (6)
C3C1.0281 (3)0.6376 (3)0.54883 (14)0.0176 (6)
H3C0.99090.72500.52380.021*
C4C0.9560 (3)0.5771 (3)0.61543 (15)0.0189 (6)
C5C1.0120 (3)0.4465 (3)0.65207 (15)0.0176 (6)
C6C1.1377 (3)0.3812 (3)0.62102 (15)0.0186 (6)
H6C1.17550.29350.64540.022*
C7C0.7725 (3)0.7672 (3)0.61599 (16)0.0259 (7)
H7C10.83640.83670.60870.039*
H7C20.68280.79550.64600.039*
H7C30.75760.76050.56960.039*
C8C0.9994 (3)0.2797 (3)0.76102 (16)0.0252 (7)
H8C11.01560.19760.73960.038*
H8C20.93890.25980.80870.038*
H8C31.08910.30230.76500.038*
Br1D0.9822 (6)0.9422 (4)0.3907 (3)0.0248 (3)0.6246 (15)
Cl1D0.667 (2)1.065 (2)0.4698 (8)0.0265 (8)0.6246 (15)
Br1H0.6728 (14)1.0541 (14)0.4769 (5)0.0265 (8)0.3754 (15)
Cl1H0.978 (2)0.9528 (16)0.3837 (11)0.0248 (3)0.3754 (15)
O1D0.94378 (19)1.42221 (19)0.20683 (10)0.0199 (4)
O2D0.69740 (19)1.50728 (19)0.27335 (10)0.0196 (4)
C1D0.7583 (3)1.1643 (3)0.39183 (14)0.0203 (7)
C2D0.8882 (3)1.1176 (3)0.35572 (15)0.0190 (6)
C3D0.9541 (3)1.2016 (3)0.29312 (15)0.0179 (6)
H3D1.04421.16930.26860.022*
C4D0.8889 (3)1.3311 (3)0.26678 (15)0.0181 (6)
C5D0.7543 (3)1.3787 (3)0.30347 (15)0.0170 (6)
C6D0.6913 (3)1.2950 (3)0.36545 (15)0.0198 (6)
H6D0.60131.32660.39040.024*
C7D1.0845 (3)1.3829 (3)0.17138 (16)0.0238 (7)
H7D11.14591.36040.20570.036*
H7D21.11631.46060.13270.036*
H7D31.08731.30090.15150.036*
C8D0.5633 (3)1.5601 (3)0.31173 (16)0.0234 (7)
H8D10.49541.49510.31780.035*
H8D20.53121.65170.28470.035*
H8D30.57211.56930.35880.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0207 (6)0.0204 (2)0.0261 (8)0.0010 (4)0.0031 (4)0.0028 (4)
Cl1A0.0260 (4)0.016 (3)0.0187 (17)0.0060 (16)0.0003 (11)0.0057 (14)
Br1E0.0260 (4)0.016 (3)0.0187 (17)0.0060 (16)0.0003 (11)0.0057 (14)
Cl1E0.0207 (6)0.0204 (2)0.0261 (8)0.0010 (4)0.0031 (4)0.0028 (4)
O1A0.0190 (10)0.0158 (10)0.0253 (12)0.0016 (8)0.0008 (9)0.0014 (9)
O2A0.0220 (11)0.0167 (11)0.0232 (12)0.0037 (9)0.0010 (9)0.0032 (9)
C1A0.0155 (14)0.0203 (16)0.0220 (16)0.0014 (12)0.0018 (12)0.0076 (13)
C2A0.0204 (15)0.0179 (15)0.0162 (15)0.0072 (12)0.0028 (12)0.0037 (12)
C3A0.0194 (15)0.0141 (14)0.0191 (16)0.0012 (12)0.0043 (12)0.0027 (12)
C4A0.0162 (14)0.0178 (15)0.0212 (16)0.0025 (12)0.0044 (12)0.0070 (13)
C5A0.0198 (15)0.0190 (15)0.0201 (16)0.0076 (12)0.0044 (13)0.0043 (13)
C6A0.0217 (15)0.0144 (15)0.0222 (17)0.0029 (12)0.0048 (13)0.0036 (13)
C7A0.0196 (15)0.0186 (16)0.0242 (17)0.0010 (12)0.0055 (13)0.0024 (13)
C8A0.0261 (17)0.0180 (16)0.0255 (18)0.0037 (13)0.0023 (14)0.0027 (13)
Br1B0.0320 (3)0.0169 (9)0.0225 (13)0.0032 (7)0.0081 (7)0.0010 (7)
Cl1B0.0267 (11)0.0222 (16)0.0212 (4)0.0091 (8)0.0005 (4)0.0016 (7)
Br1F0.0267 (11)0.0222 (16)0.0212 (4)0.0091 (8)0.0005 (4)0.0016 (7)
Cl1F0.0320 (3)0.0169 (9)0.0225 (13)0.0032 (7)0.0081 (7)0.0010 (7)
O1B0.0211 (11)0.0248 (11)0.0158 (11)0.0012 (9)0.0018 (9)0.0041 (9)
O2B0.0227 (11)0.0192 (11)0.0184 (11)0.0016 (9)0.0020 (9)0.0006 (9)
C1B0.0216 (15)0.0193 (15)0.0156 (15)0.0079 (12)0.0036 (12)0.0037 (12)
C2B0.0220 (15)0.0133 (14)0.0224 (16)0.0013 (12)0.0099 (13)0.0027 (12)
C3B0.0198 (15)0.0223 (16)0.0177 (16)0.0013 (12)0.0026 (13)0.0054 (13)
C4B0.0186 (15)0.0164 (15)0.0150 (15)0.0044 (12)0.0026 (12)0.0018 (12)
C5B0.0209 (15)0.0160 (15)0.0155 (15)0.0003 (12)0.0065 (12)0.0047 (12)
C6B0.0174 (15)0.0182 (15)0.0173 (15)0.0037 (12)0.0033 (12)0.0034 (12)
C7B0.0204 (16)0.0349 (19)0.0221 (18)0.0021 (14)0.0027 (13)0.0019 (15)
C8B0.0239 (16)0.0218 (16)0.0247 (17)0.0039 (13)0.0021 (14)0.0058 (14)
Br1C0.0183 (14)0.0303 (3)0.0202 (6)0.0011 (10)0.0021 (7)0.0009 (4)
Cl1C0.0207 (9)0.0226 (13)0.0212 (9)0.0018 (6)0.0004 (7)0.0075 (7)
Br1G0.0207 (9)0.0226 (13)0.0212 (9)0.0018 (6)0.0004 (7)0.0075 (7)
Cl1G0.0183 (14)0.0303 (3)0.0202 (6)0.0011 (10)0.0021 (7)0.0009 (4)
O1C0.0188 (10)0.0202 (11)0.0204 (11)0.0029 (8)0.0000 (9)0.0018 (9)
O2C0.0240 (11)0.0216 (11)0.0179 (11)0.0002 (9)0.0002 (9)0.0016 (9)
C1C0.0161 (14)0.0202 (16)0.0180 (16)0.0025 (12)0.0034 (12)0.0082 (13)
C2C0.0198 (15)0.0208 (16)0.0154 (15)0.0059 (13)0.0029 (12)0.0026 (13)
C3C0.0208 (15)0.0150 (15)0.0172 (16)0.0008 (12)0.0076 (13)0.0012 (12)
C4C0.0171 (15)0.0187 (15)0.0212 (16)0.0035 (12)0.0021 (13)0.0056 (13)
C5C0.0205 (15)0.0165 (15)0.0154 (15)0.0050 (12)0.0026 (12)0.0017 (12)
C6C0.0228 (16)0.0108 (14)0.0222 (16)0.0010 (12)0.0073 (13)0.0017 (12)
C7C0.0216 (16)0.0233 (17)0.0285 (18)0.0037 (13)0.0049 (14)0.0025 (14)
C8C0.0311 (17)0.0217 (16)0.0176 (16)0.0009 (13)0.0044 (14)0.0034 (13)
Br1D0.0298 (4)0.0143 (6)0.0241 (11)0.0025 (5)0.0030 (6)0.0014 (6)
Cl1D0.0316 (9)0.0224 (18)0.0174 (17)0.0032 (11)0.0017 (12)0.0045 (10)
Br1H0.0316 (9)0.0224 (18)0.0174 (17)0.0032 (11)0.0017 (12)0.0045 (10)
Cl1H0.0298 (4)0.0143 (6)0.0241 (11)0.0025 (5)0.0030 (6)0.0014 (6)
O1D0.0181 (10)0.0182 (10)0.0186 (11)0.0002 (8)0.0009 (9)0.0012 (9)
O2D0.0205 (11)0.0156 (10)0.0197 (11)0.0017 (8)0.0031 (9)0.0021 (9)
C1D0.0252 (16)0.0177 (15)0.0170 (16)0.0067 (13)0.0015 (13)0.0019 (13)
C2D0.0231 (16)0.0103 (14)0.0249 (17)0.0015 (12)0.0085 (13)0.0032 (12)
C3D0.0171 (14)0.0161 (15)0.0207 (16)0.0006 (12)0.0040 (12)0.0050 (12)
C4D0.0215 (15)0.0198 (16)0.0137 (15)0.0072 (12)0.0033 (12)0.0018 (12)
C5D0.0190 (15)0.0140 (14)0.0192 (16)0.0007 (11)0.0072 (12)0.0034 (12)
C6D0.0204 (15)0.0213 (16)0.0177 (16)0.0030 (12)0.0021 (13)0.0059 (13)
C7D0.0197 (16)0.0231 (16)0.0234 (17)0.0024 (13)0.0028 (13)0.0029 (13)
C8D0.0207 (16)0.0224 (16)0.0268 (18)0.0050 (13)0.0066 (14)0.0085 (14)
Geometric parameters (Å, º) top
Br1A—C1A1.890 (3)Br1C—C2C1.877 (5)
Cl1A—C2A1.739 (8)Cl1C—C1C1.746 (10)
Br1E—C2A1.862 (9)Br1G—C1C1.890 (5)
Cl1E—C1A1.753 (11)Cl1G—C2C1.758 (10)
O1A—C4A1.365 (3)O1C—C4C1.354 (3)
O1A—C7A1.434 (3)O1C—C7C1.440 (3)
O2A—C5A1.362 (3)O2C—C5C1.359 (3)
O2A—C8A1.436 (3)O2C—C8C1.425 (3)
C1A—C2A1.376 (4)C1C—C2C1.367 (4)
C1A—C6A1.392 (4)C1C—C6C1.394 (4)
C2A—C3A1.385 (4)C2C—C3C1.405 (4)
C3A—C4A1.374 (4)C3C—C4C1.381 (4)
C3A—H3A0.95C3C—H3C0.95
C4A—C5A1.411 (4)C4C—C5C1.416 (4)
C5A—C6A1.383 (4)C5C—C6C1.375 (4)
C6A—H6A0.95C6C—H6C0.95
C7A—H7A10.98C7C—H7C10.98
C7A—H7A20.98C7C—H7C20.98
C7A—H7A30.98C7C—H7C30.98
C8A—H8A10.98C8C—H8C10.98
C8A—H8A20.98C8C—H8C20.98
C8A—H8A30.98C8C—H8C30.98
Br1B—C2B1.879 (5)Br1D—C2D1.883 (4)
Cl1B—C1B1.755 (10)Cl1D—C1D1.747 (10)
Br1F—C1B1.867 (6)Br1H—C1D1.864 (7)
Cl1F—C2B1.760 (11)Cl1H—C2D1.753 (11)
O1B—C4B1.364 (3)O1D—C4D1.361 (3)
O1B—C7B1.428 (3)O1D—C7D1.435 (3)
O2B—C5B1.363 (3)O2D—C5D1.359 (3)
O2B—C8B1.439 (3)O2D—C8D1.442 (3)
C1B—C2B1.377 (4)C1D—C2D1.375 (4)
C1B—C6B1.398 (4)C1D—C6D1.393 (4)
C2B—C3B1.387 (4)C2D—C3D1.395 (4)
C3B—C4B1.375 (4)C3D—C4D1.375 (4)
C3B—H3B0.95C3D—H3D0.95
C4B—C5B1.416 (4)C4D—C5D1.417 (4)
C5B—C6B1.374 (4)C5D—C6D1.376 (4)
C6B—H6B0.95C6D—H6D0.95
C7B—H7B10.98C7D—H7D10.98
C7B—H7B20.98C7D—H7D20.98
C7B—H7B30.98C7D—H7D30.98
C8B—H8B10.98C8D—H8D10.98
C8B—H8B20.98C8D—H8D20.98
C8B—H8B30.98C8D—H8D30.98
C4A—O1A—C7A116.8 (2)C4C—O1C—C7C117.1 (2)
C5A—O2A—C8A117.0 (2)C5C—O2C—C8C116.2 (2)
C2A—C1A—C6A120.1 (2)C2C—C1C—C6C120.4 (2)
C2A—C1A—Cl1E124.7 (8)C2C—C1C—Cl1C122.0 (8)
C6A—C1A—Cl1E115.2 (8)C6C—C1C—Cl1C117.6 (8)
C2A—C1A—Br1A121.1 (2)C2C—C1C—Br1G122.6 (4)
C6A—C1A—Br1A118.8 (2)C6C—C1C—Br1G117.0 (3)
C1A—C2A—C3A120.1 (2)C1C—C2C—C3C120.2 (2)
C1A—C2A—Cl1A119.3 (6)C1C—C2C—Cl1G124.5 (6)
C3A—C2A—Cl1A120.7 (6)C3C—C2C—Cl1G115.3 (6)
C1A—C2A—Br1E123.3 (7)C1C—C2C—Br1C121.0 (3)
C3A—C2A—Br1E116.6 (7)C3C—C2C—Br1C118.8 (3)
C4A—C3A—C2A120.7 (3)C4C—C3C—C2C119.8 (3)
C4A—C3A—H3A119.7C4C—C3C—H3C120.1
C2A—C3A—H3A119.7C2C—C3C—H3C120.1
O1A—C4A—C3A124.8 (3)O1C—C4C—C3C125.2 (3)
O1A—C4A—C5A115.6 (2)O1C—C4C—C5C115.1 (2)
C3A—C4A—C5A119.6 (3)C3C—C4C—C5C119.6 (3)
O2A—C5A—C6A124.7 (3)O2C—C5C—C6C125.1 (3)
O2A—C5A—C4A115.9 (2)O2C—C5C—C4C115.3 (2)
C6A—C5A—C4A119.4 (3)C6C—C5C—C4C119.7 (3)
C5A—C6A—C1A120.1 (3)C5C—C6C—C1C120.3 (3)
C5A—C6A—H6A119.9C5C—C6C—H6C119.9
C1A—C6A—H6A119.9C1C—C6C—H6C119.9
O1A—C7A—H7A1109.5O1C—C7C—H7C1109.5
O1A—C7A—H7A2109.5O1C—C7C—H7C2109.5
H7A1—C7A—H7A2109.5H7C1—C7C—H7C2109.5
O1A—C7A—H7A3109.5O1C—C7C—H7C3109.5
H7A1—C7A—H7A3109.5H7C1—C7C—H7C3109.5
H7A2—C7A—H7A3109.5H7C2—C7C—H7C3109.5
O2A—C8A—H8A1109.5O2C—C8C—H8C1109.5
O2A—C8A—H8A2109.5O2C—C8C—H8C2109.5
H8A1—C8A—H8A2109.5H8C1—C8C—H8C2109.5
O2A—C8A—H8A3109.5O2C—C8C—H8C3109.5
H8A1—C8A—H8A3109.5H8C1—C8C—H8C3109.5
H8A2—C8A—H8A3109.5H8C2—C8C—H8C3109.5
C4B—O1B—C7B116.6 (2)C4D—O1D—C7D116.8 (2)
C5B—O2B—C8B116.9 (2)C5D—O2D—C8D116.4 (2)
C2B—C1B—C6B119.7 (2)C2D—C1D—C6D120.1 (2)
C2B—C1B—Cl1B122.0 (8)C2D—C1D—Cl1D123.2 (7)
C6B—C1B—Cl1B118.3 (8)C6D—C1D—Cl1D116.7 (7)
C2B—C1B—Br1F120.8 (4)C2D—C1D—Br1H120.1 (5)
C6B—C1B—Br1F119.5 (4)C6D—C1D—Br1H119.8 (5)
C1B—C2B—C3B120.5 (3)C1D—C2D—C3D120.1 (3)
C1B—C2B—Cl1F122.8 (8)C1D—C2D—Cl1H123.1 (8)
C3B—C2B—Cl1F116.7 (8)C3D—C2D—Cl1H116.7 (8)
C1B—C2B—Br1B120.2 (3)C1D—C2D—Br1D121.0 (3)
C3B—C2B—Br1B119.4 (3)C3D—C2D—Br1D118.9 (3)
C4B—C3B—C2B120.4 (3)C4D—C3D—C2D120.2 (3)
C4B—C3B—H3B119.8C4D—C3D—H3D119.9
C2B—C3B—H3B119.8C2D—C3D—H3D119.9
O1B—C4B—C3B125.6 (3)O1D—C4D—C3D125.2 (3)
O1B—C4B—C5B115.0 (2)O1D—C4D—C5D115.1 (2)
C3B—C4B—C5B119.4 (3)C3D—C4D—C5D119.7 (3)
O2B—C5B—C6B124.8 (3)O2D—C5D—C6D124.9 (3)
O2B—C5B—C4B115.4 (2)O2D—C5D—C4D115.7 (2)
C6B—C5B—C4B119.7 (3)C6D—C5D—C4D119.4 (3)
C5B—C6B—C1B120.3 (3)C5D—C6D—C1D120.5 (3)
C5B—C6B—H6B119.8C5D—C6D—H6D119.8
C1B—C6B—H6B119.8C1D—C6D—H6D119.8
O1B—C7B—H7B1109.5O1D—C7D—H7D1109.5
O1B—C7B—H7B2109.5O1D—C7D—H7D2109.5
H7B1—C7B—H7B2109.5H7D1—C7D—H7D2109.5
O1B—C7B—H7B3109.5O1D—C7D—H7D3109.5
H7B1—C7B—H7B3109.5H7D1—C7D—H7D3109.5
H7B2—C7B—H7B3109.5H7D2—C7D—H7D3109.5
O2B—C8B—H8B1109.5O2D—C8D—H8D1109.5
O2B—C8B—H8B2109.5O2D—C8D—H8D2109.5
H8B1—C8B—H8B2109.5H8D1—C8D—H8D2109.5
O2B—C8B—H8B3109.5O2D—C8D—H8D3109.5
H8B1—C8B—H8B3109.5H8D1—C8D—H8D3109.5
H8B2—C8B—H8B3109.5H8D2—C8D—H8D3109.5
C6A—C1A—C2A—C3A0.0 (4)C6C—C1C—C2C—C3C0.3 (4)
Cl1E—C1A—C2A—C3A179.5 (12)Cl1C—C1C—C2C—C3C177.9 (9)
Br1A—C1A—C2A—C3A179.2 (2)Br1G—C1C—C2C—C3C179.8 (4)
C6A—C1A—C2A—Cl1A179.4 (9)C6C—C1C—C2C—Cl1G177.8 (8)
Cl1E—C1A—C2A—Cl1A1.1 (15)Cl1C—C1C—C2C—Cl1G4.6 (12)
Br1A—C1A—C2A—Cl1A1.4 (9)Br1G—C1C—C2C—Cl1G2.4 (9)
C6A—C1A—C2A—Br1E179.6 (10)C6C—C1C—C2C—Br1C178.6 (3)
Cl1E—C1A—C2A—Br1E0.9 (16)Cl1C—C1C—C2C—Br1C1.0 (10)
Br1A—C1A—C2A—Br1E1.2 (10)Br1G—C1C—C2C—Br1C1.2 (5)
C1A—C2A—C3A—C4A0.3 (4)C1C—C2C—C3C—C4C0.5 (4)
Cl1A—C2A—C3A—C4A179.7 (9)Cl1G—C2C—C3C—C4C178.2 (7)
Br1E—C2A—C3A—C4A180.0 (9)Br1C—C2C—C3C—C4C178.5 (3)
C7A—O1A—C4A—C3A2.1 (4)C7C—O1C—C4C—C3C0.5 (4)
C7A—O1A—C4A—C5A178.3 (2)C7C—O1C—C4C—C5C179.0 (2)
C2A—C3A—C4A—O1A179.9 (2)C2C—C3C—C4C—O1C179.2 (2)
C2A—C3A—C4A—C5A0.5 (4)C2C—C3C—C4C—C5C0.3 (4)
C8A—O2A—C5A—C6A4.5 (4)C8C—O2C—C5C—C6C12.4 (4)
C8A—O2A—C5A—C4A176.4 (2)C8C—O2C—C5C—C4C167.7 (2)
O1A—C4A—C5A—O2A0.8 (4)O1C—C4C—C5C—O2C0.6 (4)
C3A—C4A—C5A—O2A179.6 (2)C3C—C4C—C5C—O2C179.8 (2)
O1A—C4A—C5A—C6A180.0 (2)O1C—C4C—C5C—C6C179.5 (2)
C3A—C4A—C5A—C6A0.4 (4)C3C—C4C—C5C—C6C0.1 (4)
O2A—C5A—C6A—C1A179.2 (2)O2C—C5C—C6C—C1C180.0 (2)
C4A—C5A—C6A—C1A0.1 (4)C4C—C5C—C6C—C1C0.1 (4)
C2A—C1A—C6A—C5A0.1 (4)C2C—C1C—C6C—C5C0.1 (4)
Cl1E—C1A—C6A—C5A179.4 (11)Cl1C—C1C—C6C—C5C177.7 (9)
Br1A—C1A—C6A—C5A179.1 (2)Br1G—C1C—C6C—C5C179.9 (4)
C6B—C1B—C2B—C3B0.2 (4)C6D—C1D—C2D—C3D0.9 (4)
Cl1B—C1B—C2B—C3B177.6 (8)Cl1D—C1D—C2D—C3D179.0 (10)
Br1F—C1B—C2B—C3B178.3 (4)Br1H—C1D—C2D—C3D178.2 (6)
C6B—C1B—C2B—Cl1F177.8 (11)C6D—C1D—C2D—Cl1H178.2 (10)
Cl1B—C1B—C2B—Cl1F4.4 (14)Cl1D—C1D—C2D—Cl1H0.1 (14)
Br1F—C1B—C2B—Cl1F0.2 (12)Br1H—C1D—C2D—Cl1H2.7 (12)
C6B—C1B—C2B—Br1B178.5 (4)C6D—C1D—C2D—Br1D179.3 (3)
Cl1B—C1B—C2B—Br1B3.7 (9)Cl1D—C1D—C2D—Br1D2.6 (10)
Br1F—C1B—C2B—Br1B0.4 (6)Br1H—C1D—C2D—Br1D0.2 (7)
C1B—C2B—C3B—C4B0.2 (4)C1D—C2D—C3D—C4D0.6 (4)
Cl1F—C2B—C3B—C4B178.4 (10)Cl1H—C2D—C3D—C4D178.5 (10)
Br1B—C2B—C3B—C4B178.9 (4)Br1D—C2D—C3D—C4D179.1 (3)
C7B—O1B—C4B—C3B0.6 (4)C7D—O1D—C4D—C3D4.3 (4)
C7B—O1B—C4B—C5B178.7 (2)C7D—O1D—C4D—C5D175.0 (2)
C2B—C3B—C4B—O1B179.6 (2)C2D—C3D—C4D—O1D179.2 (2)
C2B—C3B—C4B—C5B1.2 (4)C2D—C3D—C4D—C5D0.1 (4)
C8B—O2B—C5B—C6B1.1 (4)C8D—O2D—C5D—C6D2.6 (4)
C8B—O2B—C5B—C4B178.6 (2)C8D—O2D—C5D—C4D177.3 (2)
O1B—C4B—C5B—O2B1.3 (3)O1D—C4D—C5D—O2D1.1 (3)
C3B—C4B—C5B—O2B178.0 (2)C3D—C4D—C5D—O2D179.5 (2)
O1B—C4B—C5B—C6B179.0 (2)O1D—C4D—C5D—C6D178.8 (2)
C3B—C4B—C5B—C6B1.7 (4)C3D—C4D—C5D—C6D0.6 (4)
O2B—C5B—C6B—C1B178.4 (2)O2D—C5D—C6D—C1D179.7 (2)
C4B—C5B—C6B—C1B1.2 (4)C4D—C5D—C6D—C1D0.4 (4)
C2B—C1B—C6B—C5B0.3 (4)C2D—C1D—C6D—C5D0.4 (4)
Cl1B—C1B—C6B—C5B178.2 (8)Cl1D—C1D—C6D—C5D178.6 (9)
Br1F—C1B—C6B—C5B177.8 (4)Br1H—C1D—C6D—C5D178.7 (6)

Experimental details

Crystal data
Chemical formulaC8H8BrClO2
Mr251.50
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)9.9264 (2), 9.9410 (2), 19.7219 (5)
α, β, γ (°)75.9259 (8), 75.9323 (8), 79.9479 (10)
V3)1817.26 (7)
Z8
Radiation typeMo Kα
µ (mm1)4.77
Crystal size (mm)0.22 × 0.22 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.360, 0.385
No. of measured, independent and
observed [I > 2σ(I)] reflections
14754, 8202, 6065
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.070, 1.04
No. of reflections8202
No. of parameters471
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.42

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.

 

Acknowledgements

This research was supported by grants ES05605, ES017425, ES013661 from the National Institute of Environmental Health Sciences, NIH (HJL), NSFC grant No. 20907037 from the National Science Fund of China (YS) and the Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education of China (YS).

References

First citationBallschmiter, K. (2003). Chemosphere, 52, 313–324.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrownlee, B. G., MacInnis, G. A. & Noton, L. R. (1993). Environ. Sci. Technol. 27, 2450–2455.  CrossRef CAS Web of Science Google Scholar
First citationCurtis, R. F., Land, D. G., Griffiths, N. M., Gee, M., Robinson, D., Peel, J. L., Dennis, C. & Gee, J. M. (1972). Nature (London), 235, 223–224.  CrossRef CAS Web of Science Google Scholar
First citationIimura, Y., Sakurai, T., Asahi, K.-i., Takahashi, N. & Oka, H. (1984). Acta Cryst. C40, 2058–2061.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPereira, C. S., Marques, J. J. F. & San Romao, M. V. (2000). Crit. Rev. Microbiol. 26, 147-162.  Web of Science CrossRef PubMed Google Scholar
First citationRissanen, K., Valkonen, J. & Knuutinen, J. (1987). Acta Cryst. C43, 1966–1968.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRissanen, K., Valkonen, J. & Mannila, B. (1988a). Acta Cryst. C44, 682–684.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRissanen, K., Valkonen, J. & Mannila, B. (1988b). Acta Cryst. C44, 684–686.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y., Buettner, G. R., Parkin, S., Wagner, B. A., Robertson, L. W. & Lehmler, H.-J. (2008). J. Org. Chem. 73, 8296–8304.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSong, Y., Parkin, S. & Lehmler, H.-J. (2010a). Acta Cryst. E66, o339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSong, Y., Parkin, S. & Lehmler, H.-J. (2010b). Acta Cryst. E66, o487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTelu, S., Parkin, S., Robertson, L. W. & Lehmler, H.-J. (2008). Acta Cryst. E64, o424.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVlachos, P., Kampioti, A., Kornaros, M. & Lyberatos, G. (2007). Eur. Food Res. Technol. 225, 653-663.  Web of Science CrossRef CAS Google Scholar
First citationWeller, F. & Gerstner, E. (1995). Z. Kristallogr. 210, 629–629.  CrossRef CAS Google Scholar
First citationWieczorek, M. W. (1980). Acta Cryst. B36, 1515–1517.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds