organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o934-o935

(E)-4-Allyl-2-[(2-hy­droxy­phen­yl)iminiometh­yl]-6-meth­oxy­phenolate

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 March 2010; accepted 4 March 2010; online 27 March 2010)

The title compound, C17H17NO3, crystallizes in a zwitterionic form with cationic iminium and anionic enolate groups. The zwitterion exists in a trans configuration about the C=N bond. The dihedral angle between the two benzene rings is 13.42 (7)°. The meth­oxy group is almost coplanar [C—O—C—C = 2.1 (2)°] with the attached ring whereas the allyl unit is oriented at a dihedral angle of 67.9 (1)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, the mol­ecules are linked into zigzag chains along [010] by O—H⋯O hydrogen bonds. In addition, weak C—H⋯π inter­actions are observed.

Related literature

For background to Schiff bases and their applications, see: Dao et al. (2000[Dao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805-813.]); Eltayeb & Ahmed (2005a[Eltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51-59.],b[Eltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97-108.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Sriram et al. (2006[Sriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127-2129.]). For related structures, see: Eltayeb et al. (2009[Eltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065-o2066.]); Tan & Liu (2009[Tan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO3

  • Mr = 283.32

  • Orthorhombic, P b c a

  • a = 14.719 (3) Å

  • b = 9.1302 (16) Å

  • c = 20.597 (4) Å

  • V = 2768.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.50 × 0.15 × 0.02 mm

Data collection
  • Bruker APEX DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.955, Tmax = 0.998

  • 16563 measured reflections

  • 4056 independent reflections

  • 2744 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.141

  • S = 1.00

  • 4056 reflections

  • 254 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.95 1.72 2.6443 (16) 166
O1—H1O1⋯O3i 0.95 2.55 3.1268 (16) 119
N1—H1N1⋯O2 0.97 (2) 1.85 (2) 2.6553 (18) 138 (2)
C14—H14BCg1ii 1.01 (2) 2.75 (2) 3.569 (2) 139 (2)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have received much attention because of their potential applications. Some of these compounds exhibit various pharmacological activities, as noted by their anticancer (Dao et al., 2000), anti-HIV (Sriram et al., 2006), antibacterial and antifungal (Karthikeyan et al., 2006) properties. In addition, some of them may be used as analytical reagents for the determination of trace elements (Eltayeb & Ahmed, 2005a,b). Previously we have reported the crystal structure of 2-((E)-{2-[(E)-2,3-dihydroxybenzylideneamino]-5-methylphenyl}- iminiomethyl)-6-hydroxyphenolate (Eltayeb et al., 2009) which exists in a zwitterionic form. The title compound is another schiff base which also crystallizes in a zwitterionic form. Herein we report its crystal structure.

The title molecule exists in a trans configuration about the CN double bond [1.3129 (19) Å], with a C6–N1–C7–C8 torsion angle of 178.13 (14)°. The molecule is slightly twisted, with the dihedral angle between the two benzene rings being 13.42 (7)°. The hydroxy group is coplanar with the attached C1–C6 benzene ring. The methoxy group is coplanar with the attached C8–C13 benzene ring [C14—O3—C12—C11 = 2.1 (2)°; r.m.s. deviation of 0.0384 (1) Å for the eight non H atoms]. The allyl unit (C15–C17) is in an (-)-anticlinal conformation as indicated by the C11—C10—C15—C16 torsion angle of -94.28 (18)°. An intramolecular N—H···O hydrogen bond between the NH+ and the phenolate O- groups generate an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances show normal values (Allen et al., 1987) and are comparable with those observed in related structures (Eltayeb et al., 2009; Tan & Liu, 2009).

In the crystal packing (Fig. 2), molecules are linked into zigzag chains along the [010] by O—H···O hydrogen bonds involving hydroxy groups, phenolate and methoxy O atoms (Table 1). Within a chain, the adjacent molecules are approximately perpendicular to each other (Fig. 2). The crystal structure is further stabilized by weak intermolecular C—H···π interactions (Table 1) involving the C8–C13 ring (centroid Cg1).

Related literature top

For background to Schiff bases and their applications, see: Dao et al. (2000); Eltayeb & Ahmed (2005a,b); Karthikeyan et al. (2006); Sriram et al. (2006). For related structures, see: Eltayeb et al. (2009); Tan & Liu (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by adding 5-allyl-2-hydroxy-3-methoxybenzaldehyde (0.768 g, 4 mmol) to a solution of 2-aminophenol (0.436 g, 4 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant red solution was filtered and the filtrate was evaporated to give a red solid product. Red plate-shaped single crystals of the title compound suitable for X-ray structure determination were obtained from diethyl ether by slow evaporation at room temperature after a few days.

Refinement top

Atom H1O1 attached to O1 was located in a difference map and then constrained to ride with Uiso = 1.5Ueq(O1). The remaining H atoms were also located in a difference map and were isotropically refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis, showing chains running along the b axis. Hydrogen bonds are shown as dashed lines.
(E)-4-Allyl-2-[(2-hydroxyphenyl)iminiomethyl]-6-methoxyphenolate top
Crystal data top
C17H17NO3F(000) = 1200
Mr = 283.32Dx = 1.360 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4056 reflections
a = 14.719 (3) Åθ = 2.0–30.2°
b = 9.1302 (16) ŵ = 0.09 mm1
c = 20.597 (4) ÅT = 100 K
V = 2768.0 (9) Å3Plate, red
Z = 80.50 × 0.15 × 0.02 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4056 independent reflections
Radiation source: sealed tube2744 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 30.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2020
Tmin = 0.955, Tmax = 0.998k = 1212
16563 measured reflectionsl = 2628
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0776P)2]
where P = (Fo2 + 2Fc2)/3
4056 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C17H17NO3V = 2768.0 (9) Å3
Mr = 283.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.719 (3) ŵ = 0.09 mm1
b = 9.1302 (16) ÅT = 100 K
c = 20.597 (4) Å0.50 × 0.15 × 0.02 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
4056 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2744 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.998Rint = 0.073
16563 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.39 e Å3
4056 reflectionsΔρmin = 0.29 e Å3
254 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01450 (7)0.45448 (12)0.30069 (5)0.0161 (2)
H1O10.03690.39300.30440.024*
O20.12030 (7)0.76365 (12)0.20618 (6)0.0180 (3)
O30.15126 (7)0.93837 (13)0.10464 (5)0.0197 (3)
N10.18381 (8)0.56151 (14)0.28699 (6)0.0135 (3)
C10.07946 (9)0.39626 (16)0.33947 (7)0.0135 (3)
C20.06178 (10)0.28421 (18)0.38347 (8)0.0167 (3)
C30.13112 (11)0.22677 (18)0.42119 (8)0.0186 (3)
C40.21898 (11)0.28105 (18)0.41570 (8)0.0177 (3)
C50.23708 (10)0.39363 (17)0.37262 (8)0.0153 (3)
C60.16809 (10)0.45100 (16)0.33395 (7)0.0136 (3)
C70.26375 (10)0.60410 (17)0.26593 (7)0.0145 (3)
C80.27799 (9)0.71113 (16)0.21797 (7)0.0133 (3)
C90.36954 (10)0.74371 (17)0.20005 (8)0.0150 (3)
C100.38828 (10)0.84469 (17)0.15316 (8)0.0166 (3)
C110.31474 (11)0.91227 (17)0.12006 (8)0.0166 (3)
C120.22584 (10)0.88183 (16)0.13544 (8)0.0147 (3)
C130.20324 (10)0.78420 (16)0.18785 (7)0.0139 (3)
C140.16825 (13)1.03310 (19)0.05078 (9)0.0221 (4)
C150.48556 (11)0.8797 (2)0.13422 (9)0.0207 (4)
C160.52342 (10)0.77196 (19)0.08627 (8)0.0188 (3)
C170.55487 (11)0.8048 (2)0.02828 (9)0.0244 (4)
H20.0021 (12)0.247 (2)0.3859 (8)0.015 (4)*
H30.1195 (13)0.144 (2)0.4528 (9)0.025 (5)*
H40.2678 (14)0.238 (2)0.4435 (10)0.031 (5)*
H50.2969 (13)0.435 (2)0.3707 (9)0.023 (5)*
H70.3152 (12)0.5554 (19)0.2862 (8)0.015 (4)*
H90.4179 (13)0.6900 (19)0.2254 (8)0.019 (5)*
H110.3273 (13)0.983 (2)0.0852 (9)0.024 (5)*
H14A0.1109 (14)1.062 (2)0.0335 (10)0.030 (5)*
H14B0.2011 (14)1.124 (2)0.0651 (10)0.034 (6)*
H14C0.2072 (13)0.985 (2)0.0176 (9)0.025 (5)*
H15A0.5199 (14)0.882 (2)0.1754 (10)0.032 (6)*
H15C0.4901 (12)0.982 (2)0.1163 (9)0.015 (4)*
H160.5258 (13)0.672 (2)0.1013 (9)0.029 (5)*
H17A0.5552 (14)0.909 (2)0.0120 (10)0.033 (5)*
H17B0.5755 (15)0.729 (2)0.0016 (10)0.038 (6)*
H1N10.1343 (15)0.611 (2)0.2647 (10)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0080 (5)0.0182 (6)0.0222 (6)0.0005 (4)0.0012 (4)0.0024 (5)
O20.0091 (5)0.0203 (6)0.0246 (6)0.0008 (4)0.0019 (4)0.0038 (5)
O30.0153 (5)0.0214 (6)0.0223 (6)0.0032 (4)0.0001 (4)0.0063 (5)
N10.0101 (6)0.0140 (6)0.0164 (7)0.0008 (5)0.0003 (5)0.0008 (5)
C10.0091 (6)0.0140 (7)0.0173 (8)0.0023 (5)0.0004 (5)0.0023 (6)
C20.0127 (7)0.0170 (8)0.0204 (8)0.0020 (6)0.0014 (6)0.0011 (6)
C30.0170 (7)0.0177 (8)0.0211 (8)0.0006 (6)0.0012 (6)0.0030 (6)
C40.0155 (7)0.0180 (8)0.0196 (8)0.0018 (6)0.0026 (6)0.0004 (6)
C50.0106 (6)0.0174 (8)0.0178 (8)0.0006 (5)0.0019 (5)0.0006 (6)
C60.0118 (6)0.0128 (7)0.0162 (8)0.0006 (5)0.0015 (5)0.0007 (6)
C70.0100 (6)0.0150 (7)0.0186 (8)0.0003 (5)0.0006 (5)0.0020 (6)
C80.0104 (6)0.0133 (7)0.0164 (8)0.0013 (5)0.0011 (5)0.0024 (6)
C90.0104 (6)0.0148 (7)0.0198 (8)0.0018 (5)0.0006 (5)0.0016 (6)
C100.0124 (7)0.0160 (7)0.0213 (8)0.0035 (6)0.0031 (6)0.0040 (6)
C110.0179 (7)0.0139 (7)0.0181 (8)0.0019 (6)0.0034 (6)0.0008 (6)
C120.0139 (7)0.0128 (7)0.0175 (8)0.0012 (5)0.0007 (5)0.0007 (6)
C130.0109 (7)0.0128 (7)0.0181 (8)0.0003 (5)0.0014 (5)0.0024 (6)
C140.0270 (9)0.0183 (8)0.0212 (9)0.0041 (7)0.0001 (7)0.0047 (7)
C150.0136 (7)0.0254 (9)0.0230 (9)0.0066 (6)0.0031 (6)0.0021 (7)
C160.0098 (6)0.0199 (8)0.0268 (9)0.0020 (6)0.0003 (6)0.0013 (7)
C170.0148 (8)0.0326 (10)0.0259 (9)0.0016 (7)0.0002 (6)0.0065 (8)
Geometric parameters (Å, º) top
O1—C11.3546 (17)C8—C131.428 (2)
O1—H1O10.9454C8—C91.4285 (19)
O2—C131.2915 (17)C9—C101.363 (2)
O3—C121.3691 (18)C9—H91.010 (18)
O3—C141.429 (2)C10—C111.420 (2)
N1—C71.3129 (19)C10—C151.518 (2)
N1—C61.4168 (19)C11—C121.375 (2)
N1—H1N10.97 (2)C11—H110.982 (19)
C1—C21.391 (2)C12—C131.439 (2)
C1—C61.4015 (19)C14—H14A0.95 (2)
C2—C31.386 (2)C14—H14B1.01 (2)
C2—H20.944 (18)C14—H14C0.99 (2)
C3—C41.390 (2)C15—C161.501 (2)
C3—H31.010 (19)C15—H15A0.99 (2)
C4—C51.384 (2)C15—H15C1.003 (19)
C4—H41.00 (2)C16—C171.316 (2)
C5—C61.393 (2)C16—H160.96 (2)
C5—H50.960 (19)C17—H17A1.01 (2)
C7—C81.405 (2)C17—H17B0.98 (2)
C7—H70.972 (18)
C1—O1—H1O1106.5C8—C9—H9115.5 (10)
C12—O3—C14116.60 (12)C9—C10—C11118.66 (14)
C7—N1—C6125.65 (13)C9—C10—C15121.01 (14)
C7—N1—H1N1112.1 (13)C11—C10—C15120.27 (15)
C6—N1—H1N1122.2 (13)C12—C11—C10121.80 (15)
O1—C1—C2122.72 (13)C12—C11—H11118.7 (12)
O1—C1—C6117.99 (13)C10—C11—H11119.5 (12)
C2—C1—C6119.29 (13)O3—C12—C11125.46 (14)
C3—C2—C1120.38 (14)O3—C12—C13113.32 (13)
C3—C2—H2121.2 (11)C11—C12—C13121.22 (14)
C1—C2—H2118.4 (11)O2—C13—C8122.23 (14)
C2—C3—C4120.32 (15)O2—C13—C12121.86 (13)
C2—C3—H3121.3 (11)C8—C13—C12115.91 (13)
C4—C3—H3118.4 (11)O3—C14—H14A107.5 (12)
C5—C4—C3119.76 (14)O3—C14—H14B110.9 (12)
C5—C4—H4121.5 (12)H14A—C14—H14B108.0 (17)
C3—C4—H4118.7 (12)O3—C14—H14C111.6 (11)
C4—C5—C6120.37 (14)H14A—C14—H14C111.9 (16)
C4—C5—H5119.9 (12)H14B—C14—H14C106.9 (16)
C6—C5—H5119.7 (12)C16—C15—C10112.41 (13)
C5—C6—C1119.88 (14)C16—C15—H15A113.0 (12)
C5—C6—N1122.62 (13)C10—C15—H15A105.5 (12)
C1—C6—N1117.48 (13)C16—C15—H15C109.9 (10)
N1—C7—C8124.88 (14)C10—C15—H15C110.7 (10)
N1—C7—H7114.9 (10)H15A—C15—H15C105.0 (16)
C8—C7—H7120.2 (10)C17—C16—C15125.35 (17)
C7—C8—C13121.01 (13)C17—C16—H16119.6 (12)
C7—C8—C9117.85 (13)C15—C16—H16115.0 (12)
C13—C8—C9121.15 (14)C16—C17—H17A121.2 (12)
C10—C9—C8120.97 (14)C16—C17—H17B121.3 (12)
C10—C9—H9123.5 (10)H17A—C17—H17B117.4 (17)
O1—C1—C2—C3178.84 (14)C8—C9—C10—C15179.82 (14)
C6—C1—C2—C30.3 (2)C9—C10—C11—C122.0 (2)
C1—C2—C3—C40.3 (2)C15—C10—C11—C12179.24 (15)
C2—C3—C4—C50.4 (2)C14—O3—C12—C112.1 (2)
C3—C4—C5—C61.1 (2)C14—O3—C12—C13178.25 (13)
C4—C5—C6—C11.1 (2)C10—C11—C12—O3177.77 (14)
C4—C5—C6—N1177.01 (14)C10—C11—C12—C132.6 (2)
O1—C1—C6—C5179.60 (14)C7—C8—C13—O25.1 (2)
C2—C1—C6—C50.4 (2)C9—C8—C13—O2175.35 (14)
O1—C1—C6—N11.4 (2)C7—C8—C13—C12174.61 (14)
C2—C1—C6—N1177.85 (13)C9—C8—C13—C125.0 (2)
C7—N1—C6—C512.8 (2)O3—C12—C13—O25.3 (2)
C7—N1—C6—C1165.40 (14)C11—C12—C13—O2174.39 (14)
C6—N1—C7—C8178.13 (14)O3—C12—C13—C8174.40 (12)
N1—C7—C8—C130.3 (2)C11—C12—C13—C85.9 (2)
N1—C7—C8—C9179.33 (14)C9—C10—C15—C1682.87 (19)
C7—C8—C9—C10178.97 (14)C11—C10—C15—C1694.28 (18)
C13—C8—C9—C100.6 (2)C10—C15—C16—C17121.37 (18)
C8—C9—C10—C113.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.951.722.6443 (16)166
O1—H1O1···O3i0.952.553.1268 (16)119
N1—H1N1···O20.97 (2)1.85 (2)2.6553 (18)138 (2)
C14—H14B···Cg1ii1.01 (2)2.75 (2)3.569 (2)139 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H17NO3
Mr283.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)14.719 (3), 9.1302 (16), 20.597 (4)
V3)2768.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.15 × 0.02
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.955, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
16563, 4056, 2744
Rint0.073
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.141, 1.00
No. of reflections4056
No. of parameters254
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.951.722.6443 (16)166
O1—H1O1···O3i0.952.553.1268 (16)119
N1—H1N1···O20.97 (2)1.85 (2)2.6553 (18)138 (2)
C14—H14B···Cg1ii1.01 (2)2.75 (2)3.569 (2)139 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1/2, z.
 

Footnotes

On study leave from Department of Chemistry, International University of Africa, Khartoum, Sudan, e-mail: nasertaha90@hotmail.com

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the E-Science Fund and RU research grants (PKIMIA/613308, PKIMIA/815002, and PKIMIA/811120). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. The authors also thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDao, V.-T., Gaspard, C., Mayer, M., Werner, G. H., Nguyen, S. N. & Michelot, R. J. (2000). Eur. J. Med. Chem. 35, 805–813.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005a). J. Sci. Tech. 6, 51–59.  Google Scholar
First citationEltayeb, N. E. & Ahmed, T. A. (2005b). Sudan J. Basic Sci. 7, 97–108.  Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Yeap, C. S., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o2065–o2066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSriram, D., Yogeeswari, P., Myneedu, N. S. & Saraswat, V. (2006). Bioorg. Med. Chem. Lett. 16, 2127–2129.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTan, G.-X. & Liu, X.-C. (2009). Acta Cryst. E65, o559.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o934-o935
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds