metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-[2-(Ethyl­amino)ethyl­imino­meth­yl]-5-meth­oxy­phenolato}(thio­cyanato-κN)­copper(II)

aDepartment of Chemistry, Baicheng Normal College, Baicheng 137000, People's Republic of China
*Correspondence e-mail: zhuyu_bcnc@sohu.com

(Received 8 March 2010; accepted 12 March 2010; online 17 March 2010)

In the title mononuclear copper(II) complex, [Cu(C12H17N2O2)(NCS)], the CuII atom is four-coordinated by an NNO-donor set of the tridentate Schiff base ligand and the N atom of a terminal thio­cyanate ligand in a slightly distorted square-planar geometry.

Related literature

For CuII complexes with Schiff base ligands, see: Dede et al. (2009[Dede, B., Ozmen, I. & Karipcin, F. (2009). Polyhedron, 28, 3967-3974.]); Rai (2010[Rai, B. K. (2010). Asian J. Chem. 22, 2761-2766.]); Rajasekar et al. (2010[Rajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136-146.]); Roper et al. (1989[Roper, J., Paulus, H. & Elias, H. (1989). Inorg. Chem. 28, 2323-2329.]). For related structures, see: Adams et al. (2003[Adams, H., Clunas, S., Cummings, L. R., Fenton, D. E. & McHugh, P. E. (2003). Inorg. Chem. Commun. 6, 837-840.]); Roy & Manassero (2010[Roy, P. & Manassero, M. (2010). Dalton Trans. pp. 1539-1545.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H17N2O2)(NCS)]

  • Mr = 342.90

  • Monoclinic, P 21 /c

  • a = 12.296 (6) Å

  • b = 10.582 (5) Å

  • c = 12.480 (6) Å

  • β = 113.810 (7)°

  • V = 1485.7 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.61 mm−1

  • T = 293 K

  • 0.30 × 0.27 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.643, Tmax = 0.670

  • 8523 measured reflections

  • 3282 independent reflections

  • 2123 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.129

  • S = 1.00

  • 3282 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.817 (3)
Cu1—N1 1.828 (3)
Cu1—N3 1.868 (3)
Cu1—N2 1.912 (4)

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Copper(II) complexes with Schiff base ligands have received much attention in coordination chemistry (Rai, 2010; Roy & Manassero, 2010; Rajasekar et al., 2010; Dede et al., 2009). In the present work, we report the the crystal structure of a new copper(II) complex, the title compound, with the Schiff base ligand 2-[(2-ethylaminoethylimino)methyl]-5-methoxyphenolate.

The CuII atom in the title complex is four-coordinated by the NNO donor set of the Schiff base ligand, and the N atom of the terminal thiocyanate ligand, in a square-planar geometry. The coordination bond distances (Table 1) are within normal ranges and comparable to those in related complexes (Roper et al., 1989; Adams et al., 2003).

Related literature top

For CuII complexes with Schiff base ligands, see: Dede et al. (2009); Rai (2010); Rajasekar et al. (2010); Roper et al. (1989). For related structures, see: Adams et al. (2003); Roy & Manassero (2010).

Experimental top

Equimolar quantities (1 mmol each) of 2-hydroxy-4-methoxybenzaldehyde, N-ethylethylenediamine, ammonium thiocyanate, and copper nitrate were mixed and stirred in a methanol-acetonitrile (2:1 v/v) solution at room temperature for 3 h. The solution was allowed to evaporate slowly to give needle-shaped single crystals.

Refinement top

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H = 0.93–0.97 Å, N–H = 0.91 Å, and Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level.
{2-[2-(Ethylamino)ethyliminomethyl]-5-methoxyphenolato}(thiocyanato-κN) copper(II) top
Crystal data top
[Cu(C12H17N2O2)(NCS)]F(000) = 708
Mr = 342.90Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2310 reflections
a = 12.296 (6) Åθ = 2.6–25.0°
b = 10.582 (5) ŵ = 1.61 mm1
c = 12.480 (6) ÅT = 293 K
β = 113.810 (7)°Block cut from needle, blue
V = 1485.7 (12) Å30.30 × 0.27 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3282 independent reflections
Radiation source: fine-focus sealed tube2123 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scanθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.643, Tmax = 0.670k = 1313
8523 measured reflectionsl = 1610
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0551P)2 + 1.5145P]
where P = (Fo2 + 2Fc2)/3
3282 reflections(Δ/σ)max = 0.001
183 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Cu(C12H17N2O2)(NCS)]V = 1485.7 (12) Å3
Mr = 342.90Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.296 (6) ŵ = 1.61 mm1
b = 10.582 (5) ÅT = 293 K
c = 12.480 (6) Å0.30 × 0.27 × 0.27 mm
β = 113.810 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3282 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2123 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.670Rint = 0.039
8523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.00Δρmax = 0.61 e Å3
3282 reflectionsΔρmin = 0.34 e Å3
183 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.55890 (4)0.38272 (4)0.94272 (4)0.04744 (18)
N10.6492 (3)0.3114 (3)1.0844 (3)0.0465 (8)
N20.4301 (3)0.2831 (3)0.9449 (3)0.0596 (9)
H2N0.36860.33820.92870.072*
N30.4579 (3)0.4525 (3)0.7995 (3)0.0488 (8)
O10.6770 (2)0.4836 (3)0.9392 (2)0.0543 (7)
O21.0326 (3)0.7210 (3)1.0840 (3)0.0718 (9)
S10.30391 (13)0.57348 (14)0.60132 (10)0.0790 (4)
C10.7807 (3)0.5063 (4)1.0246 (3)0.0460 (9)
C20.8513 (4)0.5995 (4)1.0075 (3)0.0516 (10)
H20.82490.64140.93600.062*
C30.9598 (4)0.6314 (4)1.0944 (4)0.0552 (10)
C40.9978 (5)0.7842 (5)0.9760 (4)0.0858 (17)
H4A0.98770.72400.91520.129*
H4B1.05780.84430.98010.129*
H4C0.92400.82760.95900.129*
C51.0006 (4)0.5683 (5)1.2010 (4)0.0664 (12)
H51.07400.58851.25980.080*
C60.9326 (4)0.4776 (4)1.2183 (4)0.0629 (12)
H60.96050.43651.29040.075*
C70.8217 (4)0.4421 (4)1.1327 (3)0.0480 (9)
C80.7542 (4)0.3458 (4)1.1546 (3)0.0510 (10)
H80.78840.30351.22580.061*
C90.5884 (4)0.2097 (4)1.1177 (4)0.0597 (11)
H9A0.61750.20421.20230.072*
H9B0.60240.12931.08800.072*
C100.4593 (4)0.2402 (4)1.0658 (4)0.0630 (12)
H10A0.41290.16601.06580.076*
H10B0.44210.30621.11060.076*
C110.3850 (5)0.1848 (5)0.8565 (4)0.0792 (15)
H11A0.43790.11260.88190.095*
H11B0.38790.21590.78450.095*
C120.2620 (5)0.1410 (5)0.8301 (4)0.0816 (16)
H12A0.25690.11240.90090.122*
H12B0.24220.07270.77480.122*
H12C0.20740.20950.79760.122*
C130.3932 (4)0.5018 (4)0.7173 (3)0.0459 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0569 (3)0.0430 (3)0.0396 (3)0.0019 (2)0.0166 (2)0.00224 (19)
N10.063 (2)0.0397 (17)0.0379 (16)0.0056 (15)0.0213 (15)0.0010 (13)
N20.077 (3)0.0499 (19)0.0485 (19)0.0137 (18)0.0216 (18)0.0024 (15)
N30.055 (2)0.0471 (18)0.0396 (17)0.0061 (16)0.0142 (15)0.0017 (14)
O10.0489 (16)0.0666 (18)0.0378 (14)0.0067 (14)0.0073 (12)0.0121 (12)
O20.0598 (19)0.089 (2)0.0557 (19)0.0252 (18)0.0123 (15)0.0104 (16)
S10.0831 (9)0.1010 (10)0.0463 (6)0.0400 (8)0.0192 (6)0.0180 (6)
C10.046 (2)0.050 (2)0.0409 (19)0.0040 (18)0.0167 (17)0.0023 (17)
C20.048 (2)0.063 (3)0.040 (2)0.002 (2)0.0142 (17)0.0014 (18)
C30.052 (2)0.060 (3)0.051 (2)0.004 (2)0.0181 (19)0.0141 (19)
C40.078 (4)0.106 (4)0.069 (3)0.044 (3)0.024 (3)0.008 (3)
C50.051 (3)0.078 (3)0.054 (3)0.002 (2)0.004 (2)0.007 (2)
C60.063 (3)0.068 (3)0.045 (2)0.010 (2)0.008 (2)0.003 (2)
C70.047 (2)0.050 (2)0.043 (2)0.0092 (19)0.0146 (17)0.0009 (17)
C80.064 (3)0.048 (2)0.038 (2)0.018 (2)0.0180 (19)0.0068 (17)
C90.087 (3)0.044 (2)0.047 (2)0.001 (2)0.025 (2)0.0102 (18)
C100.086 (4)0.052 (2)0.052 (2)0.018 (2)0.029 (2)0.002 (2)
C110.103 (4)0.073 (3)0.065 (3)0.030 (3)0.037 (3)0.011 (3)
C120.078 (3)0.093 (4)0.057 (3)0.029 (3)0.009 (2)0.002 (3)
C130.054 (2)0.046 (2)0.038 (2)0.0007 (19)0.0193 (18)0.0025 (17)
Geometric parameters (Å, º) top
Cu1—O11.817 (3)C4—H4B0.96
Cu1—N11.828 (3)C4—H4C0.96
Cu1—N31.868 (3)C5—C61.346 (6)
Cu1—N21.912 (4)C5—H50.93
N1—C81.286 (5)C6—C71.402 (6)
N1—C91.463 (5)C6—H60.93
N2—C111.453 (6)C7—C81.410 (6)
N2—C101.474 (5)C8—H80.93
N2—H2N0.91C9—C101.488 (6)
N3—C131.139 (5)C9—H9A0.97
O1—C11.313 (4)C9—H9B0.97
O2—C31.346 (5)C10—H10A0.97
O2—C41.409 (6)C10—H10B0.97
S1—C131.610 (4)C11—C121.487 (7)
C1—C21.386 (6)C11—H11A0.97
C1—C71.409 (5)C11—H11B0.97
C2—C31.379 (6)C12—H12A0.96
C2—H20.93C12—H12B0.96
C3—C51.389 (6)C12—H12C0.96
C4—H4A0.96
O1—Cu1—N194.97 (13)C3—C5—H5120.4
O1—Cu1—N388.49 (13)C5—C6—C7122.9 (4)
N1—Cu1—N3176.29 (15)C5—C6—H6118.5
O1—Cu1—N2177.40 (14)C7—C6—H6118.5
N1—Cu1—N286.67 (15)C6—C7—C1117.6 (4)
N3—Cu1—N289.82 (15)C6—C7—C8120.9 (4)
C8—N1—C9120.1 (3)C1—C7—C8121.6 (4)
C8—N1—Cu1126.4 (3)N1—C8—C7125.5 (3)
C9—N1—Cu1113.4 (3)N1—C8—H8117.3
C11—N2—C10114.7 (3)C7—C8—H8117.3
C11—N2—Cu1116.6 (3)N1—C9—C10107.1 (3)
C10—N2—Cu1108.9 (3)N1—C9—H9A110.3
C11—N2—H2N105.2C10—C9—H9A110.3
C10—N2—H2N105.2N1—C9—H9B110.3
Cu1—N2—H2N105.2C10—C9—H9B110.3
C13—N3—Cu1174.4 (3)H9A—C9—H9B108.5
C1—O1—Cu1127.7 (2)N2—C10—C9106.8 (4)
C3—O2—C4118.0 (3)N2—C10—H10A110.4
O1—C1—C2118.0 (3)C9—C10—H10A110.4
O1—C1—C7122.9 (4)N2—C10—H10B110.4
C2—C1—C7119.1 (4)C9—C10—H10B110.4
C3—C2—C1121.3 (4)H10A—C10—H10B108.6
C3—C2—H2119.3N2—C11—C12115.7 (4)
C1—C2—H2119.3N2—C11—H11A108.4
O2—C3—C2124.5 (4)C12—C11—H11A108.4
O2—C3—C5115.7 (4)N2—C11—H11B108.4
C2—C3—C5119.8 (4)C12—C11—H11B108.4
O2—C4—H4A109.5H11A—C11—H11B107.4
O2—C4—H4B109.5C11—C12—H12A109.5
H4A—C4—H4B109.5C11—C12—H12B109.5
O2—C4—H4C109.5H12A—C12—H12B109.5
H4A—C4—H4C109.5C11—C12—H12C109.5
H4B—C4—H4C109.5H12A—C12—H12C109.5
C6—C5—C3119.3 (4)H12B—C12—H12C109.5
C6—C5—H5120.4N3—C13—S1178.8 (4)

Experimental details

Crystal data
Chemical formula[Cu(C12H17N2O2)(NCS)]
Mr342.90
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.296 (6), 10.582 (5), 12.480 (6)
β (°) 113.810 (7)
V3)1485.7 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.61
Crystal size (mm)0.30 × 0.27 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.643, 0.670
No. of measured, independent and
observed [I > 2σ(I)] reflections
8523, 3282, 2123
Rint0.039
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.129, 1.00
No. of reflections3282
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O11.817 (3)Cu1—N31.868 (3)
Cu1—N11.828 (3)Cu1—N21.912 (4)
 

References

First citationAdams, H., Clunas, S., Cummings, L. R., Fenton, D. E. & McHugh, P. E. (2003). Inorg. Chem. Commun. 6, 837–840.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDede, B., Ozmen, I. & Karipcin, F. (2009). Polyhedron, 28, 3967–3974.  Web of Science CrossRef CAS Google Scholar
First citationRai, B. K. (2010). Asian J. Chem. 22, 2761–2766.  CAS Google Scholar
First citationRajasekar, M., Sreedaran, S., Prabu, R., Narayanan, V., Jegadeesh, R., Raaman, N. & Rahiman, A. K. (2010). J. Coord. Chem. 63, 136–146.  Web of Science CrossRef CAS Google Scholar
First citationRoper, J., Paulus, H. & Elias, H. (1989). Inorg. Chem. 28, 2323–2329.  Google Scholar
First citationRoy, P. & Manassero, M. (2010). Dalton Trans. pp. 1539–1545.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds