organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-tert-Butyl­pyridinium picrate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, Sri Ramakrishna Mission Vidyalaya Arts and Science College, Coimbatore 641 020, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 12 March 2010; accepted 24 March 2010; online 31 March 2010)

In the title compound, C9H14N+·C6H2N3O7, the three nitro groups of the picrate anion are twisted out of the plane of the attached benzene ring; the dihedral angles are 32.8 (2), 10.5 (4) and 12.3 (4)°. The pyridinium cations and picrate anions are linked via bifurcated N—H⋯(O,O) hydrogen bonds. The ionic pairs are linked into a ribbon-like structure along [101] by C—H⋯O hydrogen bonds.

Related literature

For general background to picrate complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zaderenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]); Ashwell et al. (1995[Ashwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). Nature (London), 375, 385-388.]); Owen & White (1976[Owen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165-2169.]); Shakir et al. (2009[Shakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Crystal Growth, 311, 3871-3875.]).

[Scheme 1]

Experimental

Crystal data
  • C9H14N+·C6H2N3O7

  • Mr = 364.32

  • Monoclinic, P 21 /n

  • a = 5.7669 (12) Å

  • b = 26.798 (6) Å

  • c = 11.195 (3) Å

  • β = 97.335 (6)°

  • V = 1715.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.16 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.976, Tmax = 0.982

  • 16875 measured reflections

  • 4318 independent reflections

  • 2677 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.178

  • S = 1.05

  • 4318 reflections

  • 242 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.91 (3) 1.85 (3) 2.659 (2) 148 (2)
N1—H1⋯O7i 0.91 (3) 2.38 (3) 3.085 (3) 135 (2)
C2—H2⋯O4ii 0.93 2.45 3.131 (3) 130
C6—H6⋯O1iii 0.93 2.42 3.137 (3) 133
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

It is well known that picric acid forms charge transfer molecular complexes with a number of aromatic compounds such as aromatic hydrocarbons and amines, through electrostatic or hydrogen bonding interactions (In et al., 1997; Zaderenko et al., 1997). The bonding of donor-acceptor picric acid complexes strongly depends on the nature of partners. Some of the picric acid complexes crystallize in centrosymmetric space group owing to non-linear optical properties (NLO) (Shakir et al., 2009). This is due to the aggregation of the donor-acceptor molecules in a non-centrosymmetric manner which contributes to the bulk susceptibility from intermolecular charge transfer (Ashwell et al.,1995; Owen & White, 1976). We report here the crystal structure of the title salt.

The pyridinium ring of the cation (Fig.1) is planar (r.m.s. deviation 0.019 Å). In the picrate anion, the keto O atom deviates from the benzene plane by 0.139 (3) Å. The C11—O1 bond [1.245 (2) Å] assumes a partial double bond character. The C11—C12 [1.452 (3) Å] and C11—C16 [1.436 (3) Å] bond distances are longer than the other C—C bond lengths of the benzene ring. The three nitro groups are twisted out of the attached benzene ring by 32.8 (2)° [N17/O2/O3], 10.5 (4)° [N18/O4/O5] and 12.3 (4)° [N19/O6/O7].

In the crystal, the cations and anions are linked via N—H···O hydrogen bonds involving the phenolate O atom and one of the nitro O atoms. The ionic pairs are linked into a ribbon-like structure along the [101] by C—H···O hydrogen bonds (Fig.2).

Related literature top

For general background to picrate complexes, see: In et al. (1997); Zaderenko et al. (1997); Ashwell et al. (1995); Owen & White (1976); Shakir et al. (2009).

Experimental top

Equimolar solutions of 4-tertiarybutyl pyridine in methanol and picric acid in methanol were mixed together and the solution was stirred well for 1 h and the precipitated salt was filtered off. The salt was repeatedly recrystallised from methanol to get single crystals suitable for X-ray analysis.

Refinement top

The N-bound H atom was located in a difference map and refined freely. C-bound H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The displacement ellipsoids for the methyl carbons (C8-C10) of the tert-butyl group are elongated, suggesting possible disorder i.e free rotation of the tert-butyl group. Attempts to model the tert-butyl group as disordered over two sites did not give satisfactory results. Hence the original model was retained.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-tert-Butylpyridinium picrate top
Crystal data top
C9H14N+·C6H2N3O7F(000) = 760
Mr = 364.32Dx = 1.410 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2565 reflections
a = 5.7669 (12) Åθ = 1.5–28.5°
b = 26.798 (6) ŵ = 0.11 mm1
c = 11.195 (3) ÅT = 293 K
β = 97.335 (6)°Block, colourless
V = 1715.9 (7) Å30.21 × 0.19 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4318 independent reflections
Radiation source: fine-focus sealed tube2677 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 28.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.976, Tmax = 0.982k = 3435
16875 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.3243P]
where P = (Fo2 + 2Fc2)/3
4318 reflections(Δ/σ)max = 0.001
242 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C9H14N+·C6H2N3O7V = 1715.9 (7) Å3
Mr = 364.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.7669 (12) ŵ = 0.11 mm1
b = 26.798 (6) ÅT = 293 K
c = 11.195 (3) Å0.21 × 0.19 × 0.16 mm
β = 97.335 (6)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4318 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2677 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.027
16875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.48 e Å3
4318 reflectionsΔρmin = 0.18 e Å3
242 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2606 (3)0.00115 (5)0.17613 (13)0.0663 (4)
O20.5627 (3)0.05436 (6)0.32430 (15)0.0744 (4)
O30.8672 (3)0.00990 (7)0.37736 (16)0.0800 (5)
O40.7078 (4)0.14493 (6)0.57283 (18)0.0991 (7)
O50.3706 (4)0.17951 (7)0.5339 (2)0.1081 (7)
O60.1374 (4)0.12612 (8)0.1958 (3)0.1319 (10)
O70.1413 (3)0.05113 (7)0.13505 (15)0.0829 (5)
N10.5892 (3)0.43662 (7)0.37124 (16)0.0627 (4)
H10.516 (5)0.4666 (11)0.362 (3)0.097 (9)*
C20.5004 (4)0.39966 (9)0.3030 (2)0.0669 (6)
H20.37050.40530.24630.080*
C30.5967 (4)0.35326 (8)0.31436 (19)0.0631 (5)
H30.53560.32770.26370.076*
C40.7843 (3)0.34401 (7)0.40070 (18)0.0545 (5)
C50.8766 (4)0.38456 (8)0.46659 (19)0.0667 (6)
H51.00770.38030.52330.080*
C60.7790 (4)0.43054 (9)0.45000 (19)0.0715 (6)
H60.84510.45770.49370.086*
C70.8842 (4)0.29206 (8)0.4249 (2)0.0732 (6)
C80.7573 (6)0.25297 (11)0.3428 (4)0.1142 (11)
H8A0.78580.25890.26130.171*
H8B0.59250.25490.34750.171*
H8C0.81340.22040.36770.171*
C90.8433 (7)0.27804 (12)0.5529 (3)0.1227 (12)
H9A0.89430.24440.56960.184*
H9B0.67970.28070.56030.184*
H9C0.93020.30020.60920.184*
C101.1361 (5)0.29230 (13)0.4139 (6)0.179 (3)
H10A1.16200.30940.34150.268*
H10B1.19130.25860.41100.268*
H10C1.21930.30900.48220.268*
C110.3052 (3)0.03289 (7)0.25697 (16)0.0529 (4)
C120.5135 (3)0.03034 (7)0.34450 (16)0.0508 (4)
C130.5836 (3)0.06717 (7)0.42427 (17)0.0545 (5)
H130.72450.06450.47450.065*
C140.4436 (4)0.10853 (7)0.42986 (18)0.0594 (5)
C150.2372 (4)0.11350 (7)0.35493 (19)0.0615 (5)
H150.14290.14130.36080.074*
C160.1713 (3)0.07717 (7)0.27149 (17)0.0568 (5)
N170.6573 (3)0.01424 (6)0.34792 (14)0.0580 (4)
N180.5107 (4)0.14682 (7)0.51824 (18)0.0770 (6)
N190.0483 (3)0.08495 (8)0.19498 (17)0.0707 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0751 (9)0.0638 (9)0.0581 (8)0.0153 (7)0.0019 (7)0.0106 (7)
O20.0854 (10)0.0527 (9)0.0874 (11)0.0013 (7)0.0194 (8)0.0060 (8)
O30.0656 (10)0.0859 (12)0.0845 (11)0.0082 (8)0.0058 (8)0.0085 (9)
O40.1186 (14)0.0598 (10)0.1032 (13)0.0103 (9)0.0463 (12)0.0089 (9)
O50.1340 (17)0.0605 (11)0.1192 (16)0.0156 (11)0.0245 (13)0.0300 (10)
O60.1079 (15)0.0853 (15)0.181 (2)0.0249 (12)0.0669 (16)0.0217 (14)
O70.0782 (10)0.0846 (11)0.0774 (10)0.0123 (9)0.0226 (8)0.0048 (9)
N10.0751 (11)0.0559 (10)0.0575 (9)0.0129 (9)0.0101 (8)0.0106 (8)
C20.0577 (11)0.0668 (13)0.0720 (13)0.0010 (10)0.0075 (9)0.0177 (11)
C30.0625 (12)0.0542 (12)0.0683 (12)0.0073 (9)0.0087 (9)0.0063 (9)
C40.0507 (10)0.0532 (10)0.0587 (11)0.0022 (8)0.0038 (8)0.0099 (8)
C50.0692 (13)0.0670 (13)0.0579 (11)0.0038 (10)0.0148 (9)0.0055 (10)
C60.0972 (16)0.0614 (13)0.0527 (11)0.0015 (11)0.0024 (11)0.0025 (9)
C70.0648 (12)0.0551 (12)0.0963 (17)0.0080 (10)0.0022 (11)0.0165 (11)
C80.122 (3)0.0661 (17)0.150 (3)0.0173 (16)0.000 (2)0.0063 (18)
C90.161 (3)0.084 (2)0.114 (2)0.001 (2)0.014 (2)0.0452 (18)
C100.0698 (19)0.087 (2)0.386 (8)0.0310 (16)0.058 (3)0.059 (3)
C110.0595 (11)0.0507 (10)0.0481 (9)0.0149 (8)0.0051 (8)0.0020 (8)
C120.0559 (10)0.0482 (10)0.0483 (9)0.0056 (8)0.0069 (8)0.0042 (8)
C130.0596 (10)0.0497 (10)0.0516 (10)0.0089 (8)0.0024 (8)0.0057 (8)
C140.0733 (12)0.0422 (10)0.0590 (11)0.0101 (9)0.0054 (9)0.0005 (8)
C150.0681 (12)0.0457 (10)0.0678 (12)0.0029 (9)0.0026 (9)0.0033 (9)
C160.0572 (10)0.0544 (11)0.0560 (10)0.0081 (9)0.0042 (8)0.0057 (9)
N170.0661 (11)0.0581 (10)0.0504 (9)0.0002 (8)0.0096 (7)0.0010 (7)
N180.1021 (15)0.0435 (10)0.0770 (12)0.0075 (9)0.0203 (11)0.0017 (8)
N190.0655 (11)0.0675 (12)0.0741 (12)0.0054 (9)0.0102 (9)0.0049 (9)
Geometric parameters (Å, º) top
O1—C111.245 (2)C7—C91.529 (4)
O2—N171.219 (2)C8—H8A0.96
O3—N171.219 (2)C8—H8B0.96
O4—N181.221 (3)C8—H8C0.96
O5—N181.219 (3)C9—H9A0.96
O6—N191.218 (3)C9—H9B0.96
O7—N191.211 (2)C9—H9C0.96
N1—C21.314 (3)C10—H10A0.96
N1—C61.325 (3)C10—H10B0.96
N1—H10.91 (3)C10—H10C0.96
C2—C31.361 (3)C11—C161.436 (3)
C2—H20.93C11—C121.452 (3)
C3—C41.378 (3)C12—C131.357 (3)
C3—H30.93C12—N171.452 (3)
C4—C51.381 (3)C13—C141.377 (3)
C4—C71.518 (3)C13—H130.93
C5—C61.357 (3)C14—C151.372 (3)
C5—H50.93C14—N181.444 (3)
C6—H60.93C15—C161.369 (3)
C7—C101.473 (4)C15—H150.93
C7—C81.519 (4)C16—N191.451 (3)
C2—N1—C6121.45 (19)H9B—C9—H9C109.5
C2—N1—H1117.2 (18)C7—C10—H10A109.5
C6—N1—H1121.3 (18)C7—C10—H10B109.5
N1—C2—C3120.67 (18)H10A—C10—H10B109.5
N1—C2—H2119.7C7—C10—H10C109.5
C3—C2—H2119.7H10A—C10—H10C109.5
C2—C3—C4120.3 (2)H10B—C10—H10C109.5
C2—C3—H3119.9O1—C11—C16125.64 (17)
C4—C3—H3119.9O1—C11—C12122.35 (18)
C3—C4—C5116.58 (18)C16—C11—C12111.90 (16)
C3—C4—C7122.42 (19)C13—C12—C11124.14 (17)
C5—C4—C7120.99 (18)C13—C12—N17117.36 (16)
C6—C5—C4121.09 (18)C11—C12—N17118.50 (16)
C6—C5—H5119.5C12—C13—C14119.20 (17)
C4—C5—H5119.5C12—C13—H13120.4
N1—C6—C5119.7 (2)C14—C13—H13120.4
N1—C6—H6120.2C15—C14—C13121.19 (18)
C5—C6—H6120.2C15—C14—N18119.05 (19)
C10—C7—C4109.7 (2)C13—C14—N18119.73 (18)
C10—C7—C8110.9 (3)C16—C15—C14119.45 (19)
C4—C7—C8112.5 (2)C16—C15—H15120.3
C10—C7—C9110.5 (3)C14—C15—H15120.3
C4—C7—C9107.0 (2)C15—C16—C11123.94 (17)
C8—C7—C9106.1 (2)C15—C16—N19116.49 (18)
C7—C8—H8A109.5C11—C16—N19119.57 (17)
C7—C8—H8B109.5O3—N17—O2122.98 (18)
H8A—C8—H8B109.5O3—N17—C12118.23 (17)
C7—C8—H8C109.5O2—N17—C12118.77 (17)
H8A—C8—H8C109.5O5—N18—O4123.3 (2)
H8B—C8—H8C109.5O5—N18—C14119.00 (19)
C7—C9—H9A109.5O4—N18—C14117.7 (2)
C7—C9—H9B109.5O7—N19—O6121.66 (19)
H9A—C9—H9B109.5O7—N19—C16120.72 (19)
C7—C9—H9C109.5O6—N19—C16117.60 (19)
H9A—C9—H9C109.5
C6—N1—C2—C32.4 (3)C12—C13—C14—N18177.02 (19)
N1—C2—C3—C42.2 (3)C13—C14—C15—C161.3 (3)
C2—C3—C4—C54.7 (3)N18—C14—C15—C16179.48 (19)
C2—C3—C4—C7174.3 (2)C14—C15—C16—C110.5 (3)
C3—C4—C5—C62.9 (3)C14—C15—C16—N19179.75 (19)
C7—C4—C5—C6176.1 (2)O1—C11—C16—C15173.87 (19)
C2—N1—C6—C54.2 (3)C12—C11—C16—C152.3 (3)
C4—C5—C6—N11.5 (4)O1—C11—C16—N196.4 (3)
C3—C4—C7—C10124.9 (3)C12—C11—C16—N19177.37 (16)
C5—C4—C7—C1056.2 (4)C13—C12—N17—O331.6 (2)
C3—C4—C7—C80.9 (3)C11—C12—N17—O3148.47 (18)
C5—C4—C7—C8179.9 (2)C13—C12—N17—O2146.61 (18)
C3—C4—C7—C9115.2 (3)C11—C12—N17—O233.3 (2)
C5—C4—C7—C963.7 (3)C15—C14—N18—O58.6 (3)
O1—C11—C12—C13171.42 (18)C13—C14—N18—O5169.7 (2)
C16—C11—C12—C134.9 (3)C15—C14—N18—O4170.6 (2)
O1—C11—C12—N178.6 (3)C13—C14—N18—O411.1 (3)
C16—C11—C12—N17175.02 (16)C15—C16—N19—O7166.1 (2)
C11—C12—C13—C144.5 (3)C11—C16—N19—O713.6 (3)
N17—C12—C13—C14175.42 (17)C15—C16—N19—O612.1 (3)
C12—C13—C14—C151.2 (3)C11—C16—N19—O6168.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (3)1.85 (3)2.659 (2)148 (2)
N1—H1···O7i0.91 (3)2.38 (3)3.085 (3)135 (2)
C2—H2···O4ii0.932.453.131 (3)130
C6—H6···O1iii0.932.423.137 (3)133
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H14N+·C6H2N3O7
Mr364.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.7669 (12), 26.798 (6), 11.195 (3)
β (°) 97.335 (6)
V3)1715.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.21 × 0.19 × 0.16
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.976, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
16875, 4318, 2677
Rint0.027
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.178, 1.05
No. of reflections4318
No. of parameters242
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.48, 0.18

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (3)1.85 (3)2.659 (2)148 (2)
N1—H1···O7i0.91 (3)2.38 (3)3.085 (3)135 (2)
C2—H2···O4ii0.932.453.131 (3)130
C6—H6···O1iii0.932.423.137 (3)133
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors wish to thank TBI Consultancy, University of Madras, for the data collection.

References

First citationAshwell, G. J., Jefferies, G., Hamilton, D. G., Lynch, D. E., Roberts, M. P. S., Bahra, G. S. & Brown, C. R. (1995). Nature (London), 375, 385–388.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOwen, J. R. & White, E. A. D. (1976). J. Mater. Sci. 11, 2165–2169.  CrossRef CAS Web of Science Google Scholar
First citationShakir, M., Kushwaha, S. K., Maurya, K. K., Arora, M. & Bhagavannarayana, G. (2009). J. Crystal Growth, 311, 3871–3875.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds