organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hydr­­oxy-3-(1′-methyl-2-oxo-4′-phenyl­spiro­[indoline-3,2′-pyrrolidine]-3′-yl­carbon­yl)quinolin-2(1H)-one

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Chemistry, School of Chemical Sciences, Bharathiar University, Coimbatore 641 046, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 15 March 2010; accepted 20 March 2010; online 27 March 2010)

In the title compound, C28H23N3O4, the dihedral angle between the quinoline and indole ring systems is 29.30 (5)°. The pyrrolidine ring adopts a twist conformation. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. A weak intra­molecular C3—H3⋯O3 inter­action is also observed. In the crystal, mol­ecules are linked by two sets of N—H⋯O hydrogen bonds, forming centrosymmetric dimers containing two R22(8) ring motifs. The dimers are linked via C—H⋯π inter­actions.

Related literature

For general background to indole, quinoline and pyrrolidine derivatives, see: Amalraj et al. (2003[Amalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407-419.]); Cordell (1981[Cordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.]); Suzuki et al. (1994[Suzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119-6122.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C28H23N3O4

  • Mr = 465.49

  • Triclinic, [P \overline 1]

  • a = 9.6918 (3) Å

  • b = 11.0258 (3) Å

  • c = 12.9663 (4) Å

  • α = 69.111 (1)°

  • β = 72.044 (2)°

  • γ = 66.410 (1)°

  • V = 1163.93 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.982, Tmax = 0.982

  • 21655 measured reflections

  • 5795 independent reflections

  • 4635 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.119

  • S = 1.03

  • 5795 reflections

  • 329 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg6 is the centroid of the C26–C31 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O2 0.99 (2) 1.56 (2) 2.4840 (14) 155 (2)
N8—H8⋯O3i 0.89 (2) 1.92 (2) 2.7837 (13) 165 (2)
N18—H18⋯O1i 0.90 (2) 1.95 (2) 2.8497 (14) 177 (2)
C3—H3⋯O3 0.98 2.21 2.7944 (13) 117
C21—H21⋯Cg6ii 0.93 2.72 3.5360 (18) 147
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyrrolidine compounds possess antimicrobial and antifungal activities against various pathogens (Amalraj et al., 2003). Several optically active pyrrolidine compounds are used as intermediates in controlled asymmetric synthesis (Suzuki et al., 1994). The spiro- indole-pyrrolidine ring system is a frequently encountered structural motif in many biologically important and pharmacologically relevant alkaloids, e.g. vincrinstine, vinblastine and spirotypostatins (Cordell, 1981). Against this background and to ascertain the detailed information on its molecular conformation, the X-ray structure determination of the title compound has been carried out.

The pyrrolidine ring (N1/C2-C5) in the molecule adopts a twist conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.426 (1) Å, ϕ = 335.5 (2)° and Δ2(C3) = 6.8 (2)°. The sum of the bond angles around atom N1 (337.3°) of the pyrrolidine ring indicates sp3 hybridization. The indole and quinoline ring systems are planar and keto atoms O1 and O3 deviate from the attached ring system by 0.011 (1) and -0.122 (1) Å, respectively. The dihedral angle between the indole and quinoline ring systems is 29.30 (5)°. An intramolecular O4—H4···O2 hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). A weak intramolecular C3—H3···O3 interaction is also observed.

The molecules at (x, y, z) and (-x, 2-y, -z) are linked by two sets of N8—H8···O3 and N18—H18···O1 hydrogen bonds to form a centrosymmetric dimer containing two R22(8) ring motifs (Fig. 2).

Related literature top

For general background to indole, quinoline and pyrrolidine derivatives, see: Amalraj et al. (2003); Cordell (1981); Suzuki et al. (1994). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 3-cinnamoyl-4-hydroxyquinolin-2(1H)-one (0.5 mmol), isatin (0.5 mmol) and sarcosine (0.55 mmol) was refluxed in methanol until the disappearance of the starting materials as evidenced by the TLC. After completion of the reaction, the solvent was removed in vacuo and the residue was chromatographed on silica gel using hexane-ethyl acetate mixture (7:3) as eluent to give the title compound. The compound was recrystallized in DMF-methanol (3:7 v/v).

Refinement top

N- and O-bound H atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-Hydroxy-3-(1'-methyl-2-oxo-4'-phenylspiro[indoline-3,2'-pyrrolidine]-3- ylcarbonyl)quinolin-2(1H)-one top
Crystal data top
C28H23N3O4Z = 2
Mr = 465.49F(000) = 488
Triclinic, P1Dx = 1.328 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6918 (3) ÅCell parameters from 1865 reflections
b = 11.0258 (3) Åθ = 1.7–28.4°
c = 12.9663 (4) ŵ = 0.09 mm1
α = 69.111 (1)°T = 293 K
β = 72.044 (2)°Block, colourless
γ = 66.410 (1)°0.20 × 0.20 × 0.20 mm
V = 1163.93 (6) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5795 independent reflections
Radiation source: fine-focus sealed tube4635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 28.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.982, Tmax = 0.982k = 1414
21655 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2023P]
where P = (Fo2 + 2Fc2)/3
5795 reflections(Δ/σ)max = 0.008
329 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C28H23N3O4γ = 66.410 (1)°
Mr = 465.49V = 1163.93 (6) Å3
Triclinic, P1Z = 2
a = 9.6918 (3) ÅMo Kα radiation
b = 11.0258 (3) ŵ = 0.09 mm1
c = 12.9663 (4) ÅT = 293 K
α = 69.111 (1)°0.20 × 0.20 × 0.20 mm
β = 72.044 (2)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5795 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4635 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.023
21655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.22 e Å3
5795 reflectionsΔρmin = 0.19 e Å3
329 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12393 (11)0.84110 (9)0.20477 (8)0.0513 (2)
O20.31591 (12)0.88012 (10)0.35337 (8)0.0540 (2)
O30.17428 (11)0.93755 (10)0.06203 (7)0.0489 (2)
O40.43677 (12)1.06028 (12)0.24273 (9)0.0577 (3)
N10.11028 (12)0.89412 (11)0.41897 (8)0.0438 (2)
C20.03598 (13)0.94481 (12)0.30309 (9)0.0377 (2)
C30.13212 (13)0.83758 (11)0.29618 (9)0.0362 (2)
H30.15340.79890.23340.043*
C40.12577 (14)0.72173 (12)0.40670 (9)0.0398 (3)
H40.16350.73800.46090.048*
C50.04598 (15)0.74471 (13)0.44758 (10)0.0451 (3)
H5A0.08280.70670.40860.054*
H5B0.07020.70470.52800.054*
C60.27726 (17)0.95032 (17)0.44161 (13)0.0608 (4)
H6A0.31750.92230.39810.091*
H6B0.30851.04880.42140.091*
H6C0.31590.91700.52020.091*
C70.10803 (14)0.94192 (12)0.21255 (9)0.0405 (3)
N80.15228 (13)1.07050 (11)0.14433 (9)0.0465 (3)
C90.11390 (14)1.16162 (12)0.17404 (10)0.0437 (3)
C100.13151 (19)1.29824 (14)0.12047 (13)0.0604 (4)
H100.17051.34160.05460.072*
C110.0888 (2)1.36838 (15)0.16859 (15)0.0669 (4)
H110.09701.46000.13320.080*
C120.03449 (19)1.30537 (14)0.26777 (14)0.0594 (4)
H120.01031.35590.29970.071*
C130.01539 (15)1.16707 (13)0.32065 (11)0.0480 (3)
H130.02161.12430.38740.058*
C140.05276 (14)1.09499 (12)0.27148 (9)0.0395 (2)
C150.25320 (13)0.90191 (11)0.27531 (9)0.0378 (2)
C160.29296 (13)0.99495 (11)0.16590 (9)0.0363 (2)
C170.24039 (13)1.01026 (11)0.06679 (9)0.0377 (2)
N180.26902 (12)1.11132 (10)0.02685 (8)0.0419 (2)
C190.34942 (13)1.19400 (12)0.03571 (10)0.0408 (3)
C200.37500 (16)1.29242 (13)0.13735 (12)0.0515 (3)
H200.33611.30350.19860.062*
C210.45814 (18)1.37192 (15)0.14509 (13)0.0597 (4)
H210.47561.43720.21220.072*
C220.51668 (19)1.35655 (16)0.05436 (14)0.0624 (4)
H220.57251.41170.06130.075*
C230.49284 (16)1.26065 (15)0.04533 (13)0.0533 (3)
H230.53261.25060.10580.064*
C240.40805 (13)1.17747 (12)0.05590 (10)0.0412 (3)
C250.37906 (13)1.07426 (12)0.15761 (10)0.0403 (3)
C260.22252 (15)0.58092 (12)0.38987 (10)0.0435 (3)
C270.33649 (18)0.49550 (14)0.45126 (13)0.0590 (4)
H270.35030.52290.50640.071*
C280.4310 (2)0.36850 (16)0.43128 (17)0.0739 (5)
H280.50780.31240.47260.089*
C290.4112 (2)0.32639 (15)0.35130 (16)0.0695 (4)
H290.47550.24260.33730.083*
C300.29633 (18)0.40778 (15)0.29184 (14)0.0594 (4)
H300.28140.37830.23850.071*
C310.20241 (16)0.53399 (13)0.31095 (11)0.0492 (3)
H310.12450.58830.27030.059*
H4A0.405 (3)0.985 (2)0.301 (2)0.106 (7)*
H80.1719 (19)1.0831 (17)0.0782 (15)0.065 (5)*
H180.2265 (18)1.1249 (15)0.0844 (14)0.054 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0677 (6)0.0516 (5)0.0457 (5)0.0282 (4)0.0212 (4)0.0070 (4)
O20.0656 (6)0.0651 (6)0.0408 (5)0.0325 (5)0.0224 (4)0.0019 (4)
O30.0688 (6)0.0569 (5)0.0340 (4)0.0363 (5)0.0133 (4)0.0061 (4)
O40.0679 (6)0.0729 (7)0.0496 (5)0.0398 (5)0.0200 (5)0.0094 (5)
N10.0470 (6)0.0469 (6)0.0327 (5)0.0145 (4)0.0058 (4)0.0078 (4)
C20.0430 (6)0.0406 (6)0.0306 (5)0.0140 (5)0.0105 (4)0.0075 (4)
C30.0437 (6)0.0344 (5)0.0303 (5)0.0128 (4)0.0101 (4)0.0060 (4)
C40.0495 (6)0.0391 (6)0.0311 (5)0.0170 (5)0.0125 (4)0.0029 (4)
C50.0527 (7)0.0478 (6)0.0328 (5)0.0211 (5)0.0077 (5)0.0036 (5)
C60.0495 (8)0.0672 (9)0.0528 (8)0.0153 (7)0.0008 (6)0.0134 (7)
C70.0427 (6)0.0456 (6)0.0346 (5)0.0155 (5)0.0099 (4)0.0088 (5)
N80.0553 (6)0.0470 (6)0.0392 (5)0.0141 (5)0.0214 (5)0.0065 (4)
C90.0465 (6)0.0416 (6)0.0411 (6)0.0093 (5)0.0138 (5)0.0102 (5)
C100.0755 (10)0.0439 (7)0.0574 (8)0.0109 (7)0.0311 (7)0.0028 (6)
C110.0842 (11)0.0372 (7)0.0783 (11)0.0144 (7)0.0298 (9)0.0087 (7)
C120.0701 (9)0.0455 (7)0.0703 (9)0.0146 (6)0.0219 (7)0.0222 (7)
C130.0535 (7)0.0459 (7)0.0469 (7)0.0106 (5)0.0150 (5)0.0169 (5)
C140.0420 (6)0.0387 (6)0.0355 (5)0.0098 (4)0.0089 (4)0.0100 (4)
C150.0423 (6)0.0371 (5)0.0345 (5)0.0112 (4)0.0100 (4)0.0097 (4)
C160.0380 (6)0.0364 (5)0.0350 (5)0.0115 (4)0.0076 (4)0.0102 (4)
C170.0409 (6)0.0386 (6)0.0331 (5)0.0138 (4)0.0059 (4)0.0093 (4)
N180.0495 (6)0.0438 (5)0.0344 (5)0.0199 (4)0.0101 (4)0.0058 (4)
C190.0386 (6)0.0362 (5)0.0431 (6)0.0114 (4)0.0028 (5)0.0110 (5)
C200.0535 (8)0.0456 (7)0.0473 (7)0.0178 (6)0.0058 (6)0.0046 (5)
C210.0603 (8)0.0479 (7)0.0601 (8)0.0249 (6)0.0001 (7)0.0038 (6)
C220.0618 (9)0.0573 (8)0.0727 (10)0.0348 (7)0.0006 (7)0.0157 (7)
C230.0503 (7)0.0564 (8)0.0598 (8)0.0265 (6)0.0044 (6)0.0179 (6)
C240.0374 (6)0.0399 (6)0.0462 (6)0.0137 (5)0.0034 (5)0.0142 (5)
C250.0389 (6)0.0436 (6)0.0408 (6)0.0134 (5)0.0077 (5)0.0142 (5)
C260.0488 (7)0.0377 (6)0.0413 (6)0.0192 (5)0.0094 (5)0.0012 (5)
C270.0668 (9)0.0463 (7)0.0622 (9)0.0177 (6)0.0276 (7)0.0006 (6)
C280.0695 (10)0.0471 (8)0.0905 (12)0.0093 (7)0.0319 (9)0.0010 (8)
C290.0670 (10)0.0402 (7)0.0916 (12)0.0172 (7)0.0074 (9)0.0137 (7)
C300.0652 (9)0.0512 (8)0.0671 (9)0.0294 (7)0.0005 (7)0.0204 (7)
C310.0530 (7)0.0451 (7)0.0511 (7)0.0209 (6)0.0090 (6)0.0102 (5)
Geometric parameters (Å, º) top
O1—C71.2232 (15)C12—H120.93
O2—C151.2412 (14)C13—C141.3797 (17)
O3—C171.2360 (14)C13—H130.93
O4—C251.3210 (15)C15—C161.4679 (15)
O4—H4A0.99 (2)C16—C251.3908 (16)
N1—C61.4572 (18)C16—C171.4559 (15)
N1—C51.4577 (16)C17—N181.3666 (15)
N1—C21.4645 (15)N18—C191.3748 (16)
C2—C141.5092 (16)N18—H180.900 (16)
C2—C71.5546 (16)C19—C241.3950 (17)
C2—C31.5824 (16)C19—C201.4035 (17)
C3—C151.5123 (16)C20—C211.371 (2)
C3—C41.5466 (15)C20—H200.93
C3—H30.98C21—C221.388 (2)
C4—C261.5124 (17)C21—H210.93
C4—C51.5265 (18)C22—C231.371 (2)
C4—H40.98C22—H220.93
C5—H5A0.97C23—C241.4068 (18)
C5—H5B0.97C23—H230.93
C6—H6A0.96C24—C251.4389 (17)
C6—H6B0.96C26—C271.3840 (18)
C6—H6C0.96C26—C311.3907 (18)
C7—N81.3526 (16)C27—C281.397 (2)
N8—C91.3999 (17)C27—H270.93
N8—H80.886 (18)C28—C291.366 (3)
C9—C101.3791 (18)C28—H280.93
C9—C141.3922 (16)C29—C301.369 (2)
C10—C111.385 (2)C29—H290.93
C10—H100.93C30—C311.385 (2)
C11—C121.379 (2)C30—H300.93
C11—H110.93C31—H310.93
C12—C131.3915 (19)
C25—O4—H4A102.8 (13)C14—C13—H13120.9
C6—N1—C5115.61 (11)C12—C13—H13120.9
C6—N1—C2115.01 (10)C13—C14—C9120.22 (11)
C5—N1—C2106.72 (9)C13—C14—C2131.02 (10)
N1—C2—C14113.47 (9)C9—C14—C2108.75 (10)
N1—C2—C7113.94 (10)O2—C15—C16119.22 (11)
C14—C2—C7101.31 (9)O2—C15—C3119.46 (10)
N1—C2—C3102.76 (8)C16—C15—C3121.25 (9)
C14—C2—C3117.72 (10)C25—C16—C17119.02 (10)
C7—C2—C3107.99 (9)C25—C16—C15118.98 (10)
C15—C3—C4114.61 (9)C17—C16—C15121.97 (10)
C15—C3—C2112.81 (9)O3—C17—N18118.80 (10)
C4—C3—C2105.06 (9)O3—C17—C16124.44 (10)
C15—C3—H3108.0N18—C17—C16116.76 (10)
C4—C3—H3108.0N18—C19—C24119.67 (11)
C2—C3—H3108.0N18—C19—C20119.99 (12)
C26—C4—C5115.35 (10)C24—C19—C20120.32 (12)
C26—C4—C3112.53 (9)C21—C20—C19119.04 (14)
C5—C4—C3102.87 (9)C21—C20—H20120.5
C26—C4—H4108.6C19—C20—H20120.5
C5—C4—H4108.6C20—C21—C22121.10 (13)
C3—C4—H4108.6C20—C21—H21119.4
N1—C5—C4102.03 (10)C22—C21—H21119.4
N1—C5—H5A111.4C23—C22—C21120.47 (14)
C4—C5—H5A111.4C23—C22—H22119.8
N1—C5—H5B111.4C21—C22—H22119.8
C4—C5—H5B111.4C22—C23—C24119.78 (14)
H5A—C5—H5B109.2C22—C23—H23120.1
N1—C6—H6A109.5C24—C23—H23120.1
N1—C6—H6B109.5C19—C24—C23119.28 (12)
H6A—C6—H6B109.5C19—C24—C25117.81 (11)
N1—C6—H6C109.5C23—C24—C25122.91 (12)
H6A—C6—H6C109.5O4—C25—C16121.98 (11)
H6B—C6—H6C109.5O4—C25—C24116.49 (11)
O1—C7—N8125.56 (11)C16—C25—C24121.52 (11)
O1—C7—C2126.01 (10)C27—C26—C31117.78 (13)
N8—C7—C2108.42 (10)C27—C26—C4120.84 (12)
C7—N8—C9111.31 (10)C31—C26—C4121.36 (11)
C7—N8—H8119.7 (11)C26—C27—C28120.68 (15)
C9—N8—H8125.8 (11)C26—C27—H27119.7
C10—C9—C14121.77 (12)C28—C27—H27119.7
C10—C9—N8128.28 (12)C29—C28—C27120.29 (15)
C14—C9—N8109.94 (10)C29—C28—H28119.9
C9—C10—C11117.42 (13)C27—C28—H28119.9
C9—C10—H10121.3C28—C29—C30119.90 (15)
C11—C10—H10121.3C28—C29—H29120.0
C12—C11—C10121.45 (14)C30—C29—H29120.0
C12—C11—H11119.3C29—C30—C31120.13 (15)
C10—C11—H11119.3C29—C30—H30119.9
C11—C12—C13120.76 (13)C31—C30—H30119.9
C11—C12—H12119.6C30—C31—C26121.18 (13)
C13—C12—H12119.6C30—C31—H31119.4
C14—C13—C12118.27 (12)C26—C31—H31119.4
C6—N1—C2—C1467.51 (14)C4—C3—C15—O214.08 (15)
C5—N1—C2—C14162.83 (10)C2—C3—C15—O2106.11 (12)
C6—N1—C2—C747.74 (15)C4—C3—C15—C16168.83 (10)
C5—N1—C2—C781.91 (12)C2—C3—C15—C1670.98 (13)
C6—N1—C2—C3164.29 (11)O2—C15—C16—C2510.92 (17)
C5—N1—C2—C334.63 (11)C3—C15—C16—C25166.18 (10)
N1—C2—C3—C15116.48 (10)O2—C15—C16—C17171.31 (11)
C14—C2—C3—C159.00 (13)C3—C15—C16—C1711.59 (16)
C7—C2—C3—C15122.80 (10)C25—C16—C17—O3173.82 (11)
N1—C2—C3—C49.05 (11)C15—C16—C17—O38.41 (18)
C14—C2—C3—C4134.53 (10)C25—C16—C17—N185.28 (16)
C7—C2—C3—C4111.68 (10)C15—C16—C17—N18172.49 (10)
C15—C3—C4—C2693.05 (12)O3—C17—N18—C19175.84 (11)
C2—C3—C4—C26142.55 (10)C16—C17—N18—C193.31 (17)
C15—C3—C4—C5142.18 (10)C17—N18—C19—C240.20 (18)
C2—C3—C4—C517.79 (11)C17—N18—C19—C20178.42 (11)
C6—N1—C5—C4176.30 (10)N18—C19—C20—C21178.69 (12)
C2—N1—C5—C446.99 (11)C24—C19—C20—C210.08 (19)
C26—C4—C5—N1161.42 (9)C19—C20—C21—C220.1 (2)
C3—C4—C5—N138.53 (11)C20—C21—C22—C230.2 (2)
N1—C2—C7—O156.11 (16)C21—C22—C23—C240.2 (2)
C14—C2—C7—O1178.34 (12)N18—C19—C24—C23178.72 (11)
C3—C2—C7—O157.35 (15)C20—C19—C24—C230.10 (18)
N1—C2—C7—N8123.09 (11)N18—C19—C24—C250.94 (16)
C14—C2—C7—N80.87 (12)C20—C19—C24—C25179.56 (11)
C3—C2—C7—N8123.44 (11)C22—C23—C24—C190.0 (2)
O1—C7—N8—C9178.42 (12)C22—C23—C24—C25179.67 (13)
C2—C7—N8—C92.37 (14)C17—C16—C25—O4176.49 (11)
C7—N8—C9—C10175.61 (14)C15—C16—C25—O45.67 (17)
C7—N8—C9—C145.01 (15)C17—C16—C25—C244.40 (17)
C14—C9—C10—C111.3 (2)C15—C16—C25—C24173.44 (10)
N8—C9—C10—C11178.02 (15)C19—C24—C25—O4179.58 (11)
C9—C10—C11—C121.6 (3)C23—C24—C25—O40.07 (18)
C10—C11—C12—C132.4 (3)C19—C24—C25—C161.26 (17)
C11—C12—C13—C140.2 (2)C23—C24—C25—C16179.10 (12)
C12—C13—C14—C92.6 (2)C5—C4—C26—C27118.66 (13)
C12—C13—C14—C2175.60 (13)C3—C4—C26—C27123.74 (13)
C10—C9—C14—C133.5 (2)C5—C4—C26—C3162.68 (15)
N8—C9—C14—C13175.95 (11)C3—C4—C26—C3154.92 (15)
C10—C9—C14—C2175.11 (13)C31—C26—C27—C282.1 (2)
N8—C9—C14—C25.46 (14)C4—C26—C27—C28176.58 (14)
N1—C2—C14—C1355.29 (17)C26—C27—C28—C290.6 (3)
C7—C2—C14—C13177.84 (13)C27—C28—C29—C301.2 (3)
C3—C2—C14—C1364.72 (17)C28—C29—C30—C311.4 (2)
N1—C2—C14—C9126.32 (11)C29—C30—C31—C260.2 (2)
C7—C2—C14—C93.78 (12)C27—C26—C31—C302.0 (2)
C3—C2—C14—C9113.66 (11)C4—C26—C31—C30176.74 (12)
Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.99 (2)1.56 (2)2.4840 (14)155 (2)
N8—H8···O3i0.89 (2)1.92 (2)2.7837 (13)165 (2)
N18—H18···O1i0.90 (2)1.95 (2)2.8497 (14)177 (2)
C3—H3···O30.982.212.7944 (13)117
C21—H21···Cg6ii0.932.723.5360 (18)147
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC28H23N3O4
Mr465.49
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6918 (3), 11.0258 (3), 12.9663 (4)
α, β, γ (°)69.111 (1), 72.044 (2), 66.410 (1)
V3)1163.93 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
21655, 5795, 4635
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.119, 1.03
No. of reflections5795
No. of parameters329
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg6 is the centroid of the C26–C31 ring.
D—H···AD—HH···AD···AD—H···A
O4—H4A···O20.99 (2)1.56 (2)2.4840 (14)155 (2)
N8—H8···O3i0.89 (2)1.92 (2)2.7837 (13)165 (2)
N18—H18···O1i0.90 (2)1.95 (2)2.8497 (14)177 (2)
C3—H3···O30.982.212.7944 (13)117
C21—H21···Cg6ii0.932.723.5360 (18)147
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z.
 

Footnotes

Parent department: Department of Chemistry, Thiagarajar College (Autonomous), Madurai 625 009, India.

References

First citationAmalraj, A., Raghunathan, R., Sridevi Kumari, M. R. & Raman, N. (2003). Bioorg. Med. Chem. 11, 407–419.  Web of Science PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordell, G. (1981). Introduction to Alkaloids: A Biogenic Approach. New York: Wiley International.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuzuki, H., Aoyagi, S. & Kibayashi, C. (1994). Tetrahedron Lett. 35, 6119–6122.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds