organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro-N-(4-chloro­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 20 March 2010; accepted 20 March 2010; online 24 March 2010)

The mol­ecule of the title compound, C12H8Cl3NO2S, is twisted at the S atom, the C—SO2—NH—C torsion angle being 67.8 (2)°. The dihedral angle between the two benzene rings is 65.0 (1)°. The crystal structure features inversion dimers linked by pairs of N—H⋯O hydrogen bonds.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our study of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o1940.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o190.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl3NO2S

  • Mr = 336.60

  • Triclinic, [P \overline 1]

  • a = 6.3925 (9) Å

  • b = 10.524 (2) Å

  • c = 11.684 (2) Å

  • α = 69.51 (1)°

  • β = 77.96 (1)°

  • γ = 77.30 (1)°

  • V = 710.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 299 K

  • 0.40 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction Xcalibur single-crystal X-ray diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.744, Tmax = 0.798

  • 4462 measured reflections

  • 2873 independent reflections

  • 2514 reflections with I > 2σ(I)

  • Rint = 0.008

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.04

  • 2873 reflections

  • 175 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.84 (2) 2.20 (2) 3.014 (3) 163 (2)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the present work, as part of a study of substituent effects on the structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), the structure of 2,4-dichloro-N-(4-chlorophenyl)benzenesulfonamide (I) has been determined (Fig. 1). The molecule is twisted at the S—N bond with the C—SO2—NH—C torsion angle being 67.8 (2)° compared to the values of 60.6 (4)° (molecule 1), -59.7 (3)° (molecule 2), 63.9 (4)° (molecule 3) and 53.0 (4)° (molecule 4), in the four molecules of 2,4-dichloro-N- (4-methylphenyl)benzenesulfonamide (II) (Gowda et al., 2010) and -48.2 (2)° in 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide (III) (Gowda et al., 2009).

The sulfonyl benzene and the aniline benzene rings in (I) are tilted relative to each other by 65.0 (1)°, compared to the values of 85.2 (1)° (molecule 1), 80.5 (2)° (molecule 2, disordered orientation A), 80.1 (2)° (molecule 2, orientation B), 87.5 (7) (molecule 3, disordered orientation A), 87.0 (6)° (molecule 3, orienation B) and 72.4 (1)° (molecule 4) in the four molecules of (II) and 68.9 (1)° in (III). The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal structure, the pairs of intermolecular N—H···O hydrogen bonds (Table 1) link the molecules to form inversion-related dimers as shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our study of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of 1,3-dichlorobenzene (10 ml) in chloroform (40 ml) was treated drop-wise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dichlorobenzenesulfonylchloride was treated with a stoichiometric amount of p-chloroaniline and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid 2,4-dichloro-N- (4-chlorophenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006). The single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and refined with the distance restraint N–H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C–H = 0.93 Å]. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
2,4-Dichloro-N-(4-chlorophenyl)benzenesulfonamide top
Crystal data top
C12H8Cl3NO2SZ = 2
Mr = 336.60F(000) = 340
Triclinic, P1Dx = 1.573 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.3925 (9) ÅCell parameters from 2802 reflections
b = 10.524 (2) Åθ = 3.2–27.7°
c = 11.684 (2) ŵ = 0.79 mm1
α = 69.51 (1)°T = 299 K
β = 77.96 (1)°Prism, colourless
γ = 77.30 (1)°0.40 × 0.40 × 0.30 mm
V = 710.8 (2) Å3
Data collection top
Oxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
2873 independent reflections
Radiation source: fine-focus sealed tube2514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.008
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 77
Tmin = 0.744, Tmax = 0.798k = 1313
4462 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.4934P]
where P = (Fo2 + 2Fc2)/3
2873 reflections(Δ/σ)max = 0.001
175 parametersΔρmax = 0.41 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
C12H8Cl3NO2Sγ = 77.30 (1)°
Mr = 336.60V = 710.8 (2) Å3
Triclinic, P1Z = 2
a = 6.3925 (9) ÅMo Kα radiation
b = 10.524 (2) ŵ = 0.79 mm1
c = 11.684 (2) ÅT = 299 K
α = 69.51 (1)°0.40 × 0.40 × 0.30 mm
β = 77.96 (1)°
Data collection top
Oxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
2873 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2514 reflections with I > 2σ(I)
Tmin = 0.744, Tmax = 0.798Rint = 0.008
4462 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
2873 reflectionsΔρmin = 0.47 e Å3
175 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2300 (3)0.1157 (2)0.30386 (18)0.0362 (4)
C20.1233 (3)0.1828 (2)0.25451 (18)0.0370 (4)
C30.0339 (4)0.2602 (2)0.3281 (2)0.0449 (5)
H30.10490.30440.29490.054*
C40.0835 (4)0.2707 (2)0.4523 (2)0.0504 (5)
C50.0190 (4)0.2058 (3)0.5036 (2)0.0553 (6)
H50.01680.21360.58690.066*
C60.1766 (4)0.1286 (2)0.4290 (2)0.0477 (5)
H60.24720.08500.46290.057*
C70.1442 (3)0.2193 (2)0.13604 (18)0.0357 (4)
C80.1996 (3)0.3448 (2)0.1231 (2)0.0430 (5)
H80.34290.35880.09710.052*
C90.0426 (4)0.4488 (2)0.1487 (2)0.0473 (5)
H90.07920.53290.13970.057*
C100.1696 (3)0.4259 (2)0.1880 (2)0.0421 (5)
C110.2275 (3)0.3009 (2)0.2035 (2)0.0420 (5)
H110.37030.28650.23170.050*
C120.0694 (3)0.1975 (2)0.17658 (19)0.0397 (4)
H120.10650.11350.18570.048*
N10.3104 (3)0.11422 (18)0.10621 (17)0.0432 (4)
H1N0.312 (4)0.100 (3)0.0395 (18)0.052*
O10.4832 (3)0.04803 (18)0.29394 (16)0.0551 (4)
O20.5937 (2)0.08756 (17)0.14887 (15)0.0529 (4)
Cl10.17630 (10)0.16945 (7)0.09860 (5)0.05343 (17)
Cl20.28179 (14)0.36791 (9)0.54410 (7)0.0830 (3)
Cl30.36952 (11)0.55863 (7)0.21560 (8)0.0699 (2)
S10.42695 (8)0.00974 (5)0.21258 (5)0.03973 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0351 (10)0.0349 (10)0.0358 (10)0.0039 (8)0.0043 (8)0.0094 (8)
C20.0393 (10)0.0357 (10)0.0334 (10)0.0018 (8)0.0043 (8)0.0109 (8)
C30.0463 (12)0.0424 (11)0.0464 (12)0.0104 (9)0.0050 (9)0.0138 (9)
C40.0497 (13)0.0499 (13)0.0429 (12)0.0139 (10)0.0019 (10)0.0056 (10)
C50.0659 (15)0.0634 (15)0.0325 (11)0.0148 (12)0.0011 (10)0.0112 (10)
C60.0557 (13)0.0513 (13)0.0384 (11)0.0118 (10)0.0073 (10)0.0149 (10)
C70.0369 (10)0.0344 (10)0.0335 (9)0.0039 (8)0.0044 (8)0.0095 (8)
C80.0365 (10)0.0412 (11)0.0480 (12)0.0122 (9)0.0032 (9)0.0081 (9)
C90.0525 (13)0.0337 (10)0.0574 (13)0.0131 (9)0.0071 (10)0.0134 (9)
C100.0425 (11)0.0373 (10)0.0454 (11)0.0003 (9)0.0070 (9)0.0152 (9)
C110.0340 (10)0.0450 (11)0.0483 (12)0.0082 (9)0.0047 (9)0.0159 (9)
C120.0402 (10)0.0365 (10)0.0462 (11)0.0098 (8)0.0065 (9)0.0154 (9)
N10.0445 (10)0.0402 (9)0.0379 (9)0.0001 (8)0.0002 (8)0.0113 (8)
O10.0531 (9)0.0575 (10)0.0612 (10)0.0182 (8)0.0146 (8)0.0175 (8)
O20.0368 (8)0.0504 (9)0.0592 (10)0.0036 (7)0.0019 (7)0.0141 (8)
Cl10.0641 (4)0.0632 (4)0.0384 (3)0.0168 (3)0.0000 (2)0.0230 (3)
Cl20.0816 (5)0.0924 (6)0.0669 (5)0.0470 (4)0.0183 (4)0.0121 (4)
Cl30.0592 (4)0.0491 (3)0.0987 (5)0.0051 (3)0.0000 (4)0.0350 (4)
S10.0324 (3)0.0389 (3)0.0448 (3)0.0049 (2)0.0031 (2)0.0116 (2)
Geometric parameters (Å, º) top
C1—C61.395 (3)C7—N11.440 (3)
C1—C21.398 (3)C8—C91.384 (3)
C1—S11.787 (2)C8—H80.93
C2—C31.387 (3)C9—C101.384 (3)
C2—Cl11.743 (2)C9—H90.93
C3—C41.389 (3)C10—C111.384 (3)
C3—H30.93C10—Cl31.746 (2)
C4—C51.380 (4)C11—C121.389 (3)
C4—Cl21.743 (2)C11—H110.93
C5—C61.391 (3)C12—H120.93
C5—H50.93N1—S11.6203 (19)
C6—H60.93N1—H1N0.839 (16)
C7—C121.391 (3)O1—S11.4305 (17)
C7—C81.391 (3)O2—S11.4398 (16)
C6—C1—C2118.88 (19)C7—C8—H8119.8
C6—C1—S1118.25 (16)C10—C9—C8119.11 (19)
C2—C1—S1122.84 (15)C10—C9—H9120.4
C3—C2—C1120.79 (18)C8—C9—H9120.4
C3—C2—Cl1117.32 (16)C9—C10—C11121.48 (19)
C1—C2—Cl1121.87 (15)C9—C10—Cl3119.21 (17)
C2—C3—C4118.9 (2)C11—C10—Cl3119.30 (16)
C2—C3—H3120.6C10—C11—C12119.08 (19)
C4—C3—H3120.6C10—C11—H11120.5
C5—C4—C3121.7 (2)C12—C11—H11120.5
C5—C4—Cl2119.76 (18)C11—C12—C7120.12 (18)
C3—C4—Cl2118.58 (19)C11—C12—H12119.9
C4—C5—C6119.0 (2)C7—C12—H12119.9
C4—C5—H5120.5C7—N1—S1121.38 (14)
C6—C5—H5120.5C7—N1—H1N117.2 (18)
C5—C6—C1120.8 (2)S1—N1—H1N117.4 (18)
C5—C6—H6119.6O1—S1—O2119.68 (10)
C1—C6—H6119.6O1—S1—N1108.21 (10)
C12—C7—C8119.89 (18)O2—S1—N1105.97 (10)
C12—C7—N1121.13 (18)O1—S1—C1105.62 (10)
C8—C7—N1118.99 (18)O2—S1—C1109.05 (10)
C9—C8—C7120.31 (19)N1—S1—C1107.86 (10)
C9—C8—H8119.8
C6—C1—C2—C30.4 (3)C8—C9—C10—Cl3177.94 (18)
S1—C1—C2—C3177.75 (16)C9—C10—C11—C121.4 (3)
C6—C1—C2—Cl1178.71 (16)Cl3—C10—C11—C12177.38 (17)
S1—C1—C2—Cl10.6 (2)C10—C11—C12—C70.8 (3)
C1—C2—C3—C40.3 (3)C8—C7—C12—C110.3 (3)
Cl1—C2—C3—C4178.66 (17)N1—C7—C12—C11179.30 (19)
C2—C3—C4—C50.2 (4)C12—C7—N1—S181.8 (2)
C2—C3—C4—Cl2179.86 (17)C8—C7—N1—S198.6 (2)
C3—C4—C5—C60.3 (4)C7—N1—S1—O146.02 (19)
Cl2—C4—C5—C6179.93 (19)C7—N1—S1—O2175.53 (16)
C4—C5—C6—C10.4 (4)C7—N1—S1—C167.79 (18)
C2—C1—C6—C50.5 (3)C6—C1—S1—O12.80 (19)
S1—C1—C6—C5177.76 (19)C2—C1—S1—O1175.37 (16)
C12—C7—C8—C90.9 (3)C6—C1—S1—O2127.02 (17)
N1—C7—C8—C9178.7 (2)C2—C1—S1—O254.81 (19)
C7—C8—C9—C100.3 (3)C6—C1—S1—N1118.33 (17)
C8—C9—C10—C110.8 (3)C2—C1—S1—N159.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.20 (2)3.014 (3)163 (2)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H8Cl3NO2S
Mr336.60
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)6.3925 (9), 10.524 (2), 11.684 (2)
α, β, γ (°)69.51 (1), 77.96 (1), 77.30 (1)
V3)710.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.40 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur single-crystal X-ray
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.744, 0.798
No. of measured, independent and
observed [I > 2σ(I)] reflections
4462, 2873, 2514
Rint0.008
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections2873
No. of parameters175
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.47

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.84 (2)2.20 (2)3.014 (3)163 (2)
Symmetry code: (i) x+1, y, z.
 

References

First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o1940.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds