metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ3-camphorato-κ3O:O′:O′′)(2-methyl-1H-imidazole-κN3)zinc(II)]

aDepartment of Physics Education, Changchun Normal University, 667 Changji Highway (North), Erdao District, Jilin Province 130032, People's Republic of China
*Correspondence e-mail: haochenshi@yahoo.cn

(Received 11 February 2010; accepted 24 February 2010; online 3 March 2010)

In the title compound, [Zn(C10H14O4)(C4H6N2)]n, each ZnII ion is coordinated by one N atom from one 2-methyl-1H-imidazole ligand and three O atoms from two camphorate (cap) ligands in a distorted tetra­hedral geometry. In one of the cap ligands, one methyl group is disordered between positions 1 and 3 in a 0.518 (12):0.482 (12) ratio. Each cap ligand bridges three ZnII ions, forming two-dimensional layers, which inter­act further via N—H⋯O hydrogen bonds.

Related literature

For general background to coordination polymers based on camphoric acid, see: Zhang et al. (2007[Zhang, J., Yao, Y.-G. & Bu, X. (2007). Chem. Mater. 19, 5083-5089.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H14O4)(C4H6N2)]

  • Mr = 345.69

  • Monoclinic, P 21 /n

  • a = 12.098 (2) Å

  • b = 10.438 (5) Å

  • c = 12.873 (2) Å

  • β = 111.700 (5)°

  • V = 1510.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.64 mm−1

  • T = 293 K

  • 0.31 × 0.25 × 0.21 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.57, Tmax = 0.72

  • 9848 measured reflections

  • 3004 independent reflections

  • 2433 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.08

  • 3004 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 1.86 2.722 (5) 176
Symmetry code: (i) -x-1, -y, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Coordination polymers based on camphoric acid (cap) have received intense interests because of their potential applications as functional solid materials, as well as their fascinating framework structures (Zhang et al., 2007). We report here the synthesis and structure of the title compound (I).

In (I) (Fig. 1), each ZnII atom is four-coordinated by one nitrogen atom from one 2-methyl-1H-imidazole (mid) ligand and three oxygen atoms from two different camphorate anions (cap) in a distorted tetrahedral geometry. Each cap ligand bridges three ZnII atoms to form a two-dimensional layer structure. Further, the N—H···O H-bonding interactions (Table 1) stabilize the structure of (I).

Related literature top

For general background to coordination polymers based on camphoric acid, see: Zhang et al. (2007).

Experimental top

A mixture of ZnCl.2H2O (1 mmol), NaOH (1 mmol), D-camphoric acid (1 mmol) and 2-methyl-1H-imidazole (1 mmol) in water (12 ml) was heated to 140 °C for three days in a 25 ml Teflon-lined stainless steel vessel under autogenous pressure. Subsequently, it was cooled to room temperature. Then, single crystals of (I) were obtained.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93-0.98 Å; N—H = 0.86 Å) and refined as riding, with Uiso(H)=1.2-1.5Ueq of the carrier atom. In cap ligand, one methyl group was treated as disordered between positions 1 (C14) and 3 (C14') in a ratio 0.518 (12):0.482 (12), respectively.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I), showing the atomic numbering and 30% probability displacement ellipsoids [symmetry codes: (i) -x, -y, -z; (ii) x+1/2, -1/2-y, z+1/2]. Only major parts of disordered atoms are shown.
Poly[(µ3-camphorato-κ3O:O':O'')(2- methyl-1H-imidazole-κN3)zinc(II)] top
Crystal data top
[Zn(C10H14O4)(C4H6N2)]F(000) = 720
Mr = 345.69Dx = 1.520 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 3004 reflections
a = 12.098 (2) Åθ = 2.0–26.2°
b = 10.438 (5) ŵ = 1.64 mm1
c = 12.873 (2) ÅT = 293 K
β = 111.700 (5)°Block, colourless
V = 1510.4 (8) Å30.31 × 0.25 × 0.21 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3004 independent reflections
Radiation source: fine-focus sealed tube2433 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.57, Tmax = 0.72k = 129
9848 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0392P)2 + 5.0738P]
where P = (Fo2 + 2Fc2)/3
3004 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C10H14O4)(C4H6N2)]V = 1510.4 (8) Å3
Mr = 345.69Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.098 (2) ŵ = 1.64 mm1
b = 10.438 (5) ÅT = 293 K
c = 12.873 (2) Å0.31 × 0.25 × 0.21 mm
β = 111.700 (5)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3004 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2433 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.72Rint = 0.041
9848 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.08Δρmax = 1.13 e Å3
3004 reflectionsΔρmin = 0.41 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1477 (5)0.3115 (6)0.2334 (4)0.0469 (14)
H1A0.18420.37360.26550.070*
H1B0.10090.35470.19800.070*
H1C0.09740.25620.29110.070*
C20.2432 (4)0.2327 (4)0.1474 (4)0.0295 (10)
C30.3337 (4)0.0952 (5)0.0210 (5)0.0423 (13)
H30.34760.02920.03080.051*
C40.4157 (5)0.1593 (6)0.0419 (5)0.0483 (14)
H40.49750.14750.00820.058*
C50.0941 (4)0.1910 (4)0.0050 (3)0.0238 (9)
C60.4416 (4)0.4768 (4)0.2027 (3)0.0216 (9)
C70.1627 (4)0.3138 (4)0.0087 (3)0.0248 (9)
H70.10550.38410.01820.030*0.518 (12)
C14'0.0756 (10)0.4218 (9)0.0453 (10)0.042 (3)0.482 (12)
H14A0.02150.43180.00700.063*0.482 (12)
H14B0.11870.50020.04060.063*0.482 (12)
H14C0.03170.40150.12240.063*0.482 (12)
C80.2402 (5)0.3118 (5)0.0598 (4)0.0426 (13)
H8A0.27190.22650.06030.051*
H8B0.19480.33710.13630.051*
C90.3432 (4)0.4089 (5)0.0035 (4)0.0325 (11)
H9A0.33790.48090.05270.039*
H9B0.41990.36780.01400.039*
C100.3275 (4)0.4530 (4)0.1027 (4)0.0241 (9)
H100.28160.53280.08600.029*0.482 (12)
C140.2562 (8)0.5802 (9)0.0776 (8)0.034 (3)0.518 (12)
H14D0.18350.56860.01440.051*0.518 (12)
H14E0.23830.60460.14160.051*0.518 (12)
H14F0.30270.64610.06140.051*0.518 (12)
C110.2500 (4)0.3472 (5)0.1293 (4)0.0289 (10)
C120.3273 (5)0.2323 (5)0.1839 (4)0.0477 (15)
H12A0.36820.20290.13710.072*
H12B0.38440.25690.25550.072*
H12C0.27810.16470.19350.072*
C130.1875 (5)0.3910 (6)0.2067 (5)0.0504 (15)
H13A0.13760.46320.17410.076*
H13B0.13970.32230.21690.076*
H13C0.24580.41510.27780.076*
N10.2211 (4)0.1414 (4)0.0891 (3)0.0356 (9)
N20.3575 (4)0.2492 (4)0.1247 (4)0.0424 (11)
H20.38980.30400.15450.051*
O10.1397 (3)0.0873 (3)0.0066 (3)0.0305 (7)
O20.0054 (3)0.2004 (3)0.0152 (3)0.0268 (7)
O30.5387 (3)0.4312 (3)0.2099 (3)0.0360 (8)
O40.4297 (3)0.5450 (3)0.2795 (2)0.0276 (7)
Zn10.06957 (4)0.06945 (4)0.08772 (4)0.02053 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (3)0.050 (3)0.034 (3)0.018 (3)0.007 (2)0.005 (2)
C20.031 (3)0.028 (2)0.034 (3)0.006 (2)0.018 (2)0.006 (2)
C30.027 (3)0.044 (3)0.049 (3)0.002 (2)0.006 (2)0.014 (3)
C40.034 (3)0.049 (3)0.058 (4)0.003 (3)0.012 (3)0.015 (3)
C50.025 (2)0.025 (2)0.017 (2)0.0031 (18)0.0029 (17)0.0006 (17)
C60.022 (2)0.017 (2)0.026 (2)0.0033 (17)0.0086 (18)0.0000 (17)
C70.024 (2)0.024 (2)0.021 (2)0.0043 (18)0.0019 (18)0.0012 (17)
C14'0.044 (6)0.016 (5)0.066 (8)0.002 (5)0.021 (6)0.008 (5)
C80.049 (3)0.048 (3)0.036 (3)0.016 (3)0.022 (3)0.010 (2)
C90.033 (3)0.035 (3)0.028 (2)0.000 (2)0.010 (2)0.001 (2)
C100.024 (2)0.021 (2)0.026 (2)0.0017 (17)0.0079 (18)0.0007 (18)
C140.029 (5)0.038 (6)0.034 (5)0.016 (4)0.010 (4)0.013 (4)
C110.028 (2)0.031 (3)0.025 (2)0.0091 (19)0.0054 (19)0.0008 (19)
C120.044 (3)0.038 (3)0.040 (3)0.016 (3)0.009 (2)0.016 (2)
C130.047 (3)0.065 (4)0.047 (3)0.023 (3)0.027 (3)0.020 (3)
N10.033 (2)0.035 (2)0.042 (2)0.0060 (18)0.0166 (19)0.0021 (19)
N20.039 (2)0.045 (3)0.049 (3)0.014 (2)0.022 (2)0.000 (2)
O10.0250 (16)0.0240 (17)0.0390 (18)0.0056 (13)0.0076 (14)0.0079 (14)
O20.0243 (16)0.0238 (17)0.0314 (17)0.0002 (13)0.0091 (13)0.0064 (13)
O30.0220 (16)0.042 (2)0.0415 (19)0.0034 (15)0.0094 (14)0.0164 (16)
O40.0251 (16)0.0278 (17)0.0286 (16)0.0008 (13)0.0083 (13)0.0088 (13)
Zn10.0181 (2)0.0174 (3)0.0269 (3)0.0014 (2)0.00920 (19)0.0012 (2)
Geometric parameters (Å, º) top
C1—C21.513 (7)C8—H8B0.9700
C1—H1A0.9600C9—C101.519 (6)
C1—H1B0.9600C9—H9A0.9700
C1—H1C0.9600C9—H9B0.9700
C2—N11.300 (6)C10—C141.550 (9)
C2—N21.315 (6)C10—C111.567 (6)
C3—C41.304 (7)C10—H100.9800
C3—N11.405 (6)C14—H14D0.9600
C3—H30.9300C14—H14E0.9600
C4—N21.399 (7)C14—H14F0.9600
C4—H40.9300C11—C121.523 (7)
C5—O11.249 (5)C11—C131.527 (7)
C5—O21.262 (5)C12—H12A0.9600
C5—C71.519 (6)C12—H12B0.9600
C6—O31.238 (5)C12—H12C0.9600
C6—O41.269 (5)C13—H13A0.9600
C6—C101.521 (6)C13—H13B0.9600
C7—C81.506 (6)C13—H13C0.9600
C7—C14'1.524 (11)N1—Zn11.988 (4)
C7—C111.560 (6)N2—H20.8600
C7—H70.9800O1—Zn11.957 (3)
C14'—H14A0.9600O2—Zn1i1.968 (3)
C14'—H14B0.9600O4—Zn1ii1.926 (3)
C14'—H14C0.9600Zn1—O4iii1.926 (3)
C8—C91.561 (7)Zn1—O2i1.968 (3)
C8—H8A0.9700
C2—C1—H1A109.5C9—C10—C6115.8 (4)
C2—C1—H1B109.5C9—C10—C14108.5 (5)
H1A—C1—H1B109.5C6—C10—C14107.3 (5)
C2—C1—H1C109.5C9—C10—C11105.5 (4)
H1A—C1—H1C109.5C6—C10—C11111.1 (3)
H1B—C1—H1C109.5C14—C10—C11108.5 (5)
N1—C2—N2113.0 (5)C9—C10—H10108.1
N1—C2—C1123.8 (4)C6—C10—H10108.1
N2—C2—C1123.2 (4)C14—C10—H100.8
C4—C3—N1109.4 (5)C11—C10—H10108.1
C4—C3—H3125.3C10—C14—H14D109.5
N1—C3—H3125.3C10—C14—H14E109.5
C3—C4—N2107.1 (5)H14D—C14—H14E109.5
C3—C4—H4126.5C10—C14—H14F109.5
N2—C4—H4126.5H14D—C14—H14F109.5
O1—C5—O2124.1 (4)H14E—C14—H14F109.5
O1—C5—C7118.3 (4)C12—C11—C13107.6 (4)
O2—C5—C7117.6 (4)C12—C11—C7110.9 (4)
O3—C6—O4122.3 (4)C13—C11—C7113.6 (4)
O3—C6—C10122.7 (4)C12—C11—C10109.9 (4)
O4—C6—C10115.0 (4)C13—C11—C10114.4 (4)
C8—C7—C5114.9 (4)C7—C11—C10100.3 (3)
C8—C7—C14'102.6 (5)C11—C12—H12A109.5
C5—C7—C14'109.4 (5)C11—C12—H12B109.5
C8—C7—C11104.3 (4)H12A—C12—H12B109.5
C5—C7—C11112.4 (3)C11—C12—H12C109.5
C14'—C7—C11112.8 (6)H12A—C12—H12C109.5
C8—C7—H7108.3H12B—C12—H12C109.5
C5—C7—H7108.3C11—C13—H13A109.5
C14'—C7—H76.3C11—C13—H13B109.5
C11—C7—H7108.3H13A—C13—H13B109.5
C7—C14'—H14A109.5C11—C13—H13C109.5
C7—C14'—H14B109.5H13A—C13—H13C109.5
H14A—C14'—H14B109.5H13B—C13—H13C109.5
C7—C14'—H14C109.5C2—N1—C3104.7 (4)
H14A—C14'—H14C109.5C2—N1—Zn1132.0 (4)
H14B—C14'—H14C109.5C3—N1—Zn1123.4 (3)
C7—C8—C9106.4 (4)C2—N2—C4105.9 (4)
C7—C8—H8A110.5C2—N2—H2127.0
C9—C8—H8A110.5C4—N2—H2127.0
C7—C8—H8B110.5C5—O1—Zn1131.7 (3)
C9—C8—H8B110.5C5—O2—Zn1i123.6 (3)
H8A—C8—H8B108.6C6—O4—Zn1ii116.8 (3)
C10—C9—C8105.7 (4)O4iii—Zn1—O1115.33 (13)
C10—C9—H9A110.6O4iii—Zn1—O2i98.14 (12)
C8—C9—H9A110.6O1—Zn1—O2i119.76 (13)
C10—C9—H9B110.6O4iii—Zn1—N1123.56 (15)
C8—C9—H9B110.6O1—Zn1—N195.81 (15)
H9A—C9—H9B108.7O2i—Zn1—N1105.57 (15)
Symmetry codes: (i) x, y, z; (ii) x1/2, y1/2, z1/2; (iii) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3iv0.861.862.722 (5)176
Symmetry code: (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C10H14O4)(C4H6N2)]
Mr345.69
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.098 (2), 10.438 (5), 12.873 (2)
β (°) 111.700 (5)
V3)1510.4 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.31 × 0.25 × 0.21
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.57, 0.72
No. of measured, independent and
observed [I > 2σ(I)] reflections
9848, 3004, 2433
Rint0.041
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.08
No. of reflections3004
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.41

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.861.862.722 (5)175.6
Symmetry code: (i) x1, y, z.
 

Acknowledgements

We gratefully acknowledge the support of this work by funding from the Department of Education of Jilin Province, People's Republic of China.

References

First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Yao, Y.-G. & Bu, X. (2007). Chem. Mater. 19, 5083–5089.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds