organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o961-o962

Di­ethyl 2-{(di­benzyl­amino)[4-(tri­fluoro­meth­yl)phen­yl]meth­yl}malonate

aLaboratoire de Chimie Organique, Faculté des Sciences Dhar el Mahraz, Université Sidi Mohammed Ben Abdellah, Fès, Morocco, bLaboratoire de Chimie de Coordination, 205 Route de Narbonne, 31077 Toulouse Cedex, France, and cCentre National pour la Recherche Scientifique et Technique, Division UATRS, Rabat, Morocco
*Correspondence e-mail: daoudimaria@yahoo.fr

(Received 10 March 2010; accepted 20 March 2010; online 27 March 2010)

The asymmetric unit of the title compound, C29H30F3NO4, contains two independent mol­ecules. In each independent mol­ecule, one of two terminal ethyl groups is disordered over two conformations: the occupancies of major components were fixed at 0.53 and 0.64 in the two mol­ecules. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link mol­ecules into chains propagating along [10[\overline{1}]].

Related literature

For related compounds exhibitinging biological activity, see: Dayam et al. (2007[Dayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155-6159.]); Patil et al. (2007[Patil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212-1228.]); Ramkumar et al. (2008[Ramkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988-8998.]); Sechi, Carta et al. (2009[Sechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessı`, A., Al-Safi, R. I. & Neamati, N. (2009). Antivir. Res. 81, 267-276.]); Sechi, Rizzi et al. (2009[Sechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009). Bioorg. Med. Chem. 17, 2925-2935.]); Zeng, Zhang et al. (2008[Zeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521-4524.]); Zeng, Jiang et al. (2008[Zeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008). Bioorg. Med. Chem. 16, 7777-7787.]). For details of the synthesis, see: Pommier & Neamati (2006[Pommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785-3792.]).

[Scheme 1]

Experimental

Crystal data
  • C29H30F3NO4

  • Mr = 513.54

  • Monoclinic, P 21 /c

  • a = 13.4131 (3) Å

  • b = 23.6608 (5) Å

  • c = 17.3769 (3) Å

  • β = 96.826 (1)°

  • V = 5475.72 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.43 × 0.25 × 0.17 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • 74220 measured reflections

  • 10790 independent reflections

  • 6912 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.184

  • S = 1.02

  • 10790 reflections

  • 709 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C226—H226⋯O22i 0.93 2.60 3.323 (4) 135
C235—H235⋯O14ii 0.93 2.51 3.294 (4) 142
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The rational design of new HIV-1 Integrase (H—I) inhibitors, validated target for chemotherapeutic intervention (Dayam et al., 2007), is fundamentally based on intermolecular coordination between H—I / chemical inhibitor / metals (Mg+2 and Mn+2, co-factors of the enzyme) leading to formation of bimetallic complexes (Zeng, Zhang et al., 2008; Sechi, Carta et al., 2009). Thereby, several bimetallic complexes, in many cases exploring the well-known polydentate ligands, appear in this scenario as the most promising concept to employ in either enzyme / drug interaction or electron transfer process involving the biological oxygen transfer (Sechi, Rizzi et al., 2009 ; Ramkumar et al., 2008). Another exciting example of application for such polydentate ligand involves the synergic water activation, that occurs via so-called "remote metallic atoms". Such organometallic compounds are structurally deemed to promote or block the H—I activity (Zeng, Jiang et al., 2008). These explanations clearly demonstrate that polydentate ligands are of specific interest in the field of bioorganometallic chemistry (Patil et al., 2007; Pommier & Neamati, 2006).

We have undertaken the X-ray diffraction study of the title compound, in order to understand the molecular features which stabilize its conformation. The asymmetric unit contains two crystallographically independent molecules. Each molecule contains three aromatic rings (Fig. 1). The difference between the two molecules lies in the orientations of these three rings and carbonyl groups as shown in the fitting drawing (Fig. 2) obtained with PLATON (Spek, 2003). Thus in the first molecule (C11 to C146), the dihedral angles between the planes of benzene rings are: (C111–C116)/(C121–C126) = 75.41 (13)°, (C121–C126)/(C131–C136) = 75.94 (13)° and (C111–C116)/(C131–C136) = 22.36 (14)°. Whereas in the second molecule (C21 to C246), equivalent angles have as values 11.90 (15)°, 73.17 (17)° and 83.67 (15)°, respectively.

The planes of the two carbonyl groups (O11,O12,C141) and (O13,O14,C142) are twisted by a dihedral angles of 18.4 (4)° and 88.9 (4)°, respectively, with respect to the (C11,C14,N1) plane. In the second independent molecule, the dihedral angles between the two carbonyls (O21,O22,C241), (O23,O24,C242) and the (C21,C24,N2) plane are 25.9 (4)°, 87.1 (4)°, respectively. The angles between the planes of the two sites of disordered ethyl groups are 83.9 (15)° and 33.0 (2)° in the two molecules of the asymmetric unit.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link molecules into chains propagated along [10-1].

Related literature top

For related compounds exhibitinging biological activity, see: Dayam et al. (2007); Patil et al. (2007); Ramkumar et al. (2008); Sechi, Carta et al. (2009); Sechi, Rizzi et al. (2009); Zeng, Zhang et al. (2008); Zeng, Jiang et al. (2008) . For details of the synthesis, see: Pommier & Neamati (2006)

Experimental top

Synthesis of: 2-(4-trifloromethyl-benzylidene)-malonic acid diethyl ester]: To a solution of ethyl malonate (15 g, 93 mmol) in 40 ml of ethanol, were added the respective aldehyde (100 mmol), 1.5 ml of piperidine and 1 ml of glacial acetic acid. Then the mixture was stirred at refluxing temperature of ethanol for 12 h, until thin-layer chromatography indicated the complete consumption of the starting material. After removing solvent, the crude product was washed with a saturated solution of sodium bisulfite (20 ml). The product was extracted by diethyl ether (2x20 ml), dried with sodium sulphate and evaporated to give the respective pure oil.

To a solution of the 2-(4-trifloromethyl-benzylidene)-malonic acid diethyl ester (5 mmol) in water (25 ml) was added the dibenzylamine (6 mmol) in the presence of Acetic acid (0.1% mol) and the mixture and the stirring was continued at room temperature until the complete consume of the starting material (Pommier & Neamati, 2006).

After removing solvent, the crude products were dissolved in diethyl ether (2x40 ml) and washed with water until the pH became neutral. The organic solvent was dried with sodium sulphate and then evaporated to give the respective pure compounds as white solids. The residue was purified by recrystallization from a mixture ether/hexane (1:1) to give white solid in 96% yield.

Colourless crystals. 96% yield. Rf = 0.67 (ether/hexane: 1/1). M.p. = 102-104°C.

The structure of the title compound was deduced from 1H and 13C NMR, elemental analyses and fully confirmed by single-Crystal X-ray structure.

IR (KBr ) ν cm-1: 2841/2902 (CH); 1731(CO); 1585/1618 (C=C); 1257/1306(C—O); 1164.

RMN 1H (250 MHz, CDCl3) δ (ppm): 7,25-7,72 (m, 4H, aromat, Ph—CF3, 3J = 8,1 Hz);7.35 (m,10H, aromat, Ph ,3J = 6 Hz); 4.63 (d,1H, CF3PhC3H, 3J= 12 Hz); 4.4 (d, 1H, -C2H(CO2Et)2, 3J = 12 Hz); 3.0(d,1H, 2CH-Ph, 3J= 13,50 Hz ); 3.9 (d,1H, 2CHPh, 3J= 13.62 Hz ); 4.0 (dq, 2 HAB, OCH2CH3, JAB= 14,28 Hz, 3J = 7.15 Hz); 4.20/ 4.40 (dq, 2 HAB, OCH2CH3, JAB = 14.28 Hz, 3J = 7.15 Hz); 1.28 (t, 3H, OCH2CH3 , 3J = 7.11 Hz); 1,0 (t, 3H, O CH2CH3, 3J = 7,11 Hz). RMN 13C (250 MHz, CDCl3) δ (ppm): 166.66/ 167.14 (2CO); 138.53 (Cquat, C—CF3—Ph); 138,09 (Cquat, Ph, para/ CF3); 128.17/125.01 ( tert, aromt); 130.22/129.43 (Cquat, 2 C/ arm, 2Ph); 61.78/ 61.37 (Csec, 2CH2, ester); 61.28 (Ctert, C3HPhCF3); 55,11 (Ctert, C2H(CO2Et)2); 53.15/ 53.94 (Csec, 2CH2-Ph); 13.67 (C, OCH2CH3, ester); 13.91 (C, OCH2CH3, ester).

MS (IE) Calcd for [M]+ : 513.54, [M+H]+ = 514, [M—CH(CO2Et)2]+= 354 (100%).

Elemental analysis for C29H30F3NO4 Calcd (Found): C 67.82 (67.79), H 5.89 (5.87), N (2.73 (2.72).

The purity of the compound was checked by determining its melting point (104-106°C). Suitable single crystal of malonate derivative (I) was obtained by recrystallization from ethanol. A white-transparent crystal of C29H30F3NO4 having approximate dimensions of 0.43 × 0.25 × 0.17 mm was mounted on a glass fibre. All measurements were made in the ϕ and ω scans technique on a CCD X8 Bruker diffractometer with graphite monochromatized MoKα radiation at room temperature (296 (2) K).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and 0.98 Å (methine) with Uiso(H) = 1.2 or 1.5 Ueq(C).

In asymmetric unit, two (of four) ethyl fragments were treated as disordered, and the occupancies of the major parts were initially refined, and then fixed to 0.53 and 0.64, respectively, in the final cycles of the refinement. Similarity restraints with tolerance s.u.s of 0.02 Å were applied to the chemically equivalent bond lengths and angles involving all disordered atoms. Refinement were carried out using the DFIX, SAME and PART instruction within SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Two independent molecules of the title compound showing the atom-labelling scheme and 30% probability displacement ellipsoids. Only major parts of disordered ethyl groups are shown.
[Figure 2] Fig. 2. View showing the fitting of two independent molecules. Only major parts of disordered ethyl groups are shown.
Diethyl 2-{(dibenzylamino)[4-(trifluoromethyl)phenyl]methyl}malonate top
Crystal data top
C29H30F3NO4F(000) = 2160
Mr = 513.54Dx = 1.246 Mg m3
Monoclinic, P21/cMelting point: 375 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.4131 (3) ÅCell parameters from 5382 reflections
b = 23.6608 (5) Åθ = 2.5–25.4°
c = 17.3769 (3) ŵ = 0.10 mm1
β = 96.826 (1)°T = 296 K
V = 5475.72 (19) Å3Block, colourless
Z = 80.43 × 0.25 × 0.17 mm
Data collection top
Bruker APEXII CCD detector
diffractometer
6912 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
ω and ϕ scansh = 1612
74220 measured reflectionsk = 2929
10790 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.184H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0764P)2 + 3.875P]
where P = (Fo2 + 2Fc2)/3
10790 reflections(Δ/σ)max = 0.011
709 parametersΔρmax = 0.51 e Å3
10 restraintsΔρmin = 0.41 e Å3
Crystal data top
C29H30F3NO4V = 5475.72 (19) Å3
Mr = 513.54Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.4131 (3) ŵ = 0.10 mm1
b = 23.6608 (5) ÅT = 296 K
c = 17.3769 (3) Å0.43 × 0.25 × 0.17 mm
β = 96.826 (1)°
Data collection top
Bruker APEXII CCD detector
diffractometer
6912 reflections with I > 2σ(I)
74220 measured reflectionsRint = 0.041
10790 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06010 restraints
wR(F2) = 0.184H-atom parameters constrained
S = 1.02Δρmax = 0.51 e Å3
10790 reflectionsΔρmin = 0.41 e Å3
709 parameters
Special details top

Experimental. The data collection nominally covered a sphere of reciprocal space, by a combination of five sets of exposures; each set had a different ϕ angle for the crystal and each exposure covered 0.5° in ω and 30 seconds in time. The crystal-to-detector distance was 37.5 mm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.21351 (13)0.55799 (8)0.47972 (11)0.0377 (5)
O120.13397 (17)0.71894 (10)0.37972 (14)0.0757 (6)
O130.20149 (13)0.68514 (8)0.56473 (11)0.0531 (5)
O140.08360 (14)0.62505 (9)0.59701 (11)0.0610 (5)
F110.0021 (2)0.5779 (2)0.07329 (13)0.206 (2)
F120.0673 (3)0.49891 (18)0.09034 (15)0.1527 (13)
F130.1539 (2)0.56371 (14)0.05959 (12)0.1232 (10)
C110.18374 (16)0.60674 (11)0.42886 (13)0.0393 (5)
H110.24260.63150.43140.047*
C120.13542 (17)0.51487 (11)0.48334 (14)0.0420 (6)
H12A0.12680.49380.43510.050*
H12B0.07220.53320.48960.050*
C130.30752 (17)0.53227 (11)0.46200 (15)0.0420 (6)
H13A0.30200.52410.40690.050*
H13B0.31700.49670.48950.050*
C140.10159 (17)0.64086 (11)0.46267 (15)0.0430 (6)
H140.03880.61940.45350.052*
C1110.15593 (17)0.59254 (11)0.34376 (14)0.0421 (6)
C1120.06123 (18)0.57289 (12)0.31431 (15)0.0500 (7)
H1120.01250.56790.34760.060*
C1130.0385 (2)0.56065 (14)0.23677 (17)0.0610 (8)
H1130.02540.54790.21810.073*
C1140.1102 (2)0.56730 (14)0.18657 (16)0.0592 (8)
C1150.2050 (2)0.58634 (14)0.21465 (16)0.0585 (8)
H1150.25370.59070.18130.070*
C1160.22705 (19)0.59887 (12)0.29234 (15)0.0491 (6)
H1160.29090.61180.31070.059*
C1170.0831 (3)0.5552 (2)0.1027 (2)0.0897 (13)
C1210.16261 (17)0.47463 (11)0.54984 (14)0.0434 (6)
C1220.15670 (18)0.41678 (12)0.53886 (16)0.0490 (6)
H1220.13590.40240.48980.059*
C1230.18166 (19)0.37990 (13)0.60070 (19)0.0573 (8)
H1230.17690.34110.59280.069*
C1240.2131 (2)0.40070 (16)0.67316 (19)0.0644 (9)
H1240.23030.37610.71430.077*
C1250.2192 (2)0.45806 (15)0.68468 (17)0.0618 (8)
H1250.24060.47220.73380.074*
C1260.1940 (2)0.49465 (13)0.62428 (16)0.0530 (7)
H1260.19790.53340.63310.064*
C1310.39848 (16)0.56895 (11)0.48345 (14)0.0387 (5)
C1320.47653 (18)0.56848 (12)0.43764 (16)0.0495 (6)
H1320.47060.54720.39240.059*
C1330.56274 (19)0.59933 (15)0.45864 (18)0.0619 (8)
H1330.61480.59820.42780.074*
C1340.5725 (2)0.63169 (14)0.52458 (19)0.0622 (8)
H1340.63060.65260.53830.075*
C1350.4952 (2)0.63286 (13)0.57037 (17)0.0573 (7)
H1350.50110.65470.61520.069*
C1360.40904 (18)0.60163 (12)0.54986 (15)0.0476 (6)
H1360.35750.60260.58120.057*
C1410.0843 (2)0.69809 (13)0.42430 (18)0.0564 (7)
O110.00554 (18)0.72241 (10)0.45047 (17)0.0879 (8)
C1430.0206 (18)0.7772 (5)0.4092 (9)0.099 (5)0.47
H14A0.03130.78810.37760.119*0.47
H14B0.08400.77420.37620.119*0.47
C1440.0277 (16)0.8177 (5)0.4702 (9)0.217 (11)0.47
H14C0.08170.80730.49900.326*0.47
H14D0.04030.85460.44810.326*0.47
H14E0.03420.81820.50420.326*0.47
C14B0.0790 (11)0.7854 (5)0.3714 (8)0.174 (7)0.53
H14F0.04540.77060.33000.261*0.53
H14G0.09980.82360.35970.261*0.53
H14H0.13680.76260.37730.261*0.53
C14A0.0121 (16)0.7845 (6)0.4419 (9)0.113 (6)0.53
H14I0.04320.79990.48490.136*0.53
H14J0.04960.80480.43680.136*0.53
C1420.12649 (18)0.64860 (12)0.54960 (16)0.0463 (6)
C1450.2325 (2)0.69825 (15)0.64581 (18)0.0685 (9)
H14K0.30270.70900.65250.082*
H14L0.22490.66500.67720.082*
C1460.1703 (3)0.7456 (2)0.6722 (3)0.1027 (14)
H14M0.17500.77790.63940.154*
H14N0.19450.75540.72480.154*
H14O0.10150.73380.66950.154*
N20.38330 (14)0.41631 (8)0.17015 (11)0.0379 (4)
O220.66181 (15)0.44204 (10)0.08333 (13)0.0670 (6)
O230.54397 (17)0.32714 (8)0.10776 (12)0.0624 (5)
O240.54353 (15)0.31656 (8)0.23671 (12)0.0604 (5)
F210.4756 (3)0.71223 (9)0.11140 (17)0.1370 (11)
F220.56193 (16)0.70396 (8)0.22086 (16)0.1008 (8)
F230.40388 (17)0.69796 (8)0.21172 (16)0.1031 (8)
C210.47579 (17)0.44015 (10)0.14446 (13)0.0353 (5)
H210.47290.43180.08900.042*
C220.29368 (18)0.43168 (11)0.11700 (14)0.0431 (6)
H22A0.29410.47220.10820.052*
H22B0.23430.42280.14150.052*
C230.36784 (19)0.42964 (11)0.25048 (14)0.0438 (6)
H23A0.34860.46900.25390.053*
H23B0.43020.42410.28400.053*
C240.56778 (17)0.40876 (10)0.18446 (14)0.0396 (5)
H240.57910.42050.23890.048*
C2110.48513 (17)0.50390 (10)0.15241 (13)0.0358 (5)
C2120.51929 (18)0.53005 (11)0.22226 (14)0.0423 (6)
H2120.54220.50810.26520.051*
C2130.5196 (2)0.58816 (11)0.22867 (16)0.0485 (6)
H2130.54190.60510.27590.058*
C2140.4870 (2)0.62105 (11)0.16538 (16)0.0482 (6)
C2150.4547 (2)0.59608 (11)0.09484 (16)0.0496 (6)
H2150.43370.61830.05180.060*
C2160.45416 (18)0.53773 (10)0.08905 (14)0.0413 (6)
H2160.43250.52090.04160.050*
C2170.4827 (3)0.68374 (13)0.1760 (2)0.0680 (9)
C2210.28691 (18)0.40196 (12)0.04024 (14)0.0457 (6)
C2220.2986 (3)0.34475 (14)0.03616 (19)0.0717 (9)
H2220.31430.32390.08130.086*
C2230.2871 (3)0.31745 (17)0.0360 (2)0.0963 (13)
H2230.29510.27850.03890.116*
C2240.2639 (3)0.34860 (19)0.1022 (2)0.0919 (12)
H2240.25680.33070.15010.110*
C2250.2514 (3)0.40534 (18)0.09839 (19)0.0822 (11)
H2250.23480.42610.14360.099*
C2260.2631 (2)0.43214 (14)0.02777 (16)0.0599 (8)
H2260.25490.47110.02560.072*
C2310.28758 (19)0.39275 (13)0.27726 (14)0.0494 (7)
C2320.2990 (2)0.33483 (15)0.2789 (2)0.0697 (9)
H2320.35580.31830.26250.084*
C2330.2253 (3)0.30143 (19)0.3049 (3)0.1002 (14)
H2330.23290.26240.30640.120*
C2340.1405 (3)0.3259 (3)0.3289 (2)0.1038 (16)
H2340.09130.30320.34670.125*
C2350.1292 (3)0.3825 (2)0.3265 (2)0.0914 (13)
H2350.07180.39890.34200.110*
C2360.2017 (2)0.41593 (16)0.30118 (17)0.0656 (9)
H2360.19330.45490.30000.079*
C2420.55040 (19)0.34538 (11)0.18100 (16)0.0470 (6)
C2410.66075 (19)0.42246 (12)0.14585 (17)0.0492 (6)
O210.74317 (16)0.40944 (13)0.19179 (15)0.0946 (9)
C2430.8360 (4)0.4181 (6)0.1506 (4)0.090 (3)0.64
H24A0.83420.39330.10610.109*0.64
H24B0.83980.45690.13320.109*0.64
C2440.9203 (4)0.4050 (5)0.2061 (4)0.109 (3)0.64
H24C0.91810.42790.25150.163*0.64
H24D0.98120.41250.18410.163*0.64
H24E0.91800.36580.22010.163*0.64
C24A0.8544 (10)0.4324 (5)0.1860 (10)0.128 (8)0.36
H24F0.85820.46450.15160.154*0.36
H24G0.89520.43790.23540.154*0.36
C24B0.8650 (19)0.3778 (6)0.1505 (12)0.146 (8)0.36
H24H0.86230.34860.18870.219*0.36
H24I0.92830.37600.13000.219*0.36
H24J0.81150.37240.10940.219*0.36
C2450.5254 (3)0.26672 (13)0.0932 (2)0.0752 (9)
H24K0.49160.25070.13460.090*
H24L0.48220.26180.04480.090*
C2460.6197 (3)0.23760 (18)0.0893 (3)0.1093 (16)
H24M0.65210.25290.04750.164*
H24N0.60710.19800.08040.164*
H24O0.66230.24250.13720.164*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (9)0.0448 (12)0.0382 (11)0.0060 (8)0.0078 (8)0.0023 (9)
O120.0774 (14)0.0694 (15)0.0820 (16)0.0023 (12)0.0158 (12)0.0264 (13)
O130.0505 (10)0.0579 (12)0.0507 (11)0.0151 (9)0.0055 (8)0.0077 (9)
O140.0595 (11)0.0743 (14)0.0534 (12)0.0140 (10)0.0245 (9)0.0069 (10)
F110.151 (3)0.404 (6)0.0505 (14)0.166 (3)0.0337 (15)0.042 (2)
F120.181 (3)0.202 (4)0.0710 (17)0.037 (3)0.0001 (17)0.051 (2)
F130.1219 (19)0.206 (3)0.0443 (12)0.0100 (19)0.0196 (12)0.0045 (14)
C110.0329 (11)0.0476 (15)0.0381 (13)0.0077 (10)0.0071 (9)0.0021 (11)
C120.0366 (12)0.0497 (15)0.0395 (13)0.0102 (10)0.0034 (10)0.0022 (11)
C130.0387 (12)0.0468 (15)0.0412 (14)0.0007 (10)0.0083 (10)0.0001 (11)
C140.0328 (11)0.0484 (15)0.0481 (15)0.0059 (10)0.0066 (10)0.0027 (12)
C1110.0389 (12)0.0480 (15)0.0397 (14)0.0005 (10)0.0057 (10)0.0046 (11)
C1120.0386 (13)0.0710 (19)0.0407 (14)0.0045 (12)0.0063 (10)0.0025 (13)
C1130.0451 (15)0.088 (2)0.0486 (17)0.0009 (14)0.0007 (12)0.0074 (15)
C1140.0560 (16)0.082 (2)0.0394 (15)0.0115 (15)0.0029 (12)0.0009 (14)
C1150.0568 (16)0.077 (2)0.0440 (16)0.0044 (14)0.0159 (13)0.0072 (14)
C1160.0407 (13)0.0634 (18)0.0443 (15)0.0045 (12)0.0096 (11)0.0045 (13)
C1170.075 (2)0.147 (4)0.046 (2)0.022 (2)0.0023 (17)0.011 (2)
C1210.0347 (12)0.0536 (17)0.0428 (14)0.0089 (11)0.0078 (10)0.0037 (12)
C1220.0373 (12)0.0577 (18)0.0529 (16)0.0096 (11)0.0095 (11)0.0031 (13)
C1230.0419 (14)0.0547 (18)0.077 (2)0.0031 (12)0.0121 (13)0.0169 (16)
C1240.0469 (15)0.087 (3)0.060 (2)0.0028 (15)0.0057 (13)0.0303 (18)
C1250.0586 (17)0.083 (2)0.0435 (16)0.0127 (15)0.0039 (13)0.0119 (16)
C1260.0522 (15)0.0607 (18)0.0464 (16)0.0130 (13)0.0068 (12)0.0043 (13)
C1310.0328 (11)0.0470 (15)0.0365 (13)0.0011 (10)0.0049 (9)0.0065 (11)
C1320.0392 (13)0.0665 (19)0.0438 (15)0.0014 (12)0.0094 (10)0.0055 (13)
C1330.0362 (14)0.092 (2)0.0584 (19)0.0052 (14)0.0108 (12)0.0165 (17)
C1340.0393 (14)0.079 (2)0.066 (2)0.0162 (13)0.0054 (13)0.0145 (17)
C1350.0508 (15)0.066 (2)0.0523 (17)0.0068 (13)0.0070 (12)0.0023 (14)
C1360.0383 (12)0.0619 (18)0.0425 (14)0.0027 (11)0.0043 (10)0.0007 (13)
C1410.0518 (16)0.0537 (18)0.0621 (19)0.0016 (13)0.0002 (13)0.0017 (15)
O110.0780 (15)0.0585 (15)0.131 (2)0.0232 (12)0.0290 (15)0.0073 (14)
C1430.138 (11)0.039 (5)0.118 (15)0.043 (6)0.009 (11)0.012 (7)
C1440.37 (3)0.088 (9)0.210 (18)0.103 (13)0.118 (19)0.023 (10)
C14B0.151 (10)0.088 (8)0.264 (18)0.005 (7)0.058 (11)0.077 (10)
C14A0.123 (10)0.126 (14)0.094 (11)0.051 (9)0.029 (9)0.015 (8)
C1420.0394 (12)0.0498 (16)0.0512 (16)0.0022 (11)0.0118 (11)0.0056 (13)
C1450.0693 (19)0.080 (2)0.0548 (19)0.0153 (17)0.0003 (15)0.0133 (17)
C1460.099 (3)0.116 (4)0.092 (3)0.004 (3)0.008 (2)0.053 (3)
N20.0424 (10)0.0403 (12)0.0312 (10)0.0019 (8)0.0055 (8)0.0006 (9)
O220.0570 (12)0.0791 (15)0.0675 (14)0.0012 (10)0.0181 (10)0.0241 (12)
O230.0950 (15)0.0400 (11)0.0562 (12)0.0020 (10)0.0259 (11)0.0058 (9)
O240.0768 (13)0.0461 (12)0.0600 (13)0.0070 (9)0.0149 (10)0.0181 (10)
F210.262 (4)0.0399 (12)0.111 (2)0.0095 (16)0.031 (2)0.0165 (12)
F220.0904 (14)0.0496 (12)0.161 (2)0.0121 (10)0.0093 (14)0.0315 (13)
F230.0920 (14)0.0521 (12)0.171 (2)0.0132 (10)0.0404 (15)0.0288 (13)
C210.0431 (12)0.0317 (12)0.0313 (12)0.0008 (9)0.0055 (9)0.0003 (10)
C220.0436 (13)0.0460 (15)0.0390 (14)0.0009 (11)0.0018 (10)0.0003 (11)
C230.0475 (13)0.0504 (16)0.0342 (13)0.0032 (11)0.0080 (10)0.0005 (11)
C240.0459 (13)0.0351 (14)0.0379 (13)0.0039 (10)0.0056 (10)0.0015 (10)
C2110.0381 (11)0.0335 (13)0.0368 (13)0.0001 (9)0.0079 (9)0.0010 (10)
C2120.0508 (14)0.0379 (14)0.0377 (14)0.0028 (11)0.0027 (10)0.0006 (11)
C2130.0602 (16)0.0420 (16)0.0436 (15)0.0040 (12)0.0074 (12)0.0099 (12)
C2140.0569 (15)0.0334 (14)0.0567 (17)0.0008 (11)0.0160 (12)0.0040 (12)
C2150.0617 (16)0.0395 (15)0.0481 (16)0.0054 (12)0.0088 (12)0.0077 (12)
C2160.0528 (14)0.0375 (14)0.0341 (13)0.0022 (11)0.0073 (10)0.0004 (10)
C2170.082 (2)0.0404 (17)0.083 (2)0.0040 (16)0.0182 (18)0.0055 (17)
C2210.0477 (14)0.0494 (16)0.0393 (14)0.0060 (11)0.0025 (11)0.0033 (12)
C2220.099 (2)0.053 (2)0.058 (2)0.0020 (17)0.0138 (17)0.0064 (15)
C2230.136 (4)0.057 (2)0.087 (3)0.009 (2)0.020 (2)0.024 (2)
C2240.134 (3)0.090 (3)0.047 (2)0.010 (2)0.007 (2)0.020 (2)
C2250.116 (3)0.087 (3)0.0420 (18)0.000 (2)0.0004 (18)0.0004 (18)
C2260.0745 (19)0.062 (2)0.0422 (16)0.0043 (15)0.0022 (13)0.0014 (14)
C2310.0486 (14)0.066 (2)0.0333 (13)0.0115 (13)0.0039 (11)0.0043 (12)
C2320.0589 (18)0.073 (2)0.076 (2)0.0123 (15)0.0031 (15)0.0234 (18)
C2330.095 (3)0.088 (3)0.116 (3)0.030 (2)0.007 (3)0.043 (3)
C2340.081 (3)0.149 (5)0.083 (3)0.060 (3)0.019 (2)0.021 (3)
C2350.069 (2)0.145 (4)0.064 (2)0.038 (2)0.0262 (17)0.010 (2)
C2360.0579 (17)0.094 (2)0.0477 (17)0.0152 (16)0.0157 (13)0.0152 (16)
C2420.0521 (14)0.0379 (15)0.0528 (17)0.0074 (11)0.0134 (12)0.0034 (13)
C2410.0470 (14)0.0463 (16)0.0546 (17)0.0041 (11)0.0077 (12)0.0035 (13)
O210.0449 (12)0.148 (3)0.0906 (18)0.0171 (13)0.0057 (11)0.0395 (17)
C2430.040 (3)0.169 (9)0.062 (4)0.010 (4)0.007 (3)0.016 (5)
C2440.058 (4)0.179 (8)0.093 (5)0.010 (5)0.022 (3)0.007 (6)
C24A0.148 (16)0.082 (10)0.131 (14)0.019 (9)0.083 (12)0.017 (9)
C24B0.21 (2)0.087 (11)0.155 (18)0.026 (12)0.063 (16)0.012 (11)
C2450.098 (3)0.0442 (18)0.085 (2)0.0035 (17)0.0177 (19)0.0142 (17)
C2460.085 (3)0.070 (3)0.171 (5)0.023 (2)0.007 (3)0.033 (3)
Geometric parameters (Å, º) top
N1—C131.465 (3)N2—C231.470 (3)
N1—C121.469 (3)N2—C221.472 (3)
N1—C111.479 (3)N2—C211.479 (3)
O12—C1411.187 (4)O22—C2411.183 (3)
O13—C1421.329 (3)O23—C2421.337 (3)
O13—C1451.454 (3)O23—C2451.468 (4)
O14—C1421.197 (3)O24—C2421.197 (3)
F11—C1171.265 (4)F21—C2171.302 (4)
F12—C1171.361 (6)F22—C2171.331 (4)
F13—C1171.295 (5)F23—C2171.332 (4)
C11—C1111.519 (3)C21—C2111.518 (3)
C11—C141.538 (3)C21—C241.534 (3)
C11—H110.9800C21—H210.9800
C12—C1211.508 (4)C22—C2211.501 (4)
C12—H12A0.9700C22—H22A0.9700
C12—H12B0.9700C22—H22B0.9700
C13—C1311.508 (3)C23—C2311.502 (3)
C13—H13A0.9700C23—H23A0.9700
C13—H13B0.9700C23—H23B0.9700
C14—C1411.515 (4)C24—C2421.518 (4)
C14—C1421.519 (4)C24—C2411.520 (4)
C14—H140.9800C24—H240.9800
C111—C1161.391 (3)C211—C2161.384 (3)
C111—C1121.392 (3)C211—C2121.391 (3)
C112—C1131.377 (4)C212—C2131.379 (4)
C112—H1120.9300C212—H2120.9300
C113—C1141.382 (4)C213—C2141.376 (4)
C113—H1130.9300C213—H2130.9300
C114—C1151.382 (4)C214—C2151.383 (4)
C114—C1171.487 (5)C214—C2171.497 (4)
C115—C1161.380 (4)C215—C2161.384 (4)
C115—H1150.9300C215—H2150.9300
C116—H1160.9300C216—H2160.9300
C121—C1221.383 (4)C221—C2221.366 (4)
C121—C1261.395 (4)C221—C2261.385 (4)
C122—C1231.394 (4)C222—C2231.402 (5)
C122—H1220.9300C222—H2220.9300
C123—C1241.371 (4)C223—C2241.371 (5)
C123—H1230.9300C223—H2230.9300
C124—C1251.373 (5)C224—C2251.355 (5)
C124—H1240.9300C224—H2240.9300
C125—C1261.372 (4)C225—C2261.374 (4)
C125—H1250.9300C225—H2250.9300
C126—H1260.9300C226—H2260.9300
C131—C1361.382 (4)C231—C2321.379 (5)
C131—C1321.389 (3)C231—C2361.383 (4)
C132—C1331.379 (4)C232—C2331.383 (5)
C132—H1320.9300C232—H2320.9300
C133—C1341.371 (4)C233—C2341.384 (7)
C133—H1330.9300C233—H2330.9300
C134—C1351.380 (4)C234—C2351.349 (7)
C134—H1340.9300C234—H2340.9300
C135—C1361.382 (4)C235—C2361.366 (5)
C135—H1350.9300C235—H2350.9300
C136—H1360.9300C236—H2360.9300
C141—O111.330 (4)C241—O211.321 (3)
O11—C14A1.492 (12)O21—C2431.522 (6)
O11—C1431.504 (10)O21—C24A1.602 (14)
C143—C1441.440 (13)C243—C2441.430 (8)
C143—H14A0.9700C243—H24A0.9700
C143—H14B0.9700C243—H24B0.9700
C144—H14C0.9600C244—H24C0.9600
C144—H14D0.9600C244—H24D0.9600
C144—H14E0.9600C244—H24E0.9600
C14B—C14A1.430 (13)C24A—C24B1.447 (12)
C14B—H14F0.9600C24A—H24F0.9700
C14B—H14G0.9600C24A—H24G0.9700
C14B—H14H0.9600C24B—H24H0.9600
C14A—H14I0.9700C24B—H24I0.9600
C14A—H14J0.9700C24B—H24J0.9600
C145—C1461.501 (5)C245—C2461.449 (5)
C145—H14K0.9700C245—H24K0.9700
C145—H14L0.9700C245—H24L0.9700
C146—H14M0.9600C246—H24M0.9600
C146—H14N0.9600C246—H24N0.9600
C146—H14O0.9600C246—H24O0.9600
C13—N1—C12110.9 (2)C145—C146—H14O109.5
C13—N1—C11112.11 (17)H14M—C146—H14O109.5
C12—N1—C11115.09 (18)H14N—C146—H14O109.5
C142—O13—C145116.9 (2)C23—N2—C22110.25 (19)
N1—C11—C111115.3 (2)C23—N2—C21115.01 (18)
N1—C11—C14109.64 (18)C22—N2—C21111.59 (18)
C111—C11—C14112.57 (19)C242—O23—C245117.9 (2)
N1—C11—H11106.2N2—C21—C211114.48 (18)
C111—C11—H11106.2N2—C21—C24109.68 (18)
C14—C11—H11106.2C211—C21—C24112.74 (19)
N1—C12—C121111.26 (19)N2—C21—H21106.5
N1—C12—H12A109.4C211—C21—H21106.5
C121—C12—H12A109.4C24—C21—H21106.5
N1—C12—H12B109.4N2—C22—C221113.6 (2)
C121—C12—H12B109.4N2—C22—H22A108.8
H12A—C12—H12B108.0C221—C22—H22A108.8
N1—C13—C131113.6 (2)N2—C22—H22B108.8
N1—C13—H13A108.8C221—C22—H22B108.8
C131—C13—H13A108.8H22A—C22—H22B107.7
N1—C13—H13B108.8N2—C23—C231110.9 (2)
C131—C13—H13B108.8N2—C23—H23A109.5
H13A—C13—H13B107.7C231—C23—H23A109.5
C141—C14—C142109.5 (2)N2—C23—H23B109.5
C141—C14—C11112.3 (2)C231—C23—H23B109.5
C142—C14—C11111.1 (2)H23A—C23—H23B108.0
C141—C14—H14107.9C242—C24—C241108.9 (2)
C142—C14—H14107.9C242—C24—C21110.4 (2)
C11—C14—H14107.9C241—C24—C21110.8 (2)
C116—C111—C112117.7 (2)C242—C24—H24108.9
C116—C111—C11119.6 (2)C241—C24—H24108.9
C112—C111—C11122.7 (2)C21—C24—H24108.9
C113—C112—C111121.1 (2)C216—C211—C212118.3 (2)
C113—C112—H112119.5C216—C211—C21119.2 (2)
C111—C112—H112119.5C212—C211—C21122.4 (2)
C112—C113—C114120.3 (3)C213—C212—C211120.8 (2)
C112—C113—H113119.9C213—C212—H212119.6
C114—C113—H113119.9C211—C212—H212119.6
C115—C114—C113119.6 (3)C214—C213—C212120.1 (2)
C115—C114—C117121.1 (3)C214—C213—H213119.9
C113—C114—C117119.2 (3)C212—C213—H213119.9
C116—C115—C114119.8 (3)C213—C214—C215120.2 (2)
C116—C115—H115120.1C213—C214—C217118.4 (3)
C114—C115—H115120.1C215—C214—C217121.3 (3)
C115—C116—C111121.5 (2)C214—C215—C216119.3 (2)
C115—C116—H116119.3C214—C215—H215120.4
C111—C116—H116119.3C216—C215—H215120.4
F11—C117—F13110.7 (4)C215—C216—C211121.4 (2)
F11—C117—F12104.0 (4)C215—C216—H216119.3
F13—C117—F1299.9 (3)C211—C216—H216119.3
F11—C117—C114114.4 (3)F21—C217—F22106.9 (3)
F13—C117—C114115.2 (3)F21—C217—F23106.9 (3)
F12—C117—C114111.1 (4)F22—C217—F23105.0 (3)
C122—C121—C126118.0 (2)F21—C217—C214114.0 (3)
C122—C121—C12121.0 (2)F22—C217—C214112.8 (3)
C126—C121—C12121.0 (2)F23—C217—C214110.6 (3)
C121—C122—C123120.6 (3)C222—C221—C226118.9 (3)
C121—C122—H122119.7C222—C221—C22121.0 (3)
C123—C122—H122119.7C226—C221—C22120.0 (3)
C124—C123—C122120.2 (3)C221—C222—C223120.1 (3)
C124—C123—H123119.9C221—C222—H222119.9
C122—C123—H123119.9C223—C222—H222119.9
C123—C124—C125119.7 (3)C224—C223—C222119.5 (4)
C123—C124—H124120.2C224—C223—H223120.2
C125—C124—H124120.2C222—C223—H223120.2
C126—C125—C124120.5 (3)C225—C224—C223120.6 (3)
C126—C125—H125119.8C225—C224—H224119.7
C124—C125—H125119.8C223—C224—H224119.7
C125—C126—C121121.0 (3)C224—C225—C226119.9 (3)
C125—C126—H126119.5C224—C225—H225120.0
C121—C126—H126119.5C226—C225—H225120.0
C136—C131—C132118.3 (2)C225—C226—C221121.0 (3)
C136—C131—C13121.9 (2)C225—C226—H226119.5
C132—C131—C13119.8 (2)C221—C226—H226119.5
C133—C132—C131120.6 (3)C232—C231—C236118.8 (3)
C133—C132—H132119.7C232—C231—C23120.1 (3)
C131—C132—H132119.7C236—C231—C23121.0 (3)
C134—C133—C132120.7 (3)C231—C232—C233119.5 (4)
C134—C133—H133119.7C231—C232—H232120.2
C132—C133—H133119.7C233—C232—H232120.2
C133—C134—C135119.3 (3)C232—C233—C234120.3 (4)
C133—C134—H134120.3C232—C233—H233119.8
C135—C134—H134120.3C234—C233—H233119.8
C134—C135—C136120.2 (3)C235—C234—C233119.9 (3)
C134—C135—H135119.9C235—C234—H234120.0
C136—C135—H135119.9C233—C234—H234120.0
C135—C136—C131120.9 (2)C234—C235—C236120.2 (4)
C135—C136—H136119.5C234—C235—H235119.9
C131—C136—H136119.5C236—C235—H235119.9
O12—C141—O11125.0 (3)C235—C236—C231121.2 (4)
O12—C141—C14126.2 (3)C235—C236—H236119.4
O11—C141—C14108.8 (3)C231—C236—H236119.4
C141—O11—C14A121.0 (9)O24—C242—O23125.7 (3)
C141—O11—C143111.1 (8)O24—C242—C24123.9 (3)
C14A—O11—C14322.8 (9)O23—C242—C24110.4 (2)
C144—C143—O11104.8 (11)O22—C241—O21123.1 (3)
C144—C143—H14A110.8O22—C241—C24126.1 (2)
O11—C143—H14A110.8O21—C241—C24110.8 (2)
C144—C143—H14B110.8C241—O21—C243110.9 (3)
O11—C143—H14B110.8C241—O21—C24A127.0 (6)
H14A—C143—H14B108.9C243—O21—C24A26.5 (5)
C14A—C14B—H14F109.5C244—C243—O21106.2 (5)
C14A—C14B—H14G109.5C244—C243—H24A110.5
H14F—C14B—H14G109.5O21—C243—H24A110.5
C14A—C14B—H14H109.5C244—C243—H24B110.5
H14F—C14B—H14H109.5O21—C243—H24B110.5
H14G—C14B—H14H109.5H24A—C243—H24B108.7
C14B—C14A—O11100.2 (11)C24B—C24A—O2182.1 (12)
C14B—C14A—H14I111.7C24B—C24A—H24F114.9
O11—C14A—H14I111.7O21—C24A—H24F114.9
C14B—C14A—H14J111.7C24B—C24A—H24G114.9
O11—C14A—H14J111.7O21—C24A—H24G114.9
H14I—C14A—H14J109.5H24F—C24A—H24G112.0
O14—C142—O13125.5 (3)C246—C245—O23109.9 (3)
O14—C142—C14124.2 (2)C246—C245—H24K109.7
O13—C142—C14110.3 (2)O23—C245—H24K109.7
O13—C145—C146110.5 (3)C246—C245—H24L109.7
O13—C145—H14K109.5O23—C245—H24L109.7
C146—C145—H14K109.5H24K—C245—H24L108.2
O13—C145—H14L109.5C245—C246—H24M109.5
C146—C145—H14L109.5C245—C246—H24N109.5
H14K—C145—H14L108.1H24M—C246—H24N109.5
C145—C146—H14M109.5C245—C246—H24O109.5
C145—C146—H14N109.5H24M—C246—H24O109.5
H14M—C146—H14N109.5H24N—C246—H24O109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C226—H226···O22i0.932.603.323 (4)135
C235—H235···O14ii0.932.513.294 (4)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC29H30F3NO4
Mr513.54
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.4131 (3), 23.6608 (5), 17.3769 (3)
β (°) 96.826 (1)
V3)5475.72 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.43 × 0.25 × 0.17
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
74220, 10790, 6912
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.184, 1.02
No. of reflections10790
No. of parameters709
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C226—H226···O22i0.932.603.323 (4)135
C235—H235···O14ii0.932.513.294 (4)142
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z+1.
 

Acknowledgements

This work was supported in the framework of Project PGR-UMP-BH-2005 by the Centre National de Recherche Scientifique, CNRS, France, and the Centre National pour la Recherche Scientifique et Technique, CNRST, Morocco.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDayam, R., Al-Mawsawi, L. Q. & Neamati, N. (2007). Bioorg. Med. Chem. Lett. 17, 6155–6159.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatil, S., Kamath, S., Sanchez, T., Neamati, N., Schinazi, R. F. & Buolamwini, J. K. (2007). Bioorg. Med. Chem. 15, 1212–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPommier, Y. & Neamati, N. (2006). Bioorg. Med. Chem. 14, 3785–3792.  Web of Science PubMed Google Scholar
First citationRamkumar, K., Tambov, K. V., Gundla, R., Manaev, A. V., Yarovenko, V., Traven, V. F. & Neamati, N. (2008). Bioorg. Med. Chem. 16, 8988–8998.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSechi, M., Carta, F., Sannia, L., Dallocchio, R., Dessı`, A., Al-Safi, R. I. & Neamati, N. (2009). Antivir. Res. 81, 267–276.  Google Scholar
First citationSechi, M., Rizzi, G., Bacchi, A., Carcelli, M., Rogolino, D., Pala, N., Sanchez, T. W., Taheri, L., Dayam, R. & Neamati, N. (2009). Bioorg. Med. Chem. 17, 2925–2935.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationZeng, L. F., Jiang, X. H., Sanchez, T., Zhang, H. S., Dayam, R., Neamati, N. & Long, Y. Q. (2008). Bioorg. Med. Chem. 16, 7777–7787.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZeng, L. F., Zhang, H.-S., Wang, Y. H., Sanchez, T., Zheng, Y. T., Neamati, N. & Long, Y. Q. (2008). Bioorg. Med. Chem. Lett. 18, 4521–4524.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o961-o962
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds