organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,6-Bis(di­methyl­amino­meth­yl)phen­yl]selenium bromide monohydrate

aFaculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Arany Janos Str. no. 11, RO-400028, Cluj Napoca, Romania, and bDepartamento de Química Inorgánica, Instituto de Ciencia de, Materiales de Aragón, Universidad de Zaragoza–CSIC, E-50009 Zaragoza, Spain
*Correspondence e-mail: richy@chem.ubbcluj.ro

(Received 4 February 2010; accepted 2 March 2010; online 6 March 2010)

In the title hydrated molecular salt, C12H19N2Se+·Br·H2O, the two independent bromide anions lie on a twofold rotation axis. Strong intra­molecular N→Se inter­actions [2.185 (3) and 2.181 (3) Å] are established by both N atoms of the organic group in the cation, in trans positions to each other, with an N—Se—N angle of 161.6 (1)°, resulting in a T-shaped (C,N,N′)Se core. In the crystal, dimeric associations are formed by Br⋯Se [3.662 (2) Å] and Br⋯H inter­actions [2.56 (6) and 2.63 (7) Å] involving two bromide anions, two cations and two water mol­ecules.

Related literature

For related selenium and tellurium compounds, see: Drake et al. (2001a[Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2001a). J. Organomet. Chem. 623, 153-160.],b[Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2001b). Phosphorus Sulfur, 169, 293-296.]); Deleanu et al. (2002[Deleanu, C., Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2002). Appl. Organomet. Chem. 16, 727-731.]); Kulcsar et al. (2005[Kulcsar, M., Silvestru, A., Silvestru, C., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Leight, M. E. (2005). J. Organomet. Chem. 690, 3217-3228.], 2007[Kulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187-2196.]); Beleaga et al. (2009[Beleaga, A., Kulcsar, M., Deleanu, C., Nicolescu, A., Silvestru, C. & Silvestru, A. (2009). J. Organomet. Chem. 694, 1308-1316.]); Fujihara et al. (1995[Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am.Chem. Soc. 117, 10153-10154.]). For van der Waals radii, see: Emsley (1994[Emsley, J. (1994). In Die Elemente. Berlin: Walter de Gruyter.]).

[Scheme 1]

Experimental

Crystal data
  • C12H19N2Se+·Br·H2O

  • Mr = 368.18

  • Monoclinic, C 2/c

  • a = 15.1494 (14) Å

  • b = 11.3182 (10) Å

  • c = 18.8083 (17) Å

  • β = 110.475 (2)°

  • V = 3021.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.12 mm−1

  • T = 297 K

  • 0.31 × 0.29 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.300, Tmax = 0.656

  • 11856 measured reflections

  • 3093 independent reflections

  • 2696 reflections with I > 2/s(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.086

  • S = 1.09

  • 3093 reflections

  • 167 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Br2 0.78 (6) 2.56 (6) 3.340 (5) 175 (5)
O1—H2⋯Br1 0.78 (6) 2.63 (7) 3.406 (5) 176 (7)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND 3 (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

In the last years our interest was focused on the synthesis, structural characterization and chemical reactivity of some new hypervalent organoselenium and organotellurium derivatives containing aryl groups with pendant arms, e.g. 2-(Me2NCH2)C6H4, 2-[O(CH2CH2)2NCH2]C6H4 and 2-[MeN(CH2CH2)2NCH2]C6H4 (Drake et al., 2001a,b, Deleanu et al.,2002, Kulcsar et al., 2005, 2007, Beleaga et al., 2009).

The crystal of the title compound contains a mixture of [{2,6-(Me2NCH2)2C6H3}Se]+ cations and [Br]- anions and crystallizes with a water molecule. The two independent bromine anions lie on a two-fold rotation axis. Both pendant arms of the organic group attached to selenium establish strong intramolecular NSe interactions [Se—N1 = 2.185 (3) Å, Se1—N2 = 2.181 (3) Å], trans one to the other [N1—Se1—N2 = 161.6 (1)°], thus resulting in the increase of the coordination number at Se to three (Fig. 1). The Se—N distances are of the same magnitude as found in the cation of [{2,6-(Me2NCH2)2C6H3}Se]+[PF6]- [Se1—N1 = 2.180 Å; Se1—N2 = 2.154 Å] (Fujihara et al., 1995). This results in a distorted T-shaped (C,N,N')Se core [C1—Se1—N1 = 80.5 (1)°, C1—Se1—N2 = 81.2 (1)°], the distortion being mainly due to the constraints imposed by the two SeC3N five-membered chelate rings.

An unusual dimer association is formed between two cations, two bromine atoms and two water molecules (Fig. 2). The Br2 atom is involved in bridging two selenium atoms and the interatomic Se1—Br2 distances [3.662 (2) Å] are much longer than the sum of the corresponding covalent radii [Σrcov(Se,Br) ca. 2.31 Å], but shorter than the sum of the van der Waals radii [ΣrvdW(Se,Br) ca. 3.95 Å] (Emsley, 1994), consistent with an electrostatic anion-cation interaction. This interaction is directed trans to the selenium-carbon bond in the cation [C1—Se1—Br2 = 154.4 (1)°], thus resulting in a distorted square-planar environment around the chalcogen atom. The water molecules bridge the Br1 and Br2 anions through Br···H hydrogen bonding [Br1···H1 = 2.56 (6) Å, Br2···H2 = 2.63 (7) Å].

Related literature top

For related selenium and tellurium compounds, see: Drake et al. (2001a,b); Deleanu et al. (2002); Kulcsar et al. (2005, 2007); Beleaga et al. (2009); Fujihara et al. (1995). For van der Waals radii, see: Emsley (1994).

Experimental top

[2,6-(Me2NCH2)2C6H3]SeBr was obtained by oxidizing [2,6-(Me2NCH2)2C6H3]2Se2 with elemental bromine.

The attempt to grow crystals of [2,6-(Me2NCH2)2C6H3]SeBr from a methylene dichloride / n-hexane mixture (1:5, v/v) in open atmosphere led to the isolation of [2,6-(Me2NCH2)2C6H3]SeBr.H2O.

Refinement top

All hydrogen atoms were placed in calculated positions using a riding model, with C—H = 0.93-0.97 Å and with Uiso= 1.5Ueq (C) for methyl H and Uiso= 1.2Ueq (C) for aryl H. The methyl groups were allowed to rotate but not to tip. Hydrogen atoms from the water molecule were found from difference map and refined to O—H distances of 0.78 (6) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND 3 (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : View of title compound showing the atom-numbering scheme at 30% probability thermal ellipsoids.
[Figure 2] Fig. 2. : Intra- and intermolecular interactions in the title compound (dashed lines; only H atoms involved in interactions are shown) [symmetry code: (i) = 1-x, y, 1.5-z].
[2,6-Bis(dimethylaminomethyl)phenyl]selenium bromide monohydrate top
Crystal data top
C12H19N2Se+·Br·H2OF(000) = 1472
Mr = 368.18Dx = 1.619 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3226 reflections
a = 15.1494 (14) Åθ = 2.3–25.2°
b = 11.3182 (10) ŵ = 5.12 mm1
c = 18.8083 (17) ÅT = 297 K
β = 110.475 (2)°Block, colourless
V = 3021.2 (5) Å30.31 × 0.29 × 0.09 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3093 independent reflections
Radiation source: fine-focus sealed tube2696 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.050
phi and ω scansθmax = 26.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1818
Tmin = 0.300, Tmax = 0.656k = 1414
11856 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0287P)2 + 3.8997P]
where P = (Fo2 + 2Fc2)/3
3093 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C12H19N2Se+·Br·H2OV = 3021.2 (5) Å3
Mr = 368.18Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.1494 (14) ŵ = 5.12 mm1
b = 11.3182 (10) ÅT = 297 K
c = 18.8083 (17) Å0.31 × 0.29 × 0.09 mm
β = 110.475 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3093 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2696 reflections with I > 2/s(I)
Tmin = 0.300, Tmax = 0.656Rint = 0.050
11856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.49 e Å3
3093 reflectionsΔρmin = 0.53 e Å3
167 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.50000.26510 (5)0.75000.05461 (17)
Br20.50000.73811 (6)0.75000.0747 (2)
C10.3337 (2)0.9300 (3)0.93573 (18)0.0319 (7)
C20.3774 (2)0.9329 (3)1.01348 (18)0.0372 (7)
C60.2603 (2)1.0046 (3)0.89677 (19)0.0346 (7)
C100.2169 (2)0.9828 (3)0.81308 (19)0.0408 (8)
H10A0.16400.92900.80280.049*
H10B0.19391.05650.78680.049*
C70.4589 (3)0.8503 (3)1.04538 (19)0.0444 (8)
H7A0.51730.89061.05050.053*
H7B0.46220.82321.09520.053*
C80.3799 (3)0.6604 (3)1.0050 (3)0.0572 (11)
H8A0.40770.62571.05440.086*
H8B0.36770.59990.96700.086*
H8C0.32180.69841.00140.086*
C90.5358 (3)0.6906 (4)0.9999 (2)0.0561 (10)
H9A0.57800.74820.99190.084*
H9B0.52460.62940.96240.084*
H9C0.56350.65701.04960.084*
C120.3495 (3)1.0235 (3)0.7709 (2)0.0495 (9)
H12A0.40060.98720.75990.074*
H12B0.37441.07330.81470.074*
H12C0.31261.07020.72820.074*
C110.2469 (3)0.8570 (4)0.7181 (2)0.0525 (9)
H11A0.20980.90560.67670.079*
H11B0.20730.79820.72860.079*
H11C0.29570.81890.70500.079*
C50.2301 (3)1.0860 (3)0.9381 (2)0.0454 (9)
H50.18101.13740.91340.054*
C40.2730 (3)1.0911 (3)1.0160 (2)0.0505 (9)
H40.25251.14621.04340.061*
C30.3460 (3)1.0155 (3)1.0540 (2)0.0473 (9)
H30.37401.01981.10650.057*
N10.4453 (2)0.7484 (2)0.99307 (16)0.0385 (7)
N20.28962 (19)0.9310 (2)0.78604 (15)0.0372 (6)
O10.4714 (3)0.5053 (4)0.8489 (2)0.0793 (11)
Se10.37778 (2)0.82185 (3)0.879443 (18)0.03542 (12)
H10.480 (4)0.562 (5)0.828 (3)0.09 (2)*
H20.475 (5)0.451 (6)0.825 (4)0.12 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0623 (4)0.0495 (3)0.0552 (4)0.0000.0246 (3)0.000
Br20.0914 (5)0.0596 (4)0.0986 (6)0.0000.0651 (5)0.000
C10.0345 (17)0.0321 (16)0.0323 (17)0.0077 (13)0.0157 (14)0.0033 (13)
C20.0410 (19)0.0415 (18)0.0301 (18)0.0085 (15)0.0139 (15)0.0012 (14)
C60.0337 (17)0.0329 (16)0.0367 (18)0.0046 (13)0.0117 (14)0.0018 (13)
C100.0355 (18)0.0434 (19)0.0379 (19)0.0018 (15)0.0057 (15)0.0008 (15)
C70.043 (2)0.057 (2)0.0302 (18)0.0040 (17)0.0092 (15)0.0064 (16)
C80.045 (2)0.050 (2)0.073 (3)0.0058 (17)0.016 (2)0.021 (2)
C90.040 (2)0.065 (3)0.061 (3)0.0149 (19)0.0143 (19)0.014 (2)
C120.056 (2)0.053 (2)0.040 (2)0.0079 (18)0.0165 (18)0.0080 (17)
C110.058 (2)0.055 (2)0.036 (2)0.0003 (19)0.0076 (18)0.0115 (17)
C50.047 (2)0.0364 (18)0.056 (2)0.0009 (16)0.0221 (18)0.0025 (16)
C40.063 (2)0.043 (2)0.055 (2)0.0016 (19)0.033 (2)0.0114 (18)
C30.060 (2)0.054 (2)0.0317 (19)0.0089 (19)0.0210 (18)0.0050 (16)
N10.0319 (15)0.0426 (16)0.0395 (16)0.0017 (12)0.0108 (13)0.0081 (12)
N20.0412 (16)0.0396 (15)0.0273 (14)0.0040 (12)0.0076 (12)0.0005 (12)
O10.106 (3)0.077 (3)0.046 (2)0.007 (2)0.0145 (19)0.0004 (19)
Se10.03654 (19)0.03788 (19)0.03126 (19)0.00273 (14)0.01113 (14)0.00128 (14)
Geometric parameters (Å, º) top
C1—C21.379 (4)C9—H9B0.9600
C1—C61.384 (5)C9—H9C0.9600
C1—Se11.887 (3)C12—N21.478 (4)
C2—C31.391 (5)C12—H12A0.9600
C2—C71.497 (5)C12—H12B0.9600
C6—C51.382 (5)C12—H12C0.9600
C6—C101.499 (5)C11—N21.474 (4)
C10—N21.487 (4)C11—H11A0.9600
C10—H10A0.9700C11—H11B0.9600
C10—H10B0.9700C11—H11C0.9600
C7—N11.483 (5)C5—C41.381 (5)
C7—H7A0.9700C5—H50.9300
C7—H7B0.9700C4—C31.383 (5)
C8—N11.476 (4)C4—H40.9300
C8—H8A0.9600C3—H30.9300
C8—H8B0.9600N1—Se12.185 (3)
C8—H8C0.9600N2—Se12.180 (3)
C9—N11.484 (5)O1—H10.78 (6)
C9—H9A0.9600O1—H20.78 (6)
C2—C1—C6123.1 (3)H12A—C12—H12B109.5
C2—C1—Se1118.5 (2)N2—C12—H12C109.5
C6—C1—Se1118.4 (2)H12A—C12—H12C109.5
C1—C2—C3117.9 (3)H12B—C12—H12C109.5
C1—C2—C7115.7 (3)N2—C11—H11A109.5
C3—C2—C7126.3 (3)N2—C11—H11B109.5
C5—C6—C1118.1 (3)H11A—C11—H11B109.5
C5—C6—C10126.1 (3)N2—C11—H11C109.5
C1—C6—C10115.6 (3)H11A—C11—H11C109.5
N2—C10—C6108.6 (3)H11B—C11—H11C109.5
N2—C10—H10A110.0C4—C5—C6119.9 (3)
C6—C10—H10A110.0C4—C5—H5120.1
N2—C10—H10B110.0C6—C5—H5120.1
C6—C10—H10B110.0C5—C4—C3121.2 (3)
H10A—C10—H10B108.4C5—C4—H4119.4
N1—C7—C2108.4 (3)C3—C4—H4119.4
N1—C7—H7A110.0C4—C3—C2119.8 (3)
C2—C7—H7A110.0C4—C3—H3120.1
N1—C7—H7B110.0C2—C3—H3120.1
C2—C7—H7B110.0C8—N1—C7111.6 (3)
H7A—C7—H7B108.4C8—N1—C9109.8 (3)
N1—C8—H8A109.5C7—N1—C9112.1 (3)
N1—C8—H8B109.5C8—N1—Se1107.2 (2)
H8A—C8—H8B109.5C7—N1—Se1105.19 (19)
N1—C8—H8C109.5C9—N1—Se1110.7 (2)
H8A—C8—H8C109.5C11—N2—C12110.4 (3)
H8B—C8—H8C109.5C11—N2—C10111.5 (3)
N1—C9—H9A109.5C12—N2—C10111.4 (3)
N1—C9—H9B109.5C11—N2—Se1109.6 (2)
H9A—C9—H9B109.5C12—N2—Se1108.2 (2)
N1—C9—H9C109.5C10—N2—Se1105.46 (19)
H9A—C9—H9C109.5H1—O1—H2107 (6)
H9B—C9—H9C109.5C1—Se1—N281.21 (12)
N2—C12—H12A109.5C1—Se1—N180.47 (12)
N2—C12—H12B109.5N2—Se1—N1161.56 (11)
C6—C1—C2—C30.4 (5)C2—C7—N1—Se134.9 (3)
Se1—C1—C2—C3178.1 (2)C6—C10—N2—C11152.9 (3)
C6—C1—C2—C7176.8 (3)C6—C10—N2—C1283.3 (3)
Se1—C1—C2—C71.8 (4)C6—C10—N2—Se133.9 (3)
C2—C1—C6—C50.4 (5)C2—C1—Se1—N2166.9 (3)
Se1—C1—C6—C5178.1 (2)C6—C1—Se1—N211.7 (2)
C2—C1—C6—C10175.7 (3)C2—C1—Se1—N115.2 (2)
Se1—C1—C6—C105.7 (4)C6—C1—Se1—N1166.2 (3)
C5—C6—C10—N2155.8 (3)C11—N2—Se1—C1146.0 (3)
C1—C6—C10—N228.4 (4)C12—N2—Se1—C193.5 (2)
C1—C2—C7—N126.9 (4)C10—N2—Se1—C125.8 (2)
C3—C2—C7—N1157.1 (3)C11—N2—Se1—N1139.3 (3)
C1—C6—C5—C40.1 (5)C12—N2—Se1—N1100.2 (4)
C10—C6—C5—C4175.6 (3)C10—N2—Se1—N119.1 (4)
C6—C5—C4—C30.2 (6)C8—N1—Se1—C190.8 (2)
C5—C4—C3—C20.2 (6)C7—N1—Se1—C128.1 (2)
C1—C2—C3—C40.1 (5)C9—N1—Se1—C1149.4 (3)
C7—C2—C3—C4176.0 (3)C8—N1—Se1—N284.2 (4)
C2—C7—N1—C881.0 (3)C7—N1—Se1—N234.8 (4)
C2—C7—N1—C9155.3 (3)C9—N1—Se1—N2156.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br20.78 (6)2.56 (6)3.340 (5)175 (5)
O1—H2···Br10.78 (6)2.63 (7)3.406 (5)176 (7)

Experimental details

Crystal data
Chemical formulaC12H19N2Se+·Br·H2O
Mr368.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)297
a, b, c (Å)15.1494 (14), 11.3182 (10), 18.8083 (17)
β (°) 110.475 (2)
V3)3021.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.12
Crystal size (mm)0.31 × 0.29 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.300, 0.656
No. of measured, independent and
observed [I > 2/s(I)] reflections
11856, 3093, 2696
Rint0.050
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.086, 1.09
No. of reflections3093
No. of parameters167
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.53

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND 3 (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Br20.78 (6)2.56 (6)3.340 (5)175 (5)
O1—H2···Br10.78 (6)2.63 (7)3.406 (5)176 (7)
 

Acknowledgements

This work was supported by the Romanian Ministery of Education and Research (PNII Program, grant 2404/2008). We also thank the National Center for X-ray Diffraction, Cluj-Napoca, for the structure determination.

References

First citationBeleaga, A., Kulcsar, M., Deleanu, C., Nicolescu, A., Silvestru, C. & Silvestru, A. (2009). J. Organomet. Chem. 694, 1308–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeleanu, C., Drake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2002). Appl. Organomet. Chem. 16, 727–731.  Web of Science CSD CrossRef CAS Google Scholar
First citationDrake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2001a). J. Organomet. Chem. 623, 153–160.  CAS Google Scholar
First citationDrake, J. E., Hursthouse, M. B., Kulcsar, M., Leight, M. E. & Silvestru, A. (2001b). Phosphorus Sulfur, 169, 293–296.  Web of Science CrossRef Google Scholar
First citationEmsley, J. (1994). In Die Elemente. Berlin: Walter de Gruyter.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFujihara, H., Mima, H. & Furukawa, N. (1995). J. Am.Chem. Soc. 117, 10153–10154.  CrossRef CAS Web of Science Google Scholar
First citationKulcsar, M., Beleaga, A., Silvestru, C., Nicolescu, A., Deleanu, C., Todasca, C. & Silvestru, A. (2007). Dalton Trans. pp. 2187–2196.  Web of Science CSD CrossRef Google Scholar
First citationKulcsar, M., Silvestru, A., Silvestru, C., Drake, J. E., Macdonald, C. L. B., Hursthouse, M. B. & Leight, M. E. (2005). J. Organomet. Chem. 690, 3217–3228.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds