organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o779-o780

Bis(3-ammonio­methyl­pyridinium) cyclo­tetra­phosphate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia, and bPetrochemical Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
*Correspondence e-mail: hanene.hemissi@fsb.rnu.tn

(Received 18 February 2010; accepted 2 March 2010; online 10 March 2010)

In the title compound, 2C6H10N22+·P4O124−, which involves a doubly protonated 3-ammonio­methyl­pyridinium cation and a cyclo­tetra­phosphate anion, the cyclo­tetra­phospho­ric ring is arranged around an inversion center and the organic entity alternates with it, forming hybrid ribbons parallel to the b axis. The crystal structure is stabilized by a three-dimensional network of N—H⋯O and weaker C—H⋯O hydrogen bonds.

Related literature

For properties of hybrid materials, see: Aakeröy et al.(1989[Aakeröy, C. B., Hitchcock, P. B., Moyle, B. D. & Seddon, K. R. (1989). J. Chem. Soc. Chem. Commun. pp. 1856-1859.]); Sankar et al. (1993[Sankar, G., Wright, P. A., Natarajan, S., Thomas, J. M., Greaves, G. N., Dent, A. J., Dobson, B. R., Ramsdale, C. A. & Jones, R. H. (1993). J. Phys. Chem. 97, 9550-9554.]); Teraski et al. (1987[Teraski, O., Barry, J. C. & Thomas, J. M. (1987). Nature (London), 330, 58-60]); Vaughan (1993[Vaughan, D. E. W. (1993). In Multifunctional Mesoporous Inorganic Solids, edited by A.C. Seqina & M.I. Hudson, pp. 137-156. New York: Nato ASI Series.]); Centi (1993[Centi, G. (1993). Catal. Lett. 22, 53-66.]); Ozin (1992[Ozin, G. A. (1992). Adv. Mater. 4, 612-649.]). For related structures containing phospho­ric acid rings, see: Aloui et al. (2003[Aloui, Z., Abid, S. & Rzaigui, M. (2003). J. Phys. Chem. Solids, 65, 923-926]); Hemissi et al. (2005[Hemissi, H., Sonia, A. & Rzaigui, M. (2005). Z. Kristallogr. 220, 265-266]); Averbuch-Pouchot & Durif (1991[Averbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9-22.]); Durif (1995[Durif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.]). For bond lengths in pyridine, see: Bak et al. (1959[Bak, B., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1959). J. Mol. Spectrosc. 2, 361-364.]). For hydrogen bonding, see: Blessing (1986[Blessing, R. H. (1986). Acta Cryst. B42, 613-621.]); Brown (1976[Brown, I. D. (1976). Acta Cryst. A32, 24-31.]); Soumhi & Jouini (1996[Soumhi, E. H. & Jouini, T. (1996). Acta Cryst. C52, 432-433.]). Cyclo­tetra­phospho­ric acid was produced from Na4P4O12·4H2O, which was prepared according to the Ondik (1964[Ondik, H. M. (1964). Acta Cryst. 17, 1139-1145.]) process.

[Scheme 1]

Experimental

Crystal data
  • 2C6H10N22+·P4O124−

  • Mr = 536.20

  • Triclinic, [P \overline 1]

  • a = 7.849 (2) Å

  • b = 8.384 (2) Å

  • c = 9.448 (2) Å

  • α = 113.24 (2)°

  • β = 98.73 (3)°

  • γ = 108.76 (3)°

  • V = 512.4 (2) Å3

  • Z = 1

  • Ag Kα radiation

  • λ = 0.56083 Å

  • μ = 0.23 mm−1

  • T = 293 K

  • 0.35 × 0.3 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 7923 measured reflections

  • 5005 independent reflections

  • 3963 reflections with I > 2σ(I)

  • Rint = 0.012

  • 2 standard reflections every 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.101

  • S = 1.08

  • 5005 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.86 1.77 2.6294 (18) 175
N2—H2A⋯O5i 0.89 1.88 2.7079 (17) 154
N2—H2B⋯O3ii 0.89 2.02 2.7350 (17) 137
N2—H2C⋯O1iii 0.89 2.08 2.831 (2) 141
C1—H1A⋯O6iv 0.93 2.55 3.381 (2) 149
C4—H4⋯O5v 0.93 2.48 3.281 (2) 144
C5—H5⋯O4 0.93 2.60 3.256 (2) 128
C6—H6B⋯O1i 0.97 2.44 3.117 (2) 127
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) -x+1, -y+1, -z+1; (iv) -x, -y, -z+1; (v) x+1, y, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996[Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Hybrid materials with organic and inorganic components continue to be a focus area in solid state chemistry and material sciences due to their potential applications in various fields, such as nonlinear optics (Aakeröy et al., 1989), heterogeneous catalysis (Centi, 1993), photochemical and photophysical process (Ozin, 1992), molecular sieves (Vaughan, 1993), ceramic precursors (Sankar et al., 1993) and other areas that include electronic materials (Teraski et al., 1987). In the present paper, the results of the x-ray structure analysis of a new organic cyclotetraphosphate, bis(3-ammoniomethylpyridinium) cyclotetraphosphate, are discussed with respect to the geometry and flexibility of the cyclotetraphosphate ring system and H-bonding interactions between the inorganic acceptor and the organic donor molecules.

The chemical composition of the title compound (I) includes two fundamental entities, the P4O124- ring and the organic cations (C6H10N2)2+. The geometrical configuration of these entities is depicted in Figure 1, while the complete atomic arrangement is shown in Figure 2. This latter shows that the crystal structure of (C6H10N2)2P4O12 can be described by hybrid ribbons where the organic and inorganic species are alternated. These ribbons, extended in the b-direction, are also connected between them in the two other directions via H-bonds to develop a three-dimensional network. The P4O12 rings are located around the inversion center (0, 0, 0) and are built up by only two independent PO4 tetrahedra. The P—P—P angles are 84.43 (1) and 95.57 (1)° and show that the tetramembered phosphoric rings are distorted in comparison with the ideal value (90°). It should be noted that such deviations are commonly observed in cyclotetraphosphoric ring anions with low internal symmetry as (I) (Aloui et al., 2003; Hemissi et al., 2005). Nevertheless, this distortion is comparatively less important than that observed in the hexamembered P6O18 rings (93.2 - 145.5°) (Averbuch-Pouchot & Durif, 1991). Consequently, P4O12 is less flexible than the P6O18 what could explain the pronounced distortion observed for the big rings compared with their smaller rings analogues. In spite of this distortion, the examination of the main geometrical feature of PO4 tetrahedra (P—O distances and P—O—P angles) shows that they are in accordance with values generally observed in condensed phosphates (Durif, 1995).

One crystallographically independent organic group exists in the asymmetric unit. Inside this organic molecule, both nitrogen atoms are protonated and so it is formulated (C6H10N2)2+. The examination of pyridinium ring shows that this unit is essentially planar with mean deviation of ±0.0036 Å from least-square plane defined by the six constituent atoms. The average C—N distances in pyridinium ring is 1.337 (2) Å and of the C—C bond lengths is 1.384 (2) Å. The latter value, being shorter than 1.39-1.41 Å, reported for non-substituent pyridine, may indicate some aromatic bond characters (Bak et al., 1959). The pyridinium ring is non coplanar with its methylamine substituent (-CH2—NH3) which is evidenced by the torsion angle value of (C1—C2—C6—N2) equal to 96.29 (2)°. In addition to electrostatic and van der Waals interactions, the structure is further stabilized with a three-dimensional network of N—H···O and the weaker C—H···O hydrogen bonds (Table 1, Fig. 2)). In the hydrogen-bond scheme two main points should be noticed: (i) there is a bridging oxygen atom (O4) of the P4O12 ring involved in hydrogen bond and so that is rarely observed in organic condensed phosphates. Indeed, it was only observed in (C6H10N2)2P4O12.2H2O (Soumhi et al., 1996). (ii) Inside the structure, there are two strong hydrogen bonds with N···O distances equal to 2.629 (2) and 2.708 (2) Å. The others are weaker within N(C)···O distances falling from 2.735 (2) to 3.381 (2) Å (Brown, 1976; Blessing, 1986).

Related literature top

For properties of hybrid materials, see: Aakeröy et al.(1989); Sankar et al. (1993); Teraski et al. (1987); Vaughan (1993); Centi (1993); Ozin (1992). For related structures containing phosphoric rings, see: Aloui et al. (2003); Hemissi et al. (2005); Averbuch-Pouchot & Durif (1991); Durif (1995). For bond lengths in pyridine, see: Bak et al. (1959). For hydrogen bonding, see: Blessing (1986); Brown (1976); Soumhi & Jouini (1996). Cyclotetraphosphoric acid was produced from Na4P4O12.4H2O, which was prepared according to the Ondik (1964) process.

Experimental top

Crystals of the title compound were prepared by adding ethanolic solution (5 ml) of 3-aminopicolamine (11.04 mmol) dropwise to an aqueous solution of cyclotetraphosphoric acid (5.52 mmol, 20 ml). Good quality of colourless prisms were obtained after a slow evaporation during few days at ambient temperature. The cyclotetraphosphoric acid H4P4O12, was produced from Na4P4O12.4H2O, prepared according to the Ondik process (Ondik, 1964), through an ion-exchange resin in H-state (Amberlite IR 120).

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, [N–H = 0.89, C–H =0.96 Å (CH3 ) with with Uiso(H) = 1.5Ueq and C–H =0.96 Å (Ar–H), with Uiso(H) = 1.5Ueq]

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. Projection of (I) along a axis.
Bis(3-ammoniomethylpyridinium) cyclotetraphosphate top
Crystal data top
2C6H10N22+·P4O124Z = 1
Mr = 536.20F(000) = 276
Triclinic, P1Dx = 1.738 Mg m3
Hall symbol: -P 1Ag Kα radiation, λ = 0.56083 Å
a = 7.849 (2) ÅCell parameters from 25 reflections
b = 8.384 (2) Åθ = 9.0–10.7°
c = 9.448 (2) ŵ = 0.23 mm1
α = 113.24 (2)°T = 293 K
β = 98.73 (3)°Prism, colourless
γ = 108.76 (3)°0.35 × 0.3 × 0.15 mm
V = 512.4 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: Enraf–Nonius FR590θmax = 28.0°, θmin = 2.2°
Graphite monochromatorh = 1313
non–profiled ω scansk = 1414
7923 measured reflectionsl = 615
5005 independent reflections2 standard reflections every 120 min
3963 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.049P)2 + 0.1514P]
where P = (Fo2 + 2Fc2)/3
5005 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
2C6H10N22+·P4O124γ = 108.76 (3)°
Mr = 536.20V = 512.4 (2) Å3
Triclinic, P1Z = 1
a = 7.849 (2) ÅAg Kα radiation, λ = 0.56083 Å
b = 8.384 (2) ŵ = 0.23 mm1
c = 9.448 (2) ÅT = 293 K
α = 113.24 (2)°0.35 × 0.3 × 0.15 mm
β = 98.73 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
7923 measured reflections2 standard reflections every 120 min
5005 independent reflections intensity decay: 1%
3963 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.08Δρmax = 0.49 e Å3
5005 reflectionsΔρmin = 0.47 e Å3
145 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.14028 (12)0.17020 (14)0.16858 (12)0.02591 (17)
O20.20484 (12)0.04327 (13)0.08942 (12)0.02816 (18)
O10.07961 (14)0.30061 (15)0.02599 (13)0.03096 (19)
O30.41615 (12)0.37060 (14)0.12629 (14)0.0328 (2)
O50.09804 (14)0.30451 (14)0.25390 (12)0.02842 (18)
O60.01424 (14)0.12073 (17)0.37735 (13)0.0330 (2)
P10.21242 (4)0.23999 (4)0.04410 (4)0.02125 (7)
P20.03708 (4)0.15037 (4)0.23497 (4)0.02013 (7)
N20.71399 (14)0.34670 (15)1.01546 (13)0.02438 (18)
H2A0.74050.31871.09540.037*
H2B0.62590.39201.02590.037*
H2C0.81880.43451.02040.037*
N10.37134 (15)0.21366 (16)0.52122 (14)0.0284 (2)
H10.25590.19020.47710.034*
C10.41069 (16)0.17716 (18)0.64460 (16)0.0259 (2)
H1A0.31400.12910.68240.031*
C40.6907 (2)0.3225 (2)0.53050 (17)0.0320 (3)
H40.78470.37270.49130.038*
C60.64164 (17)0.17070 (18)0.85588 (16)0.0264 (2)
H6A0.52870.07440.85150.032*
H6B0.73690.12030.84560.032*
C20.59489 (16)0.21046 (16)0.71693 (14)0.02293 (19)
C50.5057 (2)0.28559 (19)0.46376 (16)0.0309 (2)
H50.47350.31060.37840.037*
C30.73527 (17)0.28345 (19)0.65771 (16)0.0288 (2)
H30.85980.30640.70340.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0190 (3)0.0374 (5)0.0315 (4)0.0132 (3)0.0114 (3)0.0233 (4)
O20.0190 (3)0.0275 (4)0.0306 (4)0.0079 (3)0.0068 (3)0.0089 (3)
O10.0281 (4)0.0376 (5)0.0413 (5)0.0170 (4)0.0131 (4)0.0284 (4)
O30.0174 (3)0.0290 (4)0.0409 (5)0.0034 (3)0.0105 (3)0.0109 (4)
O50.0331 (4)0.0325 (4)0.0273 (4)0.0199 (4)0.0114 (4)0.0157 (4)
O60.0267 (4)0.0532 (6)0.0328 (5)0.0175 (4)0.0104 (4)0.0320 (5)
P10.01556 (11)0.02324 (13)0.02726 (14)0.00693 (9)0.00856 (10)0.01444 (11)
P20.01707 (11)0.02625 (13)0.02125 (13)0.00966 (10)0.00632 (9)0.01460 (11)
N20.0213 (4)0.0309 (5)0.0267 (4)0.0122 (3)0.0078 (3)0.0180 (4)
N10.0235 (4)0.0314 (5)0.0285 (5)0.0109 (4)0.0019 (4)0.0152 (4)
C10.0198 (4)0.0305 (5)0.0293 (5)0.0101 (4)0.0065 (4)0.0167 (5)
C40.0303 (6)0.0337 (6)0.0281 (6)0.0080 (5)0.0117 (5)0.0146 (5)
C60.0250 (5)0.0289 (5)0.0287 (5)0.0123 (4)0.0054 (4)0.0172 (4)
C20.0197 (4)0.0245 (5)0.0235 (5)0.0091 (4)0.0047 (4)0.0114 (4)
C50.0360 (6)0.0298 (6)0.0248 (5)0.0116 (5)0.0055 (5)0.0143 (5)
C30.0201 (4)0.0345 (6)0.0284 (6)0.0092 (4)0.0073 (4)0.0137 (5)
Geometric parameters (Å, º) top
O4—P21.5992 (10)N1—C51.3393 (19)
O4—P11.6057 (10)N1—H10.8600
O2—P2i1.6044 (14)C1—C21.3875 (17)
O2—P11.6085 (11)C1—H1A0.9300
O1—P11.4766 (10)C4—C51.372 (2)
O3—P11.4781 (12)C4—C31.389 (2)
O5—P21.4739 (10)C4—H40.9300
O6—P21.4824 (10)C6—C21.4990 (17)
P2—O2i1.6044 (14)C6—H6A0.9700
N2—C61.4894 (18)C6—H6B0.9700
N2—H2A0.8900C2—C31.3875 (18)
N2—H2B0.8900C5—H50.9300
N2—H2C0.8900C3—H30.9300
N1—C11.3345 (17)
P2—O4—P1136.26 (6)C5—N1—H1118.9
P2i—O2—P1134.03 (6)N1—C1—C2120.46 (12)
O1—P1—O3120.41 (7)N1—C1—H1A119.8
O1—P1—O4110.99 (6)C2—C1—H1A119.8
O3—P1—O4106.65 (6)C5—C4—C3118.82 (13)
O1—P1—O2111.42 (7)C5—C4—H4120.6
O3—P1—O2105.82 (7)C3—C4—H4120.6
O4—P1—O299.36 (6)N2—C6—C2111.53 (10)
O5—P2—O6119.04 (7)N2—C6—H6A109.3
O5—P2—O4112.23 (6)C2—C6—H6A109.3
O6—P2—O4105.42 (6)N2—C6—H6B109.3
O5—P2—O2i106.33 (6)C2—C6—H6B109.3
O6—P2—O2i109.45 (7)H6A—C6—H6B108.0
O4—P2—O2i103.28 (6)C3—C2—C1117.98 (11)
C6—N2—H2A109.5C3—C2—C6120.87 (11)
C6—N2—H2B109.5C1—C2—C6121.15 (11)
H2A—N2—H2B109.5N1—C5—C4120.20 (12)
C6—N2—H2C109.5N1—C5—H5119.9
H2A—N2—H2C109.5C4—C5—H5119.9
H2B—N2—H2C109.5C2—C3—C4120.36 (12)
C1—N1—C5122.18 (11)C2—C3—H3119.8
C1—N1—H1118.9C4—C3—H3119.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.861.772.6294 (18)175
N2—H2A···O5ii0.891.882.7079 (17)154
N2—H2B···O3iii0.892.022.7350 (17)137
N2—H2C···O1iv0.892.082.831 (2)141
C1—H1A···O6v0.932.553.381 (2)149
C4—H4···O5vi0.932.483.281 (2)144
C5—H5···O40.932.603.256 (2)128
C6—H6B···O1ii0.972.443.117 (2)127
Symmetry codes: (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x+1, y+1, z+1; (v) x, y, z+1; (vi) x+1, y, z.

Experimental details

Crystal data
Chemical formula2C6H10N22+·P4O124
Mr536.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.849 (2), 8.384 (2), 9.448 (2)
α, β, γ (°)113.24 (2), 98.73 (3), 108.76 (3)
V3)512.4 (2)
Z1
Radiation typeAg Kα, λ = 0.56083 Å
µ (mm1)0.23
Crystal size (mm)0.35 × 0.3 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7923, 5005, 3963
Rint0.012
(sin θ/λ)max1)0.836
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.101, 1.08
No. of reflections5005
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.47

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.86001.77002.6294 (18)175.00
N2—H2A···O5i0.89001.88002.7079 (17)154.00
N2—H2B···O3ii0.89002.02002.7350 (17)137.00
N2—H2C···O1iii0.89002.08002.831 (2)141.00
C1—H1A···O6iv0.93002.55003.381 (2)149.00
C4—H4···O5v0.93002.48003.281 (2)144.00
C5—H5···O40.93002.60003.256 (2)128.00
C6—H6B···O1i0.97002.44003.117 (2)127.00
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z.
 

References

First citationAakeröy, C. B., Hitchcock, P. B., Moyle, B. D. & Seddon, K. R. (1989). J. Chem. Soc. Chem. Commun. pp. 1856–1859.  Google Scholar
First citationAloui, Z., Abid, S. & Rzaigui, M. (2003). J. Phys. Chem. Solids, 65, 923–926  Web of Science CSD CrossRef Google Scholar
First citationAverbuch-Pouchot, M. T. & Durif, A. (1991). Eur. J. Solid State Inorg. Chem. 28, 9–22.  CAS Google Scholar
First citationBak, B., Hansen-Nygaard, L. & Rastrup-Andersen, J. (1959). J. Mol. Spectrosc. 2, 361–364.  CrossRef Web of Science Google Scholar
First citationBlessing, R. H. (1986). Acta Cryst. B42, 613–621.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. (1976). Acta Cryst. A32, 24–31.  CrossRef IUCr Journals Web of Science Google Scholar
First citationCenti, G. (1993). Catal. Lett. 22, 53–66.  CrossRef CAS Google Scholar
First citationDurif, A. (1995). Crystal Chemistry of Condensed Phosphates. New York: Plenum Press.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.  Google Scholar
First citationHemissi, H., Sonia, A. & Rzaigui, M. (2005). Z. Kristallogr. 220, 265–266  CAS Google Scholar
First citationOndik, H. M. (1964). Acta Cryst. 17, 1139–1145.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOzin, G. A. (1992). Adv. Mater. 4, 612-649.  CrossRef CAS Web of Science Google Scholar
First citationSankar, G., Wright, P. A., Natarajan, S., Thomas, J. M., Greaves, G. N., Dent, A. J., Dobson, B. R., Ramsdale, C. A. & Jones, R. H. (1993). J. Phys. Chem. 97, 9550-9554.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoumhi, E. H. & Jouini, T. (1996). Acta Cryst. C52, 432–433.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTeraski, O., Barry, J. C. & Thomas, J. M. (1987). Nature (London), 330, 58-60  Google Scholar
First citationVaughan, D. E. W. (1993). In Multifunctional Mesoporous Inorganic Solids, edited by A.C. Seqina & M.I. Hudson, pp. 137–156. New York: Nato ASI Series.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o779-o780
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds