metal-organic compounds
Bis(μ-4-chloro-2-oxidobenzoato)bis[(1,10-phenanthroline)copper(II)] dihydrate
aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn
The structure of the the title compound, [Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O, consists of a dimeric unit involving a planar Cu2O2 group arranged around an inversion center. The coordination sphere of the CuII atom can be described as an elongated distorted square pyramid where the basal plane is formed by the two N atoms of the 1,10-phenanthroline molecule and the two O atoms of the hydroxychlorobenzoate (hcbe) anion. The long apical Cu—O distance of 2.569 (2) Å involves the O atom of a symmetry-related hcbe anion, building up the dinuclear unit. Each dinuclear unit is connected through O—H⋯O hydrogen bonds involving two water molecules, resulting in an R42(8) graph-set motif and building up an infinite chain parallel to (10). C—H⋯O interactions further stabilize the chain.
Related literature
For our ongoing investigation of the nature of π–π stacking, see: Su & Xu (2004); Xu et al. (2007). For related structures, see: Yang et al. (2006); Garland et al. (1987); Li et al. (1995); Fan & Zhu (2005); Song et al. (2007). For a structural discussion on hydrogen bonding, see: Etter et al. (1990); Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536810008354/dn2542sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810008354/dn2542Isup2.hkl
An ethanol-water solution (20 ml, 1:3) containing 2-hydroxy-4-chlorobenzoic acid (0.173 g, 1 mmol), Na2CO3 (0.053 g, 0.5 mmol) and CuCl2.2H2O (0.085 g, 0.5 mmol) was refluxed for 6 h, then phenanthroline hydrate (0.99 g, 1 mmol) was added into the solution and the mixture was refluxed for further 0.5 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after one week.
Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).[Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O | F(000) = 876 |
Mr = 864.60 | Dx = 1.629 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5352 reflections |
a = 8.1941 (17) Å | θ = 2.2–24.2° |
b = 18.851 (4) Å | µ = 1.42 mm−1 |
c = 11.873 (3) Å | T = 294 K |
β = 105.993 (8)° | Prism, blue |
V = 1763.0 (6) Å3 | 0.33 × 0.30 × 0.22 mm |
Z = 2 |
Rigaku R-AXIS RAPID IP diffractometer | 3163 independent reflections |
Radiation source: fine-focus sealed tube | 2162 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.2°, θmin = 2.1° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −22→22 |
Tmin = 0.656, Tmax = 0.730 | l = −13→14 |
18894 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0509P)2 + 0.5996P] where P = (Fo2 + 2Fc2)/3 |
3163 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.36 e Å−3 |
[Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O | V = 1763.0 (6) Å3 |
Mr = 864.60 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.1941 (17) Å | µ = 1.42 mm−1 |
b = 18.851 (4) Å | T = 294 K |
c = 11.873 (3) Å | 0.33 × 0.30 × 0.22 mm |
β = 105.993 (8)° |
Rigaku R-AXIS RAPID IP diffractometer | 3163 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2162 reflections with I > 2σ(I) |
Tmin = 0.656, Tmax = 0.730 | Rint = 0.047 |
18894 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.103 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.58 e Å−3 |
3163 reflections | Δρmin = −0.36 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.28977 (4) | 0.501289 (19) | 0.46012 (3) | 0.04370 (15) | |
Cl | 0.68680 (17) | 0.80306 (6) | 0.36270 (13) | 0.1107 (5) | |
N1 | 0.2931 (3) | 0.50654 (13) | 0.6296 (2) | 0.0456 (6) | |
N2 | 0.1240 (3) | 0.42264 (13) | 0.4601 (2) | 0.0480 (6) | |
O1 | 0.2426 (3) | 0.49404 (12) | 0.2962 (2) | 0.0596 (6) | |
O2 | 0.2234 (3) | 0.52593 (16) | 0.1153 (2) | 0.0750 (7) | |
O3 | 0.4451 (3) | 0.57734 (11) | 0.47282 (18) | 0.0507 (5) | |
C1 | 0.2743 (4) | 0.5384 (2) | 0.2219 (3) | 0.0555 (9) | |
C2 | 0.3717 (4) | 0.60392 (18) | 0.2646 (3) | 0.0512 (8) | |
C3 | 0.4487 (4) | 0.61966 (16) | 0.3838 (3) | 0.0472 (7) | |
C4 | 0.5430 (4) | 0.68293 (17) | 0.4110 (3) | 0.0577 (9) | |
H4 | 0.5950 | 0.6941 | 0.4889 | 0.069* | |
C5 | 0.5593 (5) | 0.72807 (19) | 0.3250 (4) | 0.0718 (11) | |
C6 | 0.4837 (5) | 0.7141 (2) | 0.2088 (4) | 0.0851 (14) | |
H6 | 0.4947 | 0.7455 | 0.1509 | 0.102* | |
C7 | 0.3919 (5) | 0.6528 (2) | 0.1802 (3) | 0.0711 (11) | |
H7 | 0.3408 | 0.6431 | 0.1015 | 0.085* | |
C8 | 0.3797 (4) | 0.55026 (19) | 0.7127 (3) | 0.0569 (9) | |
H8 | 0.4424 | 0.5868 | 0.6923 | 0.068* | |
C9 | 0.3792 (5) | 0.5429 (2) | 0.8297 (3) | 0.0728 (11) | |
H9 | 0.4401 | 0.5745 | 0.8857 | 0.087* | |
C10 | 0.2897 (5) | 0.4896 (2) | 0.8616 (4) | 0.0765 (13) | |
H10 | 0.2892 | 0.4847 | 0.9394 | 0.092* | |
C11 | 0.1979 (5) | 0.4418 (2) | 0.7767 (3) | 0.0635 (10) | |
C12 | 0.1001 (6) | 0.3835 (3) | 0.7997 (4) | 0.0854 (14) | |
H12 | 0.0971 | 0.3746 | 0.8761 | 0.102* | |
C13 | 0.0125 (6) | 0.3412 (3) | 0.7126 (5) | 0.0876 (14) | |
H13 | −0.0510 | 0.3041 | 0.7306 | 0.105* | |
C14 | 0.0135 (5) | 0.3514 (2) | 0.5930 (4) | 0.0675 (11) | |
C15 | −0.0751 (6) | 0.3107 (2) | 0.4968 (5) | 0.0882 (14) | |
H15 | −0.1426 | 0.2731 | 0.5076 | 0.106* | |
C16 | −0.0626 (5) | 0.3259 (2) | 0.3884 (5) | 0.0849 (13) | |
H16 | −0.1223 | 0.2990 | 0.3247 | 0.102* | |
C17 | 0.0394 (5) | 0.38181 (19) | 0.3716 (3) | 0.0639 (10) | |
H17 | 0.0486 | 0.3909 | 0.2966 | 0.077* | |
C18 | 0.1106 (4) | 0.40810 (17) | 0.5688 (3) | 0.0505 (8) | |
C19 | 0.2019 (4) | 0.45334 (17) | 0.6605 (3) | 0.0499 (8) | |
O1W | 0.0002 (4) | 0.59767 (16) | −0.0734 (2) | 0.0934 (9) | |
H1A | 0.0653 | 0.5735 | −0.0124 | 0.140* | |
H1B | −0.0941 | 0.5733 | −0.0960 | 0.140* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0459 (2) | 0.0543 (2) | 0.0309 (2) | −0.00153 (17) | 0.01078 (16) | 0.00139 (17) |
Cl | 0.1106 (10) | 0.0650 (6) | 0.1553 (13) | −0.0153 (6) | 0.0347 (9) | 0.0283 (7) |
N1 | 0.0459 (14) | 0.0589 (15) | 0.0335 (14) | 0.0089 (13) | 0.0134 (11) | −0.0016 (13) |
N2 | 0.0424 (15) | 0.0544 (15) | 0.0472 (17) | 0.0028 (12) | 0.0124 (12) | −0.0025 (13) |
O1 | 0.0688 (16) | 0.0716 (15) | 0.0349 (13) | −0.0104 (12) | 0.0085 (11) | −0.0014 (11) |
O2 | 0.0772 (18) | 0.117 (2) | 0.0277 (14) | 0.0076 (16) | 0.0085 (12) | 0.0011 (13) |
O3 | 0.0577 (13) | 0.0586 (13) | 0.0357 (12) | −0.0060 (10) | 0.0125 (10) | 0.0031 (10) |
C1 | 0.0470 (19) | 0.081 (2) | 0.038 (2) | 0.0107 (18) | 0.0103 (15) | 0.0060 (18) |
C2 | 0.0443 (18) | 0.069 (2) | 0.0419 (19) | 0.0106 (16) | 0.0144 (15) | 0.0163 (16) |
C3 | 0.0443 (18) | 0.0539 (18) | 0.046 (2) | 0.0079 (15) | 0.0176 (15) | 0.0062 (16) |
C4 | 0.057 (2) | 0.0537 (19) | 0.064 (2) | 0.0052 (16) | 0.0197 (18) | 0.0051 (17) |
C5 | 0.060 (2) | 0.058 (2) | 0.099 (3) | 0.0067 (18) | 0.025 (2) | 0.025 (2) |
C6 | 0.075 (3) | 0.095 (3) | 0.089 (3) | 0.008 (2) | 0.028 (3) | 0.053 (3) |
C7 | 0.063 (2) | 0.099 (3) | 0.052 (2) | 0.010 (2) | 0.0164 (19) | 0.028 (2) |
C8 | 0.056 (2) | 0.071 (2) | 0.042 (2) | 0.0117 (17) | 0.0109 (16) | −0.0050 (17) |
C9 | 0.074 (3) | 0.102 (3) | 0.038 (2) | 0.021 (2) | 0.0075 (19) | −0.011 (2) |
C10 | 0.078 (3) | 0.119 (4) | 0.040 (2) | 0.034 (3) | 0.028 (2) | 0.013 (2) |
C11 | 0.058 (2) | 0.089 (3) | 0.052 (2) | 0.024 (2) | 0.0296 (18) | 0.018 (2) |
C12 | 0.076 (3) | 0.118 (4) | 0.078 (3) | 0.031 (3) | 0.050 (3) | 0.045 (3) |
C13 | 0.074 (3) | 0.089 (3) | 0.117 (4) | 0.009 (2) | 0.055 (3) | 0.040 (3) |
C14 | 0.054 (2) | 0.064 (2) | 0.094 (3) | 0.0047 (18) | 0.035 (2) | 0.016 (2) |
C15 | 0.077 (3) | 0.062 (2) | 0.129 (5) | −0.013 (2) | 0.034 (3) | 0.004 (3) |
C16 | 0.069 (3) | 0.069 (3) | 0.113 (4) | −0.014 (2) | 0.019 (3) | −0.024 (3) |
C17 | 0.057 (2) | 0.062 (2) | 0.069 (3) | 0.0008 (18) | 0.0128 (19) | −0.0129 (19) |
C18 | 0.0417 (18) | 0.0575 (19) | 0.055 (2) | 0.0093 (15) | 0.0183 (16) | 0.0081 (17) |
C19 | 0.0462 (19) | 0.062 (2) | 0.047 (2) | 0.0175 (16) | 0.0226 (15) | 0.0131 (16) |
O1W | 0.097 (2) | 0.111 (2) | 0.0617 (18) | 0.0296 (18) | 0.0041 (15) | 0.0005 (16) |
Cu—O1 | 1.882 (2) | C8—C9 | 1.397 (5) |
Cu—O3 | 1.895 (2) | C8—H8 | 0.9300 |
Cu—O3i | 2.569 (2) | C9—C10 | 1.358 (6) |
Cu—N1 | 2.007 (3) | C9—H9 | 0.9300 |
Cu—N2 | 2.011 (3) | C10—C11 | 1.405 (6) |
Cl—C5 | 1.741 (4) | C10—H10 | 0.9300 |
N1—C8 | 1.331 (4) | C11—C19 | 1.406 (4) |
N1—C19 | 1.360 (4) | C11—C12 | 1.430 (6) |
N2—C17 | 1.332 (4) | C12—C13 | 1.346 (6) |
N2—C18 | 1.353 (4) | C12—H12 | 0.9300 |
O1—C1 | 1.292 (4) | C13—C14 | 1.435 (6) |
O2—C1 | 1.241 (4) | C13—H13 | 0.9300 |
O3—C3 | 1.331 (4) | C14—C15 | 1.401 (6) |
C1—C2 | 1.482 (5) | C14—C18 | 1.409 (5) |
C2—C7 | 1.404 (4) | C15—C16 | 1.350 (6) |
C2—C3 | 1.413 (4) | C15—H15 | 0.9300 |
C3—C4 | 1.409 (5) | C16—C17 | 1.393 (5) |
C4—C5 | 1.363 (5) | C16—H16 | 0.9300 |
C4—H4 | 0.9300 | C17—H17 | 0.9300 |
C5—C6 | 1.374 (6) | C18—C19 | 1.423 (5) |
C6—C7 | 1.370 (6) | O1W—H1A | 0.8969 |
C6—H6 | 0.9300 | O1W—H1B | 0.8747 |
C7—H7 | 0.9300 | ||
O1—Cu—O3 | 94.54 (9) | C2—C7—H7 | 118.6 |
O1—Cu—N1 | 169.27 (10) | N1—C8—C9 | 121.9 (4) |
O3—Cu—N1 | 93.42 (10) | N1—C8—H8 | 119.1 |
O1—Cu—N2 | 90.01 (10) | C9—C8—H8 | 119.1 |
O3—Cu—N2 | 175.25 (9) | C10—C9—C8 | 120.1 (4) |
N1—Cu—N2 | 81.90 (11) | C10—C9—H9 | 120.0 |
O1—Cu—O3i | 101.17 (9) | C8—C9—H9 | 120.0 |
O3—Cu—O3i | 85.40 (9) | C9—C10—C11 | 119.8 (4) |
N1—Cu—O3i | 86.62 (8) | C9—C10—H10 | 120.1 |
N2—Cu—O3i | 95.07 (9) | C11—C10—H10 | 120.1 |
C8—N1—C19 | 118.5 (3) | C10—C11—C19 | 116.9 (4) |
C8—N1—Cu | 129.1 (2) | C10—C11—C12 | 125.0 (4) |
C19—N1—Cu | 112.2 (2) | C19—C11—C12 | 118.1 (4) |
C17—N2—C18 | 118.3 (3) | C13—C12—C11 | 121.2 (4) |
C17—N2—Cu | 129.1 (3) | C13—C12—H12 | 119.4 |
C18—N2—Cu | 112.4 (2) | C11—C12—H12 | 119.4 |
C1—O1—Cu | 129.5 (2) | C12—C13—C14 | 122.2 (4) |
C3—O3—Cu | 123.5 (2) | C12—C13—H13 | 118.9 |
O2—C1—O1 | 119.9 (3) | C14—C13—H13 | 118.9 |
O2—C1—C2 | 120.3 (3) | C15—C14—C18 | 116.3 (4) |
O1—C1—C2 | 119.8 (3) | C15—C14—C13 | 126.2 (4) |
C7—C2—C3 | 118.0 (3) | C18—C14—C13 | 117.5 (4) |
C7—C2—C1 | 117.4 (3) | C16—C15—C14 | 120.2 (4) |
C3—C2—C1 | 124.6 (3) | C16—C15—H15 | 119.9 |
O3—C3—C4 | 117.2 (3) | C14—C15—H15 | 119.9 |
O3—C3—C2 | 124.6 (3) | C15—C16—C17 | 120.3 (4) |
C4—C3—C2 | 118.2 (3) | C15—C16—H16 | 119.9 |
C5—C4—C3 | 121.2 (4) | C17—C16—H16 | 119.9 |
C5—C4—H4 | 119.4 | N2—C17—C16 | 121.8 (4) |
C3—C4—H4 | 119.4 | N2—C17—H17 | 119.1 |
C6—C5—C4 | 121.5 (4) | C16—C17—H17 | 119.1 |
C6—C5—Cl | 119.1 (3) | N2—C18—C14 | 123.2 (3) |
C4—C5—Cl | 119.4 (3) | N2—C18—C19 | 116.4 (3) |
C5—C6—C7 | 118.5 (3) | C14—C18—C19 | 120.4 (3) |
C5—C6—H6 | 120.8 | N1—C19—C11 | 122.8 (3) |
C7—C6—H6 | 120.8 | N1—C19—C18 | 116.6 (3) |
C6—C7—C2 | 122.7 (4) | C11—C19—C18 | 120.6 (3) |
C6—C7—H7 | 118.6 | H1A—O1W—H1B | 105.1 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2 | 0.90 | 1.92 | 2.817 (4) | 175 |
O1W—H1B···O2ii | 0.88 | 2.13 | 2.921 (4) | 150 |
C10—H10···O2iii | 0.93 | 2.42 | 3.277 (5) | 153 |
C17—H17···O1Wii | 0.93 | 2.58 | 3.487 (4) | 166 |
Symmetry codes: (ii) −x, −y+1, −z; (iii) x, y, z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O |
Mr | 864.60 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 8.1941 (17), 18.851 (4), 11.873 (3) |
β (°) | 105.993 (8) |
V (Å3) | 1763.0 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.42 |
Crystal size (mm) | 0.33 × 0.30 × 0.22 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID IP diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.656, 0.730 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18894, 3163, 2162 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.599 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.103, 1.03 |
No. of reflections | 3163 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.36 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1A···O2 | 0.90 | 1.92 | 2.817 (4) | 175 |
O1W—H1B···O2i | 0.88 | 2.13 | 2.921 (4) | 150 |
C10—H10···O2ii | 0.93 | 2.42 | 3.277 (5) | 153 |
C17—H17···O1Wi | 0.93 | 2.58 | 3.487 (4) | 166 |
Symmetry codes: (i) −x, −y+1, −z; (ii) x, y, z+1. |
Acknowledgements
The work was supported by the ZIJIN project of Zhejiang University, China.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fan, S.-R. & Zhu, L.-G. (2005). Chin. J. Chem. 23, 1292–1296. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Garland, M. T., Grandjean, D. & Spodine, E. (1987). Acta Cryst. C43, 1910–1912. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, M., Zou, J.-Z., Xu, Z., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 639–644. CSD CrossRef CAS Web of Science Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, J.-F., Chen, Y., Li, Z.-G., Zhou, R.-S., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2007). Polyhedron, 26, 4397–4402 Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229. Web of Science CSD CrossRef CAS Google Scholar
Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678–m2680. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title CuII compound incorporating 2-hydroxy-4-chlorobenzoate (hcbe) ligand has recently been prepared in the laboratory and its crystal structure is reported here.
The structure of the the title compound, (C19H11ClCuN2O3).(H2O), consists of a dimeric unit involving a planar Cu2O2 group arranged around inversion center The coordination sphere of the CuII can be described as an elongated distorted square pyramid where the basal plane is formed by the two N atoms of the 1,10-phenanthroline molecule and the two O atoms of the hydroxychlorobenzoate (hcbe) anion. The long apical Cu-O3 distance of 2.569 (2)A involves the O3 atom of the symmetry related hcbe anion [symmetry code (i) i-x,1-y,1-z] building up the dinuclear unit (Fig. 1).
This apical Cu-O3 distance is 0.674 (3) Å longer than Cu—O3 bond distance in the basal coordination plane, showing the Jahn-Teller distorted square-pyramidal coordination geometry around the CuII cation. A patially overlapped arrangement is observed between the nearly parallel C2-C7 phenyl ring and C11-C19 phen ring system [dihedral angle 14.25°]. The centroid to centroid distance is 3.649 (3) Å and the perpendicular distance of the centroid to the rings is 3.456 and 3.571 Å respectively suggesting a weak π-π stacking comparable to that found in the related CuII complexes (Garland et al., 1987; Li et al., 1995; Fan & Zhu, 2005; Song et al., 2007) and also to the NiII complex of 2,4-dihydroxybenzoate (Yang et al., 2006).
Each dinuclear unit are connected through O-H···O hydrogen bonds involving two water molecules resulting in a R24(8) graph set motif ( Etter et al., 1990, Bernstein et al., 1995) and building up an infinite chain parallel to the (1 0 -1) plane. C-H···O interactions further stabilize the chain. (Table 1; Fig. 2).