metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m387-m388

Bis(μ-4-chloro-2-oxidobenzoato)bis­­[(1,10-phenanthroline)copper(II)] dihydrate

aDepartment of Chemistry, Zhejiang University, People's Republic of China
*Correspondence e-mail: xudj@mail.hz.zj.cn

(Received 22 February 2010; accepted 4 March 2010; online 10 March 2010)

The structure of the the title compound, [Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O, consists of a dimeric unit involving a planar Cu2O2 group arranged around an inversion center. The coordination sphere of the CuII atom can be described as an elongated distorted square pyramid where the basal plane is formed by the two N atoms of the 1,10-phenanthroline mol­ecule and the two O atoms of the hydroxy­chloro­benzoate (hcbe) anion. The long apical Cu—O distance of 2.569 (2) Å involves the O atom of a symmetry-related hcbe anion, building up the dinuclear unit. Each dinuclear unit is connected through O—H⋯O hydrogen bonds involving two water mol­ecules, resulting in an R42(8) graph-set motif and building up an infinite chain parallel to (10[\overline{1}]). C—H⋯O inter­actions further stabilize the chain.

Related literature

For our ongoing investigation of the nature of ππ stacking, see: Su & Xu (2004[Su, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223-229.]); Xu et al. (2007[Xu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622-m624.]). For related structures, see: Yang et al. (2006[Yang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678-m2680.]); Garland et al. (1987[Garland, M. T., Grandjean, D. & Spodine, E. (1987). Acta Cryst. C43, 1910-1912.]); Li et al. (1995[Li, M., Zou, J.-Z., Xu, Z., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 639-644.]); Fan & Zhu (2005[Fan, S.-R. & Zhu, L.-G. (2005). Chin. J. Chem. 23, 1292-1296.]); Song et al. (2007[Song, J.-F., Chen, Y., Li, Z.-G., Zhou, R.-S., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2007). Polyhedron, 26, 4397-4402]). For a structural discussion on hydrogen bonding, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O

  • Mr = 864.60

  • Monoclinic, P 21 /c

  • a = 8.1941 (17) Å

  • b = 18.851 (4) Å

  • c = 11.873 (3) Å

  • β = 105.993 (8)°

  • V = 1763.0 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 294 K

  • 0.33 × 0.30 × 0.22 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.656, Tmax = 0.730

  • 18894 measured reflections

  • 3163 independent reflections

  • 2162 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.103

  • S = 1.03

  • 3163 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O2 0.90 1.92 2.817 (4) 175
O1W—H1B⋯O2i 0.88 2.13 2.921 (4) 150
C10—H10⋯O2ii 0.93 2.42 3.277 (5) 153
C17—H17⋯O1Wi 0.93 2.58 3.487 (4) 166
Symmetry codes: (i) -x, -y+1, -z; (ii) x, y, z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of our ongoing investigation on the nature of π-π stacking (Su & Xu, 2004; Xu et al., 2007), the title CuII compound incorporating 2-hydroxy-4-chlorobenzoate (hcbe) ligand has recently been prepared in the laboratory and its crystal structure is reported here.

The structure of the the title compound, (C19H11ClCuN2O3).(H2O), consists of a dimeric unit involving a planar Cu2O2 group arranged around inversion center The coordination sphere of the CuII can be described as an elongated distorted square pyramid where the basal plane is formed by the two N atoms of the 1,10-phenanthroline molecule and the two O atoms of the hydroxychlorobenzoate (hcbe) anion. The long apical Cu-O3 distance of 2.569 (2)A involves the O3 atom of the symmetry related hcbe anion [symmetry code (i) i-x,1-y,1-z] building up the dinuclear unit (Fig. 1).

This apical Cu-O3 distance is 0.674 (3) Å longer than Cu—O3 bond distance in the basal coordination plane, showing the Jahn-Teller distorted square-pyramidal coordination geometry around the CuII cation. A patially overlapped arrangement is observed between the nearly parallel C2-C7 phenyl ring and C11-C19 phen ring system [dihedral angle 14.25°]. The centroid to centroid distance is 3.649 (3) Å and the perpendicular distance of the centroid to the rings is 3.456 and 3.571 Å respectively suggesting a weak π-π stacking comparable to that found in the related CuII complexes (Garland et al., 1987; Li et al., 1995; Fan & Zhu, 2005; Song et al., 2007) and also to the NiII complex of 2,4-dihydroxybenzoate (Yang et al., 2006).

Each dinuclear unit are connected through O-H···O hydrogen bonds involving two water molecules resulting in a R24(8) graph set motif ( Etter et al., 1990, Bernstein et al., 1995) and building up an infinite chain parallel to the (1 0 -1) plane. C-H···O interactions further stabilize the chain. (Table 1; Fig. 2).

Related literature top

For our ongoing investigation of the nature of ππ stacking, see: Su & Xu (2004); Xu et al. (2007). For related structures, see: Yang et al. (2006); Garland et al. (1987); Li et al. (1995); Fan & Zhu (2005); Song et al. (2007). For a structural discussion on hydrogen bonding, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

An ethanol-water solution (20 ml, 1:3) containing 2-hydroxy-4-chlorobenzoic acid (0.173 g, 1 mmol), Na2CO3 (0.053 g, 0.5 mmol) and CuCl2.2H2O (0.085 g, 0.5 mmol) was refluxed for 6 h, then phenanthroline hydrate (0.99 g, 1 mmol) was added into the solution and the mixture was refluxed for further 0.5 h. After cooling to room temperature the solution was filtered. Single crystals of the title compound were obtained from the filtrate after one week.

Refinement top

Water H atoms were located in a difference Fourier map and refined as riding in as-found relative positions with Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding mode with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The dinuclear molecular structure of the title compound with 30% probability displacement (arbitrary spheres for H atoms) [symmetry code: (i) 1-x, 1-y, 1-z].
[Figure 2] Fig. 2. Partial packing view showing the formation of the chain through the O-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed line.[Symmetry codes: (ii) -x, -y+1, -z]
Bis(µ-4-chloro-2-oxidobenzoato)bis[(1,10-phenanthroline)copper(II)] dihydrate top
Crystal data top
[Cu2(C7H3ClO3)2(C12H8N2)2]·2H2OF(000) = 876
Mr = 864.60Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5352 reflections
a = 8.1941 (17) Åθ = 2.2–24.2°
b = 18.851 (4) ŵ = 1.42 mm1
c = 11.873 (3) ÅT = 294 K
β = 105.993 (8)°Prism, blue
V = 1763.0 (6) Å30.33 × 0.30 × 0.22 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3163 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 2.1°
ω scansh = 99
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2222
Tmin = 0.656, Tmax = 0.730l = 1314
18894 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.5996P]
where P = (Fo2 + 2Fc2)/3
3163 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu2(C7H3ClO3)2(C12H8N2)2]·2H2OV = 1763.0 (6) Å3
Mr = 864.60Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.1941 (17) ŵ = 1.42 mm1
b = 18.851 (4) ÅT = 294 K
c = 11.873 (3) Å0.33 × 0.30 × 0.22 mm
β = 105.993 (8)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3163 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2162 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 0.730Rint = 0.047
18894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.58 e Å3
3163 reflectionsΔρmin = 0.36 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu0.28977 (4)0.501289 (19)0.46012 (3)0.04370 (15)
Cl0.68680 (17)0.80306 (6)0.36270 (13)0.1107 (5)
N10.2931 (3)0.50654 (13)0.6296 (2)0.0456 (6)
N20.1240 (3)0.42264 (13)0.4601 (2)0.0480 (6)
O10.2426 (3)0.49404 (12)0.2962 (2)0.0596 (6)
O20.2234 (3)0.52593 (16)0.1153 (2)0.0750 (7)
O30.4451 (3)0.57734 (11)0.47282 (18)0.0507 (5)
C10.2743 (4)0.5384 (2)0.2219 (3)0.0555 (9)
C20.3717 (4)0.60392 (18)0.2646 (3)0.0512 (8)
C30.4487 (4)0.61966 (16)0.3838 (3)0.0472 (7)
C40.5430 (4)0.68293 (17)0.4110 (3)0.0577 (9)
H40.59500.69410.48890.069*
C50.5593 (5)0.72807 (19)0.3250 (4)0.0718 (11)
C60.4837 (5)0.7141 (2)0.2088 (4)0.0851 (14)
H60.49470.74550.15090.102*
C70.3919 (5)0.6528 (2)0.1802 (3)0.0711 (11)
H70.34080.64310.10150.085*
C80.3797 (4)0.55026 (19)0.7127 (3)0.0569 (9)
H80.44240.58680.69230.068*
C90.3792 (5)0.5429 (2)0.8297 (3)0.0728 (11)
H90.44010.57450.88570.087*
C100.2897 (5)0.4896 (2)0.8616 (4)0.0765 (13)
H100.28920.48470.93940.092*
C110.1979 (5)0.4418 (2)0.7767 (3)0.0635 (10)
C120.1001 (6)0.3835 (3)0.7997 (4)0.0854 (14)
H120.09710.37460.87610.102*
C130.0125 (6)0.3412 (3)0.7126 (5)0.0876 (14)
H130.05100.30410.73060.105*
C140.0135 (5)0.3514 (2)0.5930 (4)0.0675 (11)
C150.0751 (6)0.3107 (2)0.4968 (5)0.0882 (14)
H150.14260.27310.50760.106*
C160.0626 (5)0.3259 (2)0.3884 (5)0.0849 (13)
H160.12230.29900.32470.102*
C170.0394 (5)0.38181 (19)0.3716 (3)0.0639 (10)
H170.04860.39090.29660.077*
C180.1106 (4)0.40810 (17)0.5688 (3)0.0505 (8)
C190.2019 (4)0.45334 (17)0.6605 (3)0.0499 (8)
O1W0.0002 (4)0.59767 (16)0.0734 (2)0.0934 (9)
H1A0.06530.57350.01240.140*
H1B0.09410.57330.09600.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0459 (2)0.0543 (2)0.0309 (2)0.00153 (17)0.01078 (16)0.00139 (17)
Cl0.1106 (10)0.0650 (6)0.1553 (13)0.0153 (6)0.0347 (9)0.0283 (7)
N10.0459 (14)0.0589 (15)0.0335 (14)0.0089 (13)0.0134 (11)0.0016 (13)
N20.0424 (15)0.0544 (15)0.0472 (17)0.0028 (12)0.0124 (12)0.0025 (13)
O10.0688 (16)0.0716 (15)0.0349 (13)0.0104 (12)0.0085 (11)0.0014 (11)
O20.0772 (18)0.117 (2)0.0277 (14)0.0076 (16)0.0085 (12)0.0011 (13)
O30.0577 (13)0.0586 (13)0.0357 (12)0.0060 (10)0.0125 (10)0.0031 (10)
C10.0470 (19)0.081 (2)0.038 (2)0.0107 (18)0.0103 (15)0.0060 (18)
C20.0443 (18)0.069 (2)0.0419 (19)0.0106 (16)0.0144 (15)0.0163 (16)
C30.0443 (18)0.0539 (18)0.046 (2)0.0079 (15)0.0176 (15)0.0062 (16)
C40.057 (2)0.0537 (19)0.064 (2)0.0052 (16)0.0197 (18)0.0051 (17)
C50.060 (2)0.058 (2)0.099 (3)0.0067 (18)0.025 (2)0.025 (2)
C60.075 (3)0.095 (3)0.089 (3)0.008 (2)0.028 (3)0.053 (3)
C70.063 (2)0.099 (3)0.052 (2)0.010 (2)0.0164 (19)0.028 (2)
C80.056 (2)0.071 (2)0.042 (2)0.0117 (17)0.0109 (16)0.0050 (17)
C90.074 (3)0.102 (3)0.038 (2)0.021 (2)0.0075 (19)0.011 (2)
C100.078 (3)0.119 (4)0.040 (2)0.034 (3)0.028 (2)0.013 (2)
C110.058 (2)0.089 (3)0.052 (2)0.024 (2)0.0296 (18)0.018 (2)
C120.076 (3)0.118 (4)0.078 (3)0.031 (3)0.050 (3)0.045 (3)
C130.074 (3)0.089 (3)0.117 (4)0.009 (2)0.055 (3)0.040 (3)
C140.054 (2)0.064 (2)0.094 (3)0.0047 (18)0.035 (2)0.016 (2)
C150.077 (3)0.062 (2)0.129 (5)0.013 (2)0.034 (3)0.004 (3)
C160.069 (3)0.069 (3)0.113 (4)0.014 (2)0.019 (3)0.024 (3)
C170.057 (2)0.062 (2)0.069 (3)0.0008 (18)0.0128 (19)0.0129 (19)
C180.0417 (18)0.0575 (19)0.055 (2)0.0093 (15)0.0183 (16)0.0081 (17)
C190.0462 (19)0.062 (2)0.047 (2)0.0175 (16)0.0226 (15)0.0131 (16)
O1W0.097 (2)0.111 (2)0.0617 (18)0.0296 (18)0.0041 (15)0.0005 (16)
Geometric parameters (Å, º) top
Cu—O11.882 (2)C8—C91.397 (5)
Cu—O31.895 (2)C8—H80.9300
Cu—O3i2.569 (2)C9—C101.358 (6)
Cu—N12.007 (3)C9—H90.9300
Cu—N22.011 (3)C10—C111.405 (6)
Cl—C51.741 (4)C10—H100.9300
N1—C81.331 (4)C11—C191.406 (4)
N1—C191.360 (4)C11—C121.430 (6)
N2—C171.332 (4)C12—C131.346 (6)
N2—C181.353 (4)C12—H120.9300
O1—C11.292 (4)C13—C141.435 (6)
O2—C11.241 (4)C13—H130.9300
O3—C31.331 (4)C14—C151.401 (6)
C1—C21.482 (5)C14—C181.409 (5)
C2—C71.404 (4)C15—C161.350 (6)
C2—C31.413 (4)C15—H150.9300
C3—C41.409 (5)C16—C171.393 (5)
C4—C51.363 (5)C16—H160.9300
C4—H40.9300C17—H170.9300
C5—C61.374 (6)C18—C191.423 (5)
C6—C71.370 (6)O1W—H1A0.8969
C6—H60.9300O1W—H1B0.8747
C7—H70.9300
O1—Cu—O394.54 (9)C2—C7—H7118.6
O1—Cu—N1169.27 (10)N1—C8—C9121.9 (4)
O3—Cu—N193.42 (10)N1—C8—H8119.1
O1—Cu—N290.01 (10)C9—C8—H8119.1
O3—Cu—N2175.25 (9)C10—C9—C8120.1 (4)
N1—Cu—N281.90 (11)C10—C9—H9120.0
O1—Cu—O3i101.17 (9)C8—C9—H9120.0
O3—Cu—O3i85.40 (9)C9—C10—C11119.8 (4)
N1—Cu—O3i86.62 (8)C9—C10—H10120.1
N2—Cu—O3i95.07 (9)C11—C10—H10120.1
C8—N1—C19118.5 (3)C10—C11—C19116.9 (4)
C8—N1—Cu129.1 (2)C10—C11—C12125.0 (4)
C19—N1—Cu112.2 (2)C19—C11—C12118.1 (4)
C17—N2—C18118.3 (3)C13—C12—C11121.2 (4)
C17—N2—Cu129.1 (3)C13—C12—H12119.4
C18—N2—Cu112.4 (2)C11—C12—H12119.4
C1—O1—Cu129.5 (2)C12—C13—C14122.2 (4)
C3—O3—Cu123.5 (2)C12—C13—H13118.9
O2—C1—O1119.9 (3)C14—C13—H13118.9
O2—C1—C2120.3 (3)C15—C14—C18116.3 (4)
O1—C1—C2119.8 (3)C15—C14—C13126.2 (4)
C7—C2—C3118.0 (3)C18—C14—C13117.5 (4)
C7—C2—C1117.4 (3)C16—C15—C14120.2 (4)
C3—C2—C1124.6 (3)C16—C15—H15119.9
O3—C3—C4117.2 (3)C14—C15—H15119.9
O3—C3—C2124.6 (3)C15—C16—C17120.3 (4)
C4—C3—C2118.2 (3)C15—C16—H16119.9
C5—C4—C3121.2 (4)C17—C16—H16119.9
C5—C4—H4119.4N2—C17—C16121.8 (4)
C3—C4—H4119.4N2—C17—H17119.1
C6—C5—C4121.5 (4)C16—C17—H17119.1
C6—C5—Cl119.1 (3)N2—C18—C14123.2 (3)
C4—C5—Cl119.4 (3)N2—C18—C19116.4 (3)
C5—C6—C7118.5 (3)C14—C18—C19120.4 (3)
C5—C6—H6120.8N1—C19—C11122.8 (3)
C7—C6—H6120.8N1—C19—C18116.6 (3)
C6—C7—C2122.7 (4)C11—C19—C18120.6 (3)
C6—C7—H7118.6H1A—O1W—H1B105.1
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.901.922.817 (4)175
O1W—H1B···O2ii0.882.132.921 (4)150
C10—H10···O2iii0.932.423.277 (5)153
C17—H17···O1Wii0.932.583.487 (4)166
Symmetry codes: (ii) x, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H3ClO3)2(C12H8N2)2]·2H2O
Mr864.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)8.1941 (17), 18.851 (4), 11.873 (3)
β (°) 105.993 (8)
V3)1763.0 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.33 × 0.30 × 0.22
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.656, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
18894, 3163, 2162
Rint0.047
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.103, 1.03
No. of reflections3163
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.36

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O20.901.922.817 (4)175
O1W—H1B···O2i0.882.132.921 (4)150
C10—H10···O2ii0.932.423.277 (5)153
C17—H17···O1Wi0.932.583.487 (4)166
Symmetry codes: (i) x, y+1, z; (ii) x, y, z+1.
 

Acknowledgements

The work was supported by the ZIJIN project of Zhejiang University, China.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFan, S.-R. & Zhu, L.-G. (2005). Chin. J. Chem. 23, 1292–1296.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGarland, M. T., Grandjean, D. & Spodine, E. (1987). Acta Cryst. C43, 1910–1912.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, M., Zou, J.-Z., Xu, Z., You, X.-Z. & Huang, X.-Y. (1995). Polyhedron, 14, 639–644.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, J.-F., Chen, Y., Li, Z.-G., Zhou, R.-S., Xu, X.-Y., Xu, J.-Q. & Wang, T.-G. (2007). Polyhedron, 26, 4397–4402  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, J.-R. & Xu, D.-J. (2004). J. Coord. Chem. 57, 223–229.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, D.-J., Zhang, B.-Y., Su, J.-R. & Nie, J.-J. (2007). Acta Cryst. C63, m622–m624.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, Q., Zhang, L. & Xu, D.-J. (2006). Acta Cryst. E62, m2678–m2680.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m387-m388
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds