organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Bromo­phen­yl)thio­urea

aSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia
*Correspondence e-mail: bohari@ukm.my

(Received 26 February 2010; accepted 4 March 2010; online 10 March 2010)

In the title compound, C7H7BrN2S, the thio­urea unit is almost perpendicular to the bromo­benzene fragment, making a dihedral angle of 80.82 (16)°. The crystal structure is stabilized by N—H⋯S inter­molecular hydrogen bonds, which form linear chains along the ab diagonal.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Steiner (1998[Steiner, T. (1998). Acta Cryst. C54, 1121-1123.]); Shen & Xu (2004[Shen, Y.-H. & Xu, D.-J. (2004). Acta Cryst. E60, o1193-o1194.]); Wang et al. (1991[Wang, J.-L., Zhang, X., Han, Y.-Z. & Tang, Y.-Q. (1991). Chin. J. Org. Chem. 11, 388-392.]). For the anti­viral activity of phenyl­thio­ureas, see: D'Cruz & Uckun (2005[D'Cruz, O. J. & Uckun, F. M. (2005). Mol. Hum. Reprod. 11, 767-777.]); Frank & Smith (1955[Frank, R. L. & Smith, P. V. (1955). Org. Synth. Coll. 3, 735.]); Mao et al. (2000[Mao, C., Sudbeck, E. A., Venkatachalam, T. K. & Uckun, F. M. (2000). Biochem. Pharmacol. 60, 1251-1265.]); Sudbeck et al. (1998[Sudbeck, E. A., Mao, C., Vig, R., Venkatachalam, T. K., Tuel-Ahlgren, L. & Uckun, F. M. (1998). Antimicrob. Agents Chemother. 42, 3225-3233.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7BrN2S

  • Mr = 231.12

  • Monoclinic, C 2/c

  • a = 15.181 (3) Å

  • b = 7.7952 (16) Å

  • c = 15.312 (3) Å

  • β = 90.803 (4)°

  • V = 1811.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.71 mm−1

  • T = 298 K

  • 0.44 × 0.27 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.231, Tmax = 0.625

  • 5817 measured reflections

  • 1972 independent reflections

  • 1327 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.129

  • S = 1.06

  • 1972 reflections

  • 100 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.54 3.354 (3) 161
N2—H2A⋯S1ii 0.85 2.53 3.368 (3) 168
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON.

Supporting information


Comment top

The number of publications including patents on the application of thiourea compounds in the field of pharmaceutical is increasing at a considerable rate. The antivarial activities of a series of phenylthioureas as none-nucleoside inhibitors HIV-1 reverse transcriptase (NNRTIs) with efficacy against multi-drug resistant viruses (Sudbeck et al., 1998; Mao et al., 2000; D'Cruz & Uckun, 2005) are some of the interesting examples. Several N-thiourea compounds of the type H2NC(S)NHR are now commercially available.

The title compound (I) is analagous to phenylthiourea (II, Shen et al., 2004), o-fluorophenylthiourea (III, Steiner, 1998) and p-bromophenylthiourea(IV, Wang et al., 1991). The thiourea moiety, S1/N1/N2/C7, and the 2-bromoaniline fragment, Br1/N1/(C1—C6) are each planar with maximum deviation of 0.024 (5)Å for C2 atom from the least square plane. The two planes are perpendicular to each other with dihedral angle of 80.82 (16)° compare to 68.57° in (IV). The thiourea moiety maintains its cis-trans geometry. The bond lengths and angles are in normal ranges (Allen et al., 1987) and comparable to those in (II), (III) and (IV). In contrast to its fluoro- analog ,the molecule is stablized only by pairs of N1—H1A···S1 and N2—H2A···S1 (symmetry codes as in Table 1) intermolecular hydrogen bonds to form linear chains along the diagnal of the ab face (Fig.2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Steiner (1998); Shen & Xu (2004); Wang et al. (1991). For the antiviral activity of phenylthioureas, see: D'Cruz & Uckun (2005); Frank & Smith (1955); Mao et al. (2000); Sudbeck et al. (1998).

Experimental top

The compound was prepared by the method described by Frank & Smith (1955) with a slight modification. Ammonium thiocyante (0.38 g, 0.005 mol) in 15 ml acetone was added into 20 ml acetone solution of containing benzoylchloride (0.70 g, 0.005 mole). The solution was filtered and the filtrate was kept into a 100 ml two neck round bottom flask. o-Bromoaniline (0.86 g, 0.005 mole) was added into the flask and the mixture was refluxed for 2 hours. The final solution was poured into a baker containing some ice cubes. The precipitate formed was filtered. The precipitate was then added into a beaker containing 50 ml aqueous solution of sodium hydroxide (7 g). The solution was heated to boiling for 10 minutes. After a week on standing at room temperature some colourless crystals were obtained and found suitable for X-ray investigation. The yield was 81% and melting point; 428.1-429.3 K.

Refinement top

H atoms on the C atoms were positioned geometrically with C—H= 0.93 for aromatic group and constrained to ride on their parent atoms with Uiso(H)= 1.2 x Ueq(C parent atom). The hydrogen atoms attached to the nitrogen atoms were located from the Fourier map and initially refined with Uiso(H)= 1.2 x Ueq(N) . In the last stage of refinement, they were treated as riding on their parent N atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The nolecular structure of (I), with the atom labeling scheme. Displacement ellipsods are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram of (I) viewed down the b axis. Hydrogen bonds are shown by dashed lines. Hydrogen atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x+1/2, -y+3/2, -z+1; (ii) -x, -y+1, -z+1.]
N-(2-Bromophenyl)thiourea top
Crystal data top
C7H7BrN2SF(000) = 912
Mr = 231.12Dx = 1.695 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1400 reflections
a = 15.181 (3) Åθ = 2.6–27.0°
b = 7.7952 (16) ŵ = 4.71 mm1
c = 15.312 (3) ÅT = 298 K
β = 90.803 (4)°Block, colourless
V = 1811.8 (6) Å30.44 × 0.27 × 0.11 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1972 independent reflections
Radiation source: fine-focus sealed tube1327 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 83.66 pixels mm-1θmax = 27.0°, θmin = 2.6°
ω scanh = 1919
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 59
Tmin = 0.231, Tmax = 0.625l = 1919
5817 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0664P)2 + 1.1624P]
where P = (Fo2 + 2Fc2)/3
1972 reflections(Δ/σ)max < 0.001
100 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
C7H7BrN2SV = 1811.8 (6) Å3
Mr = 231.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.181 (3) ŵ = 4.71 mm1
b = 7.7952 (16) ÅT = 298 K
c = 15.312 (3) Å0.44 × 0.27 × 0.11 mm
β = 90.803 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1327 reflections with I > 2σ(I)
Tmin = 0.231, Tmax = 0.625Rint = 0.028
5817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.06Δρmax = 0.61 e Å3
1972 reflectionsΔρmin = 0.65 e Å3
100 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.10527 (4)1.16677 (8)0.59724 (3)0.0909 (3)
S10.13874 (6)0.57559 (13)0.47185 (6)0.0488 (3)
N10.16731 (19)0.7869 (4)0.60361 (19)0.0498 (8)
H1A0.21730.79610.57900.060*
N20.0356 (2)0.6495 (5)0.6038 (2)0.0660 (11)
H2A0.00300.58790.57800.079*
H2B0.02180.71590.64600.079*
C10.1703 (3)0.7627 (6)0.7636 (3)0.0565 (10)
H10.18680.64820.75870.068*
C20.1620 (3)0.8362 (6)0.8439 (3)0.0648 (12)
H20.17540.77310.89390.078*
C30.1338 (3)1.0031 (7)0.8512 (3)0.0661 (12)
H30.12671.05100.90630.079*
C40.1163 (3)1.0993 (6)0.7788 (3)0.0645 (11)
H40.09721.21220.78450.077*
C50.1267 (2)1.0289 (5)0.6969 (2)0.0511 (9)
C60.1536 (2)0.8622 (5)0.6873 (2)0.0447 (9)
C70.1116 (2)0.6777 (4)0.5653 (2)0.0422 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1262 (6)0.0874 (4)0.0595 (3)0.0326 (3)0.0145 (3)0.0182 (3)
S10.0499 (5)0.0498 (5)0.0472 (5)0.0151 (4)0.0139 (4)0.0146 (4)
N10.0425 (17)0.0608 (19)0.0465 (17)0.0151 (15)0.0159 (14)0.0186 (15)
N20.0445 (18)0.087 (3)0.067 (2)0.0264 (18)0.0218 (16)0.036 (2)
C10.052 (2)0.057 (2)0.060 (2)0.004 (2)0.0012 (19)0.008 (2)
C20.072 (3)0.077 (3)0.045 (2)0.010 (2)0.005 (2)0.007 (2)
C30.080 (3)0.076 (3)0.042 (2)0.014 (3)0.011 (2)0.013 (2)
C40.084 (3)0.056 (2)0.054 (2)0.001 (2)0.016 (2)0.014 (2)
C50.056 (2)0.055 (2)0.0418 (19)0.0019 (19)0.0074 (17)0.0036 (17)
C60.0402 (19)0.054 (2)0.0403 (19)0.0100 (17)0.0091 (15)0.0098 (16)
C70.0391 (19)0.044 (2)0.0440 (18)0.0072 (15)0.0077 (15)0.0072 (15)
Geometric parameters (Å, º) top
Br1—C51.891 (4)C1—C61.421 (6)
S1—C71.693 (4)C1—H10.9300
N1—C71.331 (4)C2—C31.375 (7)
N1—C61.428 (4)C2—H20.9300
N1—H1A0.8551C3—C41.361 (6)
N2—C71.320 (4)C3—H30.9300
N2—H2A0.8506C4—C51.380 (5)
N2—H2B0.8562C4—H40.9300
C1—C21.364 (6)C5—C61.371 (5)
C7—N1—C6124.0 (3)C2—C3—H3119.6
C7—N1—H1A115.0C3—C4—C5119.8 (4)
C6—N1—H1A120.1C3—C4—H4120.1
C7—N2—H2A119.1C5—C4—H4120.1
C7—N2—H2B117.4C6—C5—C4120.8 (4)
H2A—N2—H2B121.2C6—C5—Br1120.0 (3)
C2—C1—C6119.6 (4)C4—C5—Br1119.1 (3)
C2—C1—H1120.2C5—C6—C1118.6 (3)
C6—C1—H1120.2C5—C6—N1122.2 (4)
C1—C2—C3120.2 (4)C1—C6—N1119.1 (3)
C1—C2—H2119.9N2—C7—N1117.6 (3)
C3—C2—H2119.9N2—C7—S1121.6 (3)
C4—C3—C2120.9 (4)N1—C7—S1120.8 (3)
C4—C3—H3119.6
C6—C1—C2—C32.9 (6)Br1—C5—C6—N10.6 (5)
C1—C2—C3—C41.9 (7)C2—C1—C6—C52.1 (6)
C2—C3—C4—C50.0 (7)C2—C1—C6—N1176.5 (4)
C3—C4—C5—C60.8 (6)C7—N1—C6—C5103.7 (4)
C3—C4—C5—Br1178.2 (3)C7—N1—C6—C177.7 (5)
C4—C5—C6—C10.2 (6)C6—N1—C7—N26.2 (6)
Br1—C5—C6—C1179.2 (3)C6—N1—C7—S1172.3 (3)
C4—C5—C6—N1178.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.543.354 (3)161
N2—H2A···S1ii0.852.533.368 (3)168
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H7BrN2S
Mr231.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.181 (3), 7.7952 (16), 15.312 (3)
β (°) 90.803 (4)
V3)1811.8 (6)
Z8
Radiation typeMo Kα
µ (mm1)4.71
Crystal size (mm)0.44 × 0.27 × 0.11
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.231, 0.625
No. of measured, independent and
observed [I > 2σ(I)] reflections
5817, 1972, 1327
Rint0.028
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.129, 1.06
No. of reflections1972
No. of parameters100
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.65

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.543.354 (3)160.5
N2—H2A···S1ii0.852.533.368 (3)167.6
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z+1.
 

Acknowledgements

The authors thank the Ministry of Higher Education of Malaysia and Universiti Kebangsaan Malaysia for the research grant UKM-GUP-NBT-68–27/110. A scholarship from the Libyan Government to SFH is greatly appreciated.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationD'Cruz, O. J. & Uckun, F. M. (2005). Mol. Hum. Reprod. 11, 767–777.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFrank, R. L. & Smith, P. V. (1955). Org. Synth. Coll. 3, 735.  Google Scholar
First citationMao, C., Sudbeck, E. A., Venkatachalam, T. K. & Uckun, F. M. (2000). Biochem. Pharmacol. 60, 1251–1265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-H. & Xu, D.-J. (2004). Acta Cryst. E60, o1193–o1194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1998). Acta Cryst. C54, 1121–1123.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSudbeck, E. A., Mao, C., Vig, R., Venkatachalam, T. K., Tuel-Ahlgren, L. & Uckun, F. M. (1998). Antimicrob. Agents Chemother. 42, 3225–3233.  Web of Science CAS PubMed Google Scholar
First citationWang, J.-L., Zhang, X., Han, Y.-Z. & Tang, Y.-Q. (1991). Chin. J. Org. Chem. 11, 388–392.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds