organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(4-Methyl­phen­yl)ethanone [8-(tri­fluoro­meth­yl)quinolin-4-yl]hydrazone

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, University of Mysore, Mysore 570 006, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 5 March 2010; accepted 12 March 2010; online 20 March 2010)

In the title compound, C19H16F3N3, the dihedral angle between the naphthalene and quinoline ring systems is 14.58 (8)°. The hydrazone C—N—N=C—C chain is in an extended conformation and its mean plane is nearly coplanar with the quinoline plane [dihedral angle = 3.45 (9)°]. The bond angles within the phenyl ring show the almost additive influence of the two para substituents. In the crystal, weak ππ [centroid–centroid distances = 3.779 (2) and 3.718 (1) Å] and C—H⋯F directional inter­actions join the mol­ecules into centrosymmetric dimers, which are further connected into infinite zigzag chains propagating along a.

Related literature

For second-order non-linear activity, see: Serbutoviez et al. (1995[Serbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Günter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198-1206.]). For related structures, see: Jasinski et al. (2008[Jasinski, J. P., Butcher, R. J., Narayana, B., Sunil, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o481-o482.]); Yathirajan et al. (2007[Yathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2720-o2721.]). For a description fo the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond angles in mono-substituted phenyl rings, see: Domenicano (1988[Domenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281-324. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16F3N3

  • Mr = 343.35

  • Monoclinic, P 21 /c

  • a = 8.2811 (9) Å

  • b = 14.8443 (15) Å

  • c = 13.5325 (15) Å

  • β = 90.601 (9)°

  • V = 1663.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 295 K

  • 0.4 × 0.15 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 large Be window diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.]) Tmin = 0.737, Tmax = 1.000

  • 8893 measured reflections

  • 3391 independent reflections

  • 2248 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.156

  • S = 1.12

  • 3391 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯F91Ai 0.93 2.50 3.336 (2) 150
C14—H14C⋯F91Cii 0.96 2.55 3.384 (2) 146
C17—H17⋯F91Ciii 0.93 2.54 3.425 (3) 160
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+2, -y, -z; (iii) [x-1, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989[Siemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazones constitute a class of compounds of general formula R1R2C N—NR3R4. Serbutoviez et al. (1995) have shown that some diaryl hydrazone derivatives show efficient second-order nonlinear activity. They connected the tendency to crystallize in Λ-shaped pairs with the possibility of the application for the frequency conversion but not for electrooptics. Here we present the structure of (E)-1-(4-methylphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone (I, Scheme 1); the crystal structures of two salts of similar (quinoline - phenyl) hydrazones have been reported recently: bis{4-[(2-hydroxybenzylidine)hydrazino]- 8-(trifluoromethyl)quinolinium} sulfate tetrahydrate (Yathirajan et al., 2007) and bis{4-[(Z)—N'-(4-hydroxybenzylidene)- hydrazino]-8-(trifluoromethyl)- quinolinium} sulfate dihydrate (Jasinski et al., 2008).

The overall conformation of the molecules of I can be described by the values of dihedral angles between the three planar fragments: the quinoline ring system (hereinafter A will denote pyridine ring, B - trifluoromethylphenyl ring, planar within 0.0076 (14) Å), the central extended C—N—N C—C chain (maximum deviation from the least-squares plane of 0.0158 (12) Å), and the phenyl ring (C, maximum deviation 0.021 (2) Å). While the first two fragments are almost coplanar, dihedral angle between the planes is only 3.45 (9)°, this fragment is significantly, by 14.5 (1)°, twisted with respect to the phenyl ring plane. Such conformation is rather typical; for 186 fragments found in 155 similar compunds (Ar1—N—NC—Ar2) found in the Cambridge Structual Database [CSD, Conquest 5.31; Allen, 2002] the Ar1 plane is close to coplanarity with the central chain (mean value 5.9 (3)°, maximum 18.7°), while it is more twisted with respect to Ar2 plane (mean 17 (2)°, 33 examples of angles larger than 30°). The bond length pattern within the chain reflects the more single/double character of certain bonds. The bond angles within the phenyl ring are influenced by the presence of substituents; as expected for p-substitution, the influences are almost additive. The sum of values given by Domenicano (1988) or found in the CSD for mono-substituted phenyl rings are very close to the actual values in (I).

In the crystal the molecules are connected into dimers by ππ interactions: centroid-to-centroid distance between rings A and B (2-x,-y,-z) is 3.779 (2)Å with an offset of 22.1°, which gives the interplanar distance of 3.509Å (mean value). Distance between centroids of rings B and B(2-x,-y,-z) is 3.718 (1) Å, with interplanar distance of 3.516Å resulting in an offset of 19.0°. These dimers, in which there are additional C—H···F (Table 1) contacts (Fig. 2), are further connected into zig-zag chains (Λ-shaped) along a direction. It might be noted, that the N—H hydrogen atom is so hidden by the neighboring C6—H6 and C14 methyl hydrogen atoms that it can not be involved in any intermolecular interactions.

Related literature top

For second-order non-linear activity , see: Serbutoviez et al. (1995). For related structures, see: Jasinski et al. (2008); Yathirajan et al. (2007). For a description fo the Cambridge Structural Database, see: Allen (2002). For bond angles in mono-substituted phenyl rings, see: Domenicano (1988).

Experimental top

A solution of 4-hydrazino-8-(trifluoromethyl)quinoline (2.2 g, 10 mmole) and 4-methyl-acetophenone (10.2 mmole ) in 10 ml of ethanol was refluxed for 24 hrs under nitrogen atmosphere and in absence of light. The reaction mass was then cooled and the solid separated was collected by filtration and recrystallized from ethanol. M.P.: 449-451 K. Analysis found : C 66.41, H 4.67, N 12.20; C19H16F3N3 requires : C 66.48, H 4.70, N 12.24%.

Refinement top

Hydrogen atoms were located geometrically (C(methyl)-H 0.93 Å, C(ar)—H 0.96 Å, N—H 0.86 Å) and refined as a riding model; the Uiso values of H atoms were set at 1.2 (1.5 for methyl groups) times Ueq of their carrier atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the compound I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The centrosymmetric dimer of molecules I; ππ and C—H···F contacts are shown as dashed lines. are shown as dashed lines.
(E)-1-(4-Methylphenyl)ethanone [8-(trifluoromethyl)quinolin-4-yl]hydrazone top
Crystal data top
C19H16F3N3F(000) = 712
Mr = 343.35Dx = 1.371 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4730 reflections
a = 8.2811 (9) Åθ = 3.0–28.0°
b = 14.8443 (15) ŵ = 0.11 mm1
c = 13.5325 (15) ÅT = 295 K
β = 90.601 (9)°Prism, yellow
V = 1663.4 (3) Å30.4 × 0.15 × 0.15 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
3391 independent reflections
Radiation source: Enhance (Mo) X-ray Source2248 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.1929 pixels mm-1θmax = 28.1°, θmin = 3.0°
ω–scanh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1719
Tmin = 0.737, Tmax = 1.000l = 1713
8893 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.0897P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.001
3391 reflectionsΔρmax = 0.25 e Å3
229 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Crystal data top
C19H16F3N3V = 1663.4 (3) Å3
Mr = 343.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2811 (9) ŵ = 0.11 mm1
b = 14.8443 (15) ÅT = 295 K
c = 13.5325 (15) Å0.4 × 0.15 × 0.15 mm
β = 90.601 (9)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
3391 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2248 reflections with I > 2σ(I)
Tmin = 0.737, Tmax = 1.000Rint = 0.021
8893 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.12Δρmax = 0.25 e Å3
3391 reflectionsΔρmin = 0.19 e Å3
229 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.83992 (19)0.01946 (10)0.20074 (10)0.0513 (4)
C20.7602 (3)0.05642 (13)0.20928 (14)0.0597 (6)
H20.75460.08170.27210.072*
C30.6830 (2)0.10262 (12)0.13230 (13)0.0537 (5)
H30.62930.15650.14440.064*
C40.68734 (19)0.06746 (11)0.03860 (12)0.0401 (4)
C50.77200 (18)0.01539 (10)0.02401 (11)0.0370 (4)
C60.7863 (2)0.05794 (11)0.06808 (13)0.0474 (5)
H60.73700.03230.12330.057*
C70.8702 (2)0.13543 (12)0.07816 (15)0.0573 (5)
H70.87920.16200.14010.069*
C80.9435 (2)0.17588 (12)0.00411 (16)0.0553 (5)
H81.00030.22950.00340.066*
C90.93256 (19)0.13729 (11)0.09527 (14)0.0430 (4)
C911.0141 (2)0.18041 (12)0.18190 (16)0.0564 (5)
F91A0.91479 (15)0.20118 (9)0.25506 (10)0.0827 (5)
F91B1.09032 (17)0.25657 (8)0.15776 (12)0.0910 (5)
F91C1.12986 (14)0.12807 (8)0.22230 (9)0.0708 (4)
C100.84643 (19)0.05542 (10)0.10817 (12)0.0388 (4)
N110.61492 (17)0.10952 (9)0.04049 (11)0.0469 (4)
H110.61600.08550.09830.056*
N120.54053 (17)0.19105 (9)0.02519 (10)0.0451 (4)
C130.47706 (18)0.23051 (12)0.10088 (13)0.0409 (4)
C140.4800 (2)0.19314 (13)0.20397 (13)0.0536 (5)
H14A0.44510.13150.20310.080*
H14B0.40880.22770.24570.080*
H14C0.58790.19640.22900.080*
C150.39938 (19)0.31859 (12)0.08073 (12)0.0426 (4)
C160.3532 (3)0.37659 (15)0.15437 (16)0.0757 (7)
H160.36890.36030.21990.091*
C170.2841 (3)0.45844 (17)0.13344 (18)0.0938 (9)
H170.25460.49610.18550.113*
C180.2571 (3)0.48652 (14)0.03884 (16)0.0652 (6)
C190.2963 (3)0.42716 (16)0.03489 (17)0.0790 (7)
H190.27470.44240.10010.095*
C200.3673 (3)0.34517 (15)0.01459 (15)0.0711 (6)
H200.39420.30690.06660.085*
C210.1827 (4)0.57785 (17)0.0168 (2)0.0937 (8)
H21A0.11980.59740.07280.141*
H21B0.11450.57300.03990.141*
H21C0.26690.62080.00360.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0716 (10)0.0439 (9)0.0383 (9)0.0069 (8)0.0033 (7)0.0045 (7)
C20.0930 (14)0.0510 (12)0.0352 (11)0.0162 (11)0.0069 (10)0.0043 (8)
C30.0784 (13)0.0422 (10)0.0407 (11)0.0182 (9)0.0096 (9)0.0018 (8)
C40.0468 (9)0.0359 (9)0.0376 (10)0.0010 (7)0.0063 (7)0.0037 (7)
C50.0413 (8)0.0325 (9)0.0374 (9)0.0042 (7)0.0063 (7)0.0002 (7)
C60.0576 (11)0.0425 (10)0.0419 (11)0.0032 (8)0.0007 (8)0.0063 (8)
C70.0696 (12)0.0489 (11)0.0535 (12)0.0040 (10)0.0015 (10)0.0173 (9)
C80.0566 (11)0.0326 (9)0.0768 (15)0.0044 (8)0.0033 (10)0.0108 (9)
C90.0436 (9)0.0305 (9)0.0550 (11)0.0029 (7)0.0042 (8)0.0027 (8)
C910.0586 (11)0.0383 (10)0.0723 (14)0.0024 (9)0.0007 (11)0.0079 (10)
F91A0.0791 (8)0.0770 (9)0.0921 (10)0.0038 (6)0.0074 (7)0.0479 (7)
F91B0.1055 (10)0.0536 (8)0.1134 (11)0.0350 (7)0.0218 (8)0.0004 (7)
F91C0.0662 (7)0.0711 (8)0.0748 (9)0.0030 (6)0.0153 (6)0.0064 (6)
C100.0440 (9)0.0318 (9)0.0407 (10)0.0044 (7)0.0061 (7)0.0031 (7)
N110.0603 (9)0.0418 (9)0.0385 (8)0.0095 (7)0.0008 (7)0.0017 (6)
N120.0516 (8)0.0389 (8)0.0451 (9)0.0074 (6)0.0035 (7)0.0030 (7)
C130.0398 (9)0.0432 (10)0.0398 (10)0.0019 (7)0.0027 (7)0.0035 (8)
C140.0549 (10)0.0589 (12)0.0468 (11)0.0128 (9)0.0026 (9)0.0019 (9)
C150.0420 (9)0.0446 (10)0.0412 (10)0.0023 (7)0.0002 (7)0.0038 (8)
C160.1163 (18)0.0696 (15)0.0415 (12)0.0364 (14)0.0040 (12)0.0073 (10)
C170.151 (2)0.0727 (16)0.0582 (15)0.0566 (16)0.0012 (15)0.0164 (12)
C180.0776 (13)0.0546 (13)0.0633 (14)0.0191 (11)0.0049 (11)0.0019 (10)
C190.1223 (19)0.0664 (15)0.0481 (13)0.0332 (14)0.0083 (13)0.0116 (11)
C200.1085 (17)0.0601 (13)0.0446 (12)0.0282 (12)0.0088 (12)0.0011 (10)
C210.123 (2)0.0671 (16)0.0911 (19)0.0361 (15)0.0111 (16)0.0132 (13)
Geometric parameters (Å, º) top
N1—C21.311 (2)N11—H110.8600
N1—C101.363 (2)N12—C131.287 (2)
C2—C31.397 (3)C13—C151.484 (2)
C2—H20.9300C13—C141.502 (2)
C3—C41.372 (2)C14—H14A0.9600
C3—H30.9300C14—H14B0.9600
C4—N111.372 (2)C14—H14C0.9600
C4—C51.430 (2)C15—C161.369 (3)
C5—C61.403 (2)C15—C201.377 (2)
C5—C101.420 (2)C16—C171.374 (3)
C6—C71.351 (2)C16—H160.9300
C6—H60.9300C17—C181.367 (3)
C7—C81.398 (3)C17—H170.9300
C7—H70.9300C18—C191.368 (3)
C8—C91.364 (3)C18—C211.520 (3)
C8—H80.9300C19—C201.380 (3)
C9—C101.421 (2)C19—H190.9300
C9—C911.491 (3)C20—H200.9300
C91—F91A1.330 (2)C21—H21A0.9600
C91—F91B1.337 (2)C21—H21B0.9600
C91—F91C1.345 (2)C21—H21C0.9600
N11—N121.3746 (18)
C2—N1—C10116.24 (15)N12—N11—H11120.8
N1—C2—C3125.66 (17)C13—N12—N11117.43 (14)
N1—C2—H2117.2N12—C13—C15115.40 (15)
C3—C2—H2117.2N12—C13—C14124.10 (16)
C4—C3—C2119.09 (16)C15—C13—C14120.50 (15)
C4—C3—H3120.5C13—C14—H14A109.5
C2—C3—H3120.5C13—C14—H14B109.5
N11—C4—C3122.16 (15)H14A—C14—H14B109.5
N11—C4—C5119.64 (15)C13—C14—H14C109.5
C3—C4—C5118.19 (15)H14A—C14—H14C109.5
C6—C5—C10118.96 (15)H14B—C14—H14C109.5
C6—C5—C4123.75 (15)C16—C15—C20116.53 (17)
C10—C5—C4117.29 (14)C16—C15—C13122.61 (17)
C7—C6—C5121.40 (17)C20—C15—C13120.85 (16)
C7—C6—H6119.3C15—C16—C17121.3 (2)
C5—C6—H6119.3C15—C16—H16119.3
C6—C7—C8120.31 (17)C17—C16—H16119.3
C6—C7—H7119.8C18—C17—C16122.4 (2)
C8—C7—H7119.8C18—C17—H17118.8
C9—C8—C7120.48 (16)C16—C17—H17118.8
C9—C8—H8119.8C17—C18—C19116.54 (19)
C7—C8—H8119.8C17—C18—C21121.8 (2)
C8—C9—C10120.57 (17)C19—C18—C21121.7 (2)
C8—C9—C91119.79 (16)C18—C19—C20121.4 (2)
C10—C9—C91119.63 (16)C18—C19—H19119.3
F91A—C91—F91B106.44 (16)C20—C19—H19119.3
F91A—C91—F91C105.95 (17)C15—C20—C19121.71 (19)
F91B—C91—F91C104.57 (15)C15—C20—H20119.1
F91A—C91—C9113.97 (16)C19—C20—H20119.1
F91B—C91—C9112.45 (17)C18—C21—H21A109.5
F91C—C91—C9112.74 (15)C18—C21—H21B109.5
N1—C10—C5123.52 (14)H21A—C21—H21B109.5
N1—C10—C9118.20 (15)C18—C21—H21C109.5
C5—C10—C9118.28 (15)H21A—C21—H21C109.5
C4—N11—N12118.44 (14)H21B—C21—H21C109.5
C4—N11—H11120.8
C10—N1—C2—C30.1 (3)C4—C5—C10—C9179.39 (13)
N1—C2—C3—C40.4 (3)C8—C9—C10—N1179.64 (15)
C2—C3—C4—N11179.62 (17)C91—C9—C10—N10.8 (2)
C2—C3—C4—C50.2 (3)C8—C9—C10—C50.3 (2)
N11—C4—C5—C60.1 (2)C91—C9—C10—C5179.13 (15)
C3—C4—C5—C6179.55 (17)C3—C4—N11—N122.2 (2)
N11—C4—C5—C10179.21 (14)C5—C4—N11—N12177.15 (13)
C3—C4—C5—C100.2 (2)C4—N11—N12—C13178.20 (15)
C10—C5—C6—C70.6 (3)N11—N12—C13—C15179.54 (13)
C4—C5—C6—C7178.79 (16)N11—N12—C13—C140.2 (2)
C5—C6—C7—C80.8 (3)N12—C13—C15—C16167.60 (19)
C6—C7—C8—C90.6 (3)C14—C13—C15—C1611.8 (3)
C7—C8—C9—C100.0 (3)N12—C13—C15—C2013.7 (2)
C7—C8—C9—C91178.86 (17)C14—C13—C15—C20166.96 (18)
C8—C9—C91—F91A122.12 (19)C20—C15—C16—C172.4 (4)
C10—C9—C91—F91A59.0 (2)C13—C15—C16—C17178.8 (2)
C8—C9—C91—F91B0.9 (2)C15—C16—C17—C180.2 (4)
C10—C9—C91—F91B179.75 (15)C16—C17—C18—C192.7 (4)
C8—C9—C91—F91C117.05 (18)C16—C17—C18—C21179.1 (3)
C10—C9—C91—F91C61.8 (2)C17—C18—C19—C203.3 (4)
C2—N1—C10—C50.4 (3)C21—C18—C19—C20178.5 (2)
C2—N1—C10—C9179.55 (16)C16—C15—C20—C191.7 (3)
C6—C5—C10—N1179.90 (15)C13—C15—C20—C19179.5 (2)
C4—C5—C10—N10.5 (2)C18—C19—C20—C151.2 (4)
C6—C5—C10—C90.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F91Ai0.932.503.336 (2)150
C14—H14C···F91Cii0.962.553.384 (2)146
C17—H17···F91Ciii0.932.543.425 (3)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z; (iii) x1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC19H16F3N3
Mr343.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.2811 (9), 14.8443 (15), 13.5325 (15)
β (°) 90.601 (9)
V3)1663.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.4 × 0.15 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2 large Be window
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.737, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8893, 3391, 2248
Rint0.021
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.156, 1.12
No. of reflections3391
No. of parameters229
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.19

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), Stereochemical Workstation Operation Manual (Siemens, 1989) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···F91Ai0.932.503.336 (2)150
C14—H14C···F91Cii0.962.553.384 (2)146
C17—H17···F91Ciii0.932.543.425 (3)160
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+2, y, z; (iii) x1, y1/2, z1/2.
 

Acknowledgements

ANM thanks the University of Mysore for research facilities

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationDomenicano, A. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction, edited by I. Hargittai & M. Hargittai, pp. 281–324. New York: VCH.  Google Scholar
First citationJasinski, J. P., Butcher, R. J., Narayana, B., Sunil, K. & Yathirajan, H. S. (2008). Acta Cryst. E64, o481–o482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, UK.  Google Scholar
First citationSerbutoviez, C., Bosshard, C., Knöpfle, G., Wyss, P., Prêtre, P., Günter, P., Schenk, K., Solari, E. & Chapuis, G. (1995). Chem. Mater. 7, 1198–1206.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1989). Stereochemical Workstation Operation Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYathirajan, H. S., Sarojini, B. K., Narayana, B., Sunil, K. & Bolte, M. (2007). Acta Cryst. E63, o2720–o2721.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds