organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Phenyl-1H-pyrazol-3-yl)benzene-1,2-di­amine

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences, Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco, bInstitute of Nanomaterials and Nanotechnology, Avenue Armée Royale, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: emessassi@yahoo.fr

(Received 9 March 2010; accepted 10 March 2010; online 17 March 2010)

In the title compound, C15H14N4, the phenyl and pyrazole rings are essentially coplanar, being twisted relative to each other by a dihedral of only 3.68 (11)°. The benzene ring makes a dihedral angle of 64.47 (11)° with the pyrazole ring. The crystal structure is stabilized by two inter­molecular N—H⋯N hydrogen-bonds, which build a two-dimensional network developing parallel to (100). An intra­molecular N—H⋯N hydrogen bond also occurs.

Related literature

For the pharmacological applications of N-(3-phenyl-1H-pyrazol-5-yl)benzene-1, 2-diamine, see: Sharon et al. (2005[Sharon, A., Pratap, R., Tiwari, P., Srivastava, A., Maulik, P. R. & Vishnu, J. R. (2005). Bioorg. Med. Chem. Lett. 15, 2115-2117.]); Barsoum et al. (2006[Barsoum, F. F., Hosni, H. M. & Girgis, A. S. (2006). Bioorg. Med. Chem. 14, 3929-3937.]); Cunico et al. (2006[Cunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A., Zanatta, N., de Souza, M. V., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649-653.]). For the use of pyrazole derivatives as chelating agents, see: Onishi et al. (2006[Onishi, M., Yamaguchi, M., Kumagae, S., Kawano, H. & Arikawa, Y. (2006). Inorg. Chim. Acta, 359, 990-999.]) and as corrosion inibitors, see: Tebbji et al. (2005[Tebbji, K., Oudda, H., Hammouti, B., Benkaddour, M., El Kodadi, M. & Ramdani, A. (2005). Colloids Surf. A Physicochem. Eng. Aspects, 259, 143-149.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N4

  • Mr = 250.30

  • Monoclinic, P 21 /c

  • a = 13.2357 (8) Å

  • b = 5.8473 (4) Å

  • c = 16.4039 (10) Å

  • β = 92.074 (4)°

  • V = 1268.72 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.32 × 0.27 × 0.19 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 11640 measured reflections

  • 2333 independent reflections

  • 1527 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.127

  • S = 1.02

  • 2333 reflections

  • 228 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.97 (2) 2.14 (3) 3.048 (2) 157 (2)
N3—H3⋯N4ii 0.89 (2) 2.27 (2) 3.122 (2) 160 (2)
N4—H4B⋯N2 0.95 (3) 2.36 (3) 3.086 (2) 132 (2)
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrazole derivatives have attracted particular interest during the last years due to the use of such ring systems as the core structure of many drug substances, covering wide range of pharmacological applications. They were reported to possess antihyperglycemic (Sharon et al., 2005), anti-inflammatory (Barsoum et al., 2006) and antimalarial activitys (Cunico et al., 2006). Further, pyrazole derivatives is also, used as chelating agent (Onishi et al., 2006) and inhibitor of the corrosion of the steel (Tebbji et al., 2005).

The N-(3-phenyl-1H-pyrazol-5-yl)benzene-1,2-diamine molecule structure is built up from three rings (phenyl, pyrazol and benzene) interconnected like linear chain as schown in Fig. 1. The phenyl and pyrazol rings are essentially planar and are only twisted to each other by a dihedral of 3.68 (11)°. As schown in Fig. 1, the molecule is not planar and the dihedral angle between the phenyl and pyrazol rings mean plane and the benzene ring is 64.21 (9)°. Two intermolecular N—H···N hydrogen bonds ensures the cohesion of the crystal structure building up a two dimensional network parallel to the (1 0 0) plane (Table 1, Fig.2).

Related literature top

For the pharmacological applications of N-(3-phenyl-1H-pyrazol-5-yl)benzene-1, 2-diamine, see: Sharon et al. (2005); Barsoum et al. (2006); Cunico et al. (2006). For the use of pyrazole derivatives as chelating agents, see: Onishi et al. (2006) and as corrosion inibitors, see: Tebbji et al. (2005).

Experimental top

A solution of (1 g, 3,96 mmol) 4-phenyl-1,5-benzodiazepine-2-thione and (1.1 ml, 15.85 mmol) of hydrate bhydrazine in 20 ml of ethanol was refluxed for 4 h. The solvent was removed in vaccuo and the residue was washed with 60 ml of water. The resulting product was recrystallized from ethanol to give N-(3-phenyl-1H-pyrazol-5-yl)benzene-1,2-diamine in 60% yield..

Refinement top

All H atoms were located in a difference map and refined.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : The title molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitray radii.
[Figure 2] Fig. 2. : Packing view showing the N—H···N interactions as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) -x+2, y-1/2, -z+3/2; (ii) -x+2, -y+2, -z+1]
N-(5-Phenyl-1H-pyrazol-3-yl)benzene-1,2-diamine top
Crystal data top
C15H14N4F(000) = 528
Mr = 250.30Dx = 1.310 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 12462 reflections
a = 13.2357 (8) Åθ = 25.4–2.5°
b = 5.8473 (4) ŵ = 0.08 mm1
c = 16.4039 (10) ÅT = 298 K
β = 92.074 (4)°Parallelepiped, clear pale yellow
V = 1268.72 (14) Å30.32 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
1527 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.056
Graphite monochromatorθmax = 25.4°, θmin = 2.5°
ϕ and ω scansh = 1515
11640 measured reflectionsk = 76
2333 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0719P)2]
where P = (Fo2 + 2Fc2)/3
2333 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H14N4V = 1268.72 (14) Å3
Mr = 250.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2357 (8) ŵ = 0.08 mm1
b = 5.8473 (4) ÅT = 298 K
c = 16.4039 (10) Å0.32 × 0.27 × 0.19 mm
β = 92.074 (4)°
Data collection top
Bruker X8 APEX CCD area-detector
diffractometer
1527 reflections with I > 2σ(I)
11640 measured reflectionsRint = 0.056
2333 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.15 e Å3
2333 reflectionsΔρmin = 0.15 e Å3
228 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.92397 (12)0.5307 (3)0.69736 (9)0.0414 (4)
N21.00286 (12)0.6719 (3)0.67931 (9)0.0423 (4)
N31.01564 (13)1.0130 (3)0.60311 (9)0.0426 (4)
N41.10392 (16)0.6520 (3)0.51288 (11)0.0507 (5)
C10.95922 (14)0.8361 (3)0.63347 (10)0.0369 (5)
C20.85506 (15)0.8033 (4)0.62309 (11)0.0416 (5)
C30.83439 (14)0.6054 (3)0.66539 (10)0.0385 (5)
C40.73944 (15)0.4805 (4)0.67390 (11)0.0421 (5)
C50.73429 (19)0.2767 (4)0.71726 (13)0.0541 (6)
C60.6440 (2)0.1608 (5)0.72155 (16)0.0669 (7)
C70.55732 (19)0.2441 (5)0.68386 (16)0.0684 (7)
C80.56061 (19)0.4460 (5)0.64097 (17)0.0695 (7)
C90.65081 (17)0.5631 (5)0.63635 (14)0.0576 (6)
C101.12135 (15)1.0028 (3)0.59179 (10)0.0396 (5)
C111.16551 (15)0.8230 (3)0.54840 (11)0.0424 (5)
C121.26837 (18)0.8308 (5)0.53560 (13)0.0561 (6)
C131.32666 (19)1.0142 (5)0.56121 (15)0.0662 (7)
C141.2833 (2)1.1923 (5)0.60222 (14)0.0619 (7)
C151.18167 (18)1.1845 (4)0.61841 (12)0.0498 (6)
H151.1477 (16)1.308 (4)0.6454 (13)0.056 (6)*
H10.9384 (19)0.389 (4)0.7256 (16)0.083 (8)*
H20.8072 (16)0.894 (4)0.5930 (13)0.054 (6)*
H30.9810 (18)1.130 (4)0.5814 (15)0.070 (8)*
H4A1.1389 (18)0.521 (5)0.4963 (15)0.073 (8)*
H4B1.052 (2)0.591 (5)0.5453 (18)0.092 (9)*
H50.7973 (19)0.217 (4)0.7414 (15)0.075 (7)*
H60.6439 (18)0.011 (5)0.7494 (16)0.082 (8)*
H70.4918 (19)0.165 (4)0.6883 (15)0.074 (7)*
H80.498 (2)0.513 (4)0.6133 (16)0.089 (8)*
H90.6532 (19)0.707 (5)0.6077 (16)0.082 (8)*
H121.2969 (19)0.700 (4)0.5093 (15)0.074 (8)*
H131.4002 (19)1.025 (4)0.5512 (15)0.074 (7)*
H141.3233 (18)1.322 (4)0.6203 (14)0.067 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0454 (10)0.0454 (11)0.0333 (8)0.0028 (8)0.0006 (7)0.0066 (8)
N20.0474 (10)0.0455 (11)0.0338 (8)0.0027 (8)0.0025 (7)0.0044 (7)
N30.0481 (11)0.0403 (11)0.0392 (9)0.0005 (9)0.0011 (7)0.0042 (8)
N40.0659 (13)0.0445 (12)0.0418 (10)0.0001 (11)0.0015 (9)0.0055 (8)
C10.0472 (12)0.0379 (12)0.0255 (9)0.0001 (9)0.0006 (7)0.0004 (8)
C20.0474 (13)0.0451 (13)0.0320 (9)0.0064 (10)0.0016 (8)0.0016 (9)
C30.0431 (11)0.0461 (13)0.0261 (9)0.0016 (9)0.0008 (8)0.0016 (8)
C40.0469 (12)0.0469 (14)0.0326 (9)0.0004 (10)0.0021 (8)0.0056 (9)
C50.0567 (15)0.0555 (16)0.0498 (12)0.0048 (12)0.0028 (10)0.0050 (11)
C60.0655 (17)0.0678 (19)0.0673 (16)0.0164 (14)0.0007 (13)0.0101 (14)
C70.0525 (16)0.082 (2)0.0707 (16)0.0185 (15)0.0025 (12)0.0020 (14)
C80.0454 (15)0.088 (2)0.0750 (17)0.0034 (14)0.0012 (12)0.0110 (15)
C90.0491 (14)0.0641 (17)0.0593 (14)0.0001 (12)0.0010 (10)0.0074 (13)
C100.0480 (12)0.0425 (13)0.0280 (9)0.0022 (10)0.0028 (8)0.0044 (8)
C110.0518 (13)0.0447 (13)0.0305 (9)0.0017 (10)0.0018 (8)0.0053 (9)
C120.0562 (15)0.0675 (17)0.0447 (12)0.0069 (14)0.0018 (10)0.0055 (12)
C130.0498 (15)0.090 (2)0.0590 (15)0.0070 (15)0.0007 (12)0.0108 (14)
C140.0614 (16)0.0685 (19)0.0551 (14)0.0175 (15)0.0079 (12)0.0046 (13)
C150.0586 (15)0.0505 (15)0.0400 (11)0.0076 (12)0.0035 (10)0.0028 (10)
Geometric parameters (Å, º) top
N1—C31.352 (2)C6—C71.372 (4)
N1—N21.372 (2)C6—H60.99 (3)
N1—H10.96 (3)C7—C81.376 (4)
N2—C11.338 (2)C7—H70.99 (2)
N3—C11.379 (2)C8—C91.381 (3)
N3—C101.419 (2)C8—H81.01 (3)
N3—H30.89 (2)C9—H90.96 (3)
N4—C111.404 (3)C10—C151.390 (3)
N4—H4A0.94 (3)C10—C111.408 (3)
N4—H4B0.96 (3)C11—C121.386 (3)
C1—C21.396 (3)C12—C131.378 (4)
C2—C31.382 (3)C12—H120.96 (2)
C2—H20.95 (2)C13—C141.376 (4)
C3—C41.465 (3)C13—H131.00 (2)
C4—C51.391 (3)C14—C151.382 (3)
C4—C91.392 (3)C14—H140.97 (3)
C5—C61.378 (3)C15—H150.96 (2)
C5—H50.97 (3)
C3—N1—N2112.68 (17)C6—C7—C8119.6 (3)
C3—N1—H1128.2 (16)C6—C7—H7121.5 (14)
N2—N1—H1118.8 (15)C8—C7—H7118.9 (14)
C1—N2—N1103.70 (15)C7—C8—C9119.8 (2)
C1—N3—C10124.40 (17)C7—C8—H8121.6 (15)
C1—N3—H3116.4 (15)C9—C8—H8118.6 (15)
C10—N3—H3118.3 (15)C8—C9—C4121.3 (2)
C11—N4—H4A114.5 (15)C8—C9—H9120.2 (15)
C11—N4—H4B117.1 (16)C4—C9—H9118.4 (15)
H4A—N4—H4B103 (2)C15—C10—C11119.0 (2)
N2—C1—N3120.85 (17)C15—C10—N3118.98 (19)
N2—C1—C2111.97 (17)C11—C10—N3121.78 (17)
N3—C1—C2127.18 (18)C12—C11—N4121.3 (2)
C3—C2—C1105.46 (17)C12—C11—C10118.7 (2)
C3—C2—H2125.9 (13)N4—C11—C10119.76 (19)
C1—C2—H2128.6 (13)C13—C12—C11121.5 (2)
N1—C3—C2106.18 (18)C13—C12—H12122.1 (15)
N1—C3—C4123.06 (18)C11—C12—H12116.4 (15)
C2—C3—C4130.67 (18)C14—C13—C12120.0 (2)
C5—C4—C9117.9 (2)C14—C13—H13117.3 (14)
C5—C4—C3122.29 (19)C12—C13—H13122.7 (14)
C9—C4—C3119.8 (2)C13—C14—C15119.7 (3)
C6—C5—C4120.4 (2)C13—C14—H14120.9 (14)
C6—C5—H5122.4 (15)C15—C14—H14119.5 (14)
C4—C5—H5117.2 (15)C14—C15—C10121.1 (2)
C7—C6—C5121.0 (3)C14—C15—H15122.5 (13)
C7—C6—H6120.6 (15)C10—C15—H15116.3 (13)
C5—C6—H6118.3 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.97 (2)2.14 (3)3.048 (2)157 (2)
N3—H3···N4ii0.89 (2)2.27 (2)3.122 (2)160 (2)
N4—H4B···N20.95 (3)2.36 (3)3.086 (2)132 (2)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC15H14N4
Mr250.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.2357 (8), 5.8473 (4), 16.4039 (10)
β (°) 92.074 (4)
V3)1268.72 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.32 × 0.27 × 0.19
Data collection
DiffractometerBruker X8 APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11640, 2333, 1527
Rint0.056
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.127, 1.02
No. of reflections2333
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.97 (2)2.14 (3)3.048 (2)157 (2)
N3—H3···N4ii0.89 (2)2.27 (2)3.122 (2)160 (2)
N4—H4B···N20.95 (3)2.36 (3)3.086 (2)132 (2)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x+2, y+2, z+1.
 

Footnotes

Present address: Institute of Nanomaterials and Nanotechnology, Avenue de l'Armée Royale, Rabat, Morocco.

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for making possible the present work. They also thank H. Zouihri for his technical assistance during the X-ray measurements.

References

First citationBarsoum, F. F., Hosni, H. M. & Girgis, A. S. (2006). Bioorg. Med. Chem. 14, 3929–3937.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunico, W., Cechinel, C. A., Bonacorso, H. G., Martins, M. A., Zanatta, N., de Souza, M. V., Freitas, I. O., Soares, R. P. P. & Krettli, A. U. (2006). Bioorg. Med. Chem. Lett. 16, 649–653.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationOnishi, M., Yamaguchi, M., Kumagae, S., Kawano, H. & Arikawa, Y. (2006). Inorg. Chim. Acta, 359, 990–999.  Web of Science CSD CrossRef CAS Google Scholar
First citationSharon, A., Pratap, R., Tiwari, P., Srivastava, A., Maulik, P. R. & Vishnu, J. R. (2005). Bioorg. Med. Chem. Lett. 15, 2115–2117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTebbji, K., Oudda, H., Hammouti, B., Benkaddour, M., El Kodadi, M. & Ramdani, A. (2005). Colloids Surf. A Physicochem. Eng. Aspects, 259, 143–149.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds