metal-organic compounds
Bis(isopropyltriphenylphosphonium) di-μ-iodido-bis[iodidocopper(I)]
aDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, and bPolymer and Materials Chemistry, Lund University, 221 00 Lund, Sweden
*Correspondence e-mail: ehsan.jalilian@mmk.su.se
The title compound, (C21H22P)2[Cu2I4], prepared from reaction between copper powder, iodine and isopropyl triphenylphosphonium iodide in hydroxyacetone (acetol), shows an already known Cu2I42− anion with a planar conformation [Cu—I range = 2.5108 (3)–2.5844 (3) Å and I—Cu—I range = 110.821 (10)–125.401 (10)°].
Related literature
For structurally fully characterized units containing a planar [Cu2I4]2− ion included in the Cambridge Structural Database (CSD; Allen, 2002), see: Asplund et al. (1982); Asplund & Jagner (1984a); Hartl et al. (1985); Basu et al. (1987); Canty et al. (1987); Cunningham et al. (1990); Bhaduri et al. (1991); Pfitzner & Schmitz (1997); Allen et al. (1998); Su et al. (2002); Feng et al. (2006); Bowmaker et al. (2007); Cariati et al. (2007); Kia et al. (2007); Liu et al. (2007); Herres-Pawlis et al. (2008); Mishra et al. (2008). For those structures in the CSD containing a bent [Cu2I4]2− ion, see: Asplund & Jagner (1984b); Ramaprabhu et al. (1994); Hoyer & Hartl (1992). For the extinction correction see: Becker & Coppens (1974).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004); program(s) used to refine structure: JANA2000 (Petříček et al., 2000); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000.
Supporting information
10.1107/S1600536810010196/dn2549sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010196/dn2549Isup2.hkl
Isopropyl triphenylphosphonium iodide (2.711 mmol), iodine (5.011 mmol) and copper powder (20.056 mmol) were mixed and heated under reflux in hydroxyacetone (50 ml) under a nitrogen atmosphere. After 3 hours the solution became pale yellow. The mixture was filtered while hot and solution was kept at 6°C. Well shaped parallelepiped crystals formed over the course of several days.
The structures were solved by charge-flipping, giving the I, Cu, P and main part of the C positions. The remaining C positions were found using difference Fourier analysis. All non-hydrogen positions were refined using full matrix least squares. The hydrogen atoms were located by geometrical methods and were allowed to ride, with C–H = 1.00Å and Ueq = 1.2Uiso(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004); program(s) used to refine structure: JANA2000 (Petricek et al., 2000); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000 (Petricek et al., 2000).Fig. 1. Molecular structure and atom-labelling scheme for the anion and cation respectively in (I). Non-H atoms are shown as 50% probability displacement ellipsoids. |
(C21H22P)2[Cu2I4] | F(000) = 1192 |
Mr = 1245.4 | Dx = 1.923 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2yn | Cell parameters from 35772 reflections |
a = 11.5503 (1) Å | θ = 4.3–32.2° |
b = 12.2422 (1) Å | µ = 3.96 mm−1 |
c = 15.2619 (1) Å | T = 100 K |
β = 94.91 (1)° | Parallelepiped, colorless |
V = 2150.14 (3) Å3 | 0.34 × 0.24 × 0.11 mm |
Z = 2 |
Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector | 7235 independent reflections |
Radiation source: Enhance (Mo) X-ray source | 5970 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 16.5467 pixels mm-1 | θmax = 32.3°, θmin = 4.3° |
ω scans | h = −16→16 |
Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008) | k = −18→17 |
Tmin = 0.425, Tmax = 0.720 | l = −22→22 |
59726 measured reflections |
Refinement on F2 | Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0025I2] |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max = 0.048 |
wR(F2) = 0.059 | Δρmax = 0.42 e Å−3 |
S = 0.85 | Δρmin = −0.34 e Å−3 |
7235 reflections | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
227 parameters | Extinction coefficient: 64 (4) |
H-atom parameters constrained |
(C21H22P)2[Cu2I4] | V = 2150.14 (3) Å3 |
Mr = 1245.4 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 11.5503 (1) Å | µ = 3.96 mm−1 |
b = 12.2422 (1) Å | T = 100 K |
c = 15.2619 (1) Å | 0.34 × 0.24 × 0.11 mm |
β = 94.91 (1)° |
Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector | 7235 independent reflections |
Absorption correction: gaussian (CrysAlis RED; Oxford Diffraction, 2008) | 5970 reflections with I > 3σ(I) |
Tmin = 0.425, Tmax = 0.720 | Rint = 0.028 |
59726 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | 227 parameters |
wR(F2) = 0.059 | H-atom parameters constrained |
S = 0.85 | Δρmax = 0.42 e Å−3 |
7235 reflections | Δρmin = −0.34 e Å−3 |
x | y | z | Uiso*/Ueq | ||
I1 | 0.157523 (11) | 0.779996 (10) | 0.067564 (7) | 0.01803 (4) | |
I2 | 0.088940 (10) | 0.420511 (9) | 0.109927 (7) | 0.01722 (4) | |
Cu | 0.05477 (2) | 0.60384 (2) | 0.027808 (15) | 0.01978 (7) | |
P | 0.64953 (4) | 0.37043 (4) | 0.21738 (3) | 0.00966 (10) | |
C1p1 | 0.74345 (15) | 0.33415 (13) | 0.31293 (10) | 0.0109 (4) | |
C2p1 | 0.69514 (16) | 0.31940 (15) | 0.39296 (10) | 0.0143 (4) | |
C3p1 | 0.76541 (17) | 0.28472 (15) | 0.46633 (11) | 0.0173 (5) | |
C4p1 | 0.88223 (17) | 0.26343 (15) | 0.45940 (11) | 0.0176 (5) | |
C5p1 | 0.93029 (17) | 0.27634 (15) | 0.37964 (12) | 0.0167 (5) | |
C6p1 | 0.86142 (15) | 0.31277 (14) | 0.30603 (10) | 0.0135 (4) | |
C1p2 | 0.54471 (14) | 0.46880 (14) | 0.24661 (10) | 0.0112 (4) | |
C2p2 | 0.57038 (16) | 0.53997 (14) | 0.31737 (11) | 0.0144 (4) | |
C3p2 | 0.49367 (16) | 0.62306 (15) | 0.33355 (11) | 0.0170 (5) | |
C4p2 | 0.39280 (16) | 0.63785 (15) | 0.27840 (12) | 0.0175 (5) | |
C5p2 | 0.36630 (16) | 0.56700 (15) | 0.20803 (12) | 0.0160 (5) | |
C6p2 | 0.44136 (15) | 0.48239 (14) | 0.19229 (10) | 0.0134 (4) | |
C1p3 | 0.57856 (14) | 0.24771 (13) | 0.17715 (9) | 0.0109 (4) | |
C2p3 | 0.63395 (15) | 0.18004 (14) | 0.11953 (10) | 0.0129 (4) | |
C3p3 | 0.58422 (16) | 0.08039 (14) | 0.09410 (11) | 0.0158 (5) | |
C4p3 | 0.48000 (16) | 0.04790 (15) | 0.12623 (11) | 0.0164 (5) | |
C5p3 | 0.42538 (16) | 0.11456 (15) | 0.18379 (11) | 0.0163 (5) | |
C6p3 | 0.47469 (16) | 0.21450 (14) | 0.21023 (11) | 0.0141 (4) | |
C1 | 0.79164 (16) | 0.53620 (14) | 0.16800 (11) | 0.0153 (4) | |
C2 | 0.73307 (15) | 0.43027 (13) | 0.13327 (10) | 0.0116 (4) | |
C3 | 0.65453 (16) | 0.45208 (16) | 0.04843 (11) | 0.0163 (5) | |
H2p1 | 0.610619 | 0.333664 | 0.397495 | 0.0171* | |
H3p1 | 0.731677 | 0.275148 | 0.524039 | 0.0207* | |
H4p1 | 0.932341 | 0.238556 | 0.512322 | 0.0211* | |
H5p1 | 1.014278 | 0.259481 | 0.375066 | 0.0201* | |
H6p1 | 0.895932 | 0.323565 | 0.248756 | 0.0162* | |
H2p2 | 0.643991 | 0.530856 | 0.356176 | 0.0173* | |
H3p2 | 0.510937 | 0.672596 | 0.385113 | 0.0204* | |
H4p2 | 0.339048 | 0.6995 | 0.289234 | 0.021* | |
H5p2 | 0.293124 | 0.577268 | 0.168935 | 0.0192* | |
H6p2 | 0.421947 | 0.431003 | 0.142251 | 0.0161* | |
H2p3 | 0.708814 | 0.203352 | 0.096868 | 0.0154* | |
H3p3 | 0.623105 | 0.031934 | 0.052766 | 0.019* | |
H4p3 | 0.444416 | −0.023818 | 0.107694 | 0.0197* | |
H5p3 | 0.350559 | 0.090824 | 0.206307 | 0.0196* | |
H6p3 | 0.436258 | 0.262044 | 0.252451 | 0.0169* | |
H11 | 0.845037 | 0.519682 | 0.221417 | 0.0184* | |
H12 | 0.837136 | 0.568642 | 0.121554 | 0.0184* | |
H13 | 0.730875 | 0.589258 | 0.183635 | 0.0184* | |
H31 | 0.620205 | 0.381651 | 0.025423 | 0.0196* | |
H32 | 0.590744 | 0.503285 | 0.061406 | 0.0196* | |
H33 | 0.701625 | 0.485451 | 0.003363 | 0.0196* | |
H2 | 0.794709 | 0.377409 | 0.118967 | 0.014* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I1 | 0.01934 (7) | 0.01958 (7) | 0.01576 (6) | 0.00147 (4) | 0.00501 (4) | 0.00177 (4) |
I2 | 0.01794 (7) | 0.01351 (6) | 0.02015 (6) | −0.00133 (4) | 0.00141 (4) | 0.00095 (4) |
Cu | 0.01934 (12) | 0.02089 (12) | 0.01968 (10) | 0.00260 (9) | 0.00502 (8) | 0.00201 (8) |
P | 0.00942 (19) | 0.00998 (19) | 0.00955 (15) | 0.00068 (14) | 0.00067 (13) | −0.00029 (13) |
C1p1 | 0.0118 (7) | 0.0095 (7) | 0.0110 (6) | −0.0001 (6) | −0.0015 (5) | −0.0001 (5) |
C2p1 | 0.0144 (8) | 0.0142 (8) | 0.0143 (7) | −0.0009 (6) | 0.0012 (6) | 0.0014 (6) |
C3p1 | 0.0222 (9) | 0.0170 (8) | 0.0121 (7) | −0.0025 (7) | −0.0015 (6) | 0.0016 (6) |
C4p1 | 0.0215 (9) | 0.0143 (8) | 0.0155 (7) | −0.0017 (7) | −0.0070 (6) | 0.0021 (6) |
C5p1 | 0.0141 (8) | 0.0133 (8) | 0.0219 (8) | 0.0006 (6) | −0.0032 (6) | 0.0010 (6) |
C6p1 | 0.0141 (8) | 0.0111 (7) | 0.0152 (7) | 0.0001 (6) | 0.0004 (6) | 0.0003 (6) |
C1p2 | 0.0101 (7) | 0.0118 (7) | 0.0116 (6) | 0.0017 (6) | 0.0009 (5) | −0.0011 (5) |
C2p2 | 0.0140 (8) | 0.0131 (8) | 0.0159 (7) | 0.0007 (6) | 0.0003 (6) | −0.0036 (6) |
C3p2 | 0.0173 (9) | 0.0143 (8) | 0.0197 (7) | 0.0004 (7) | 0.0025 (6) | −0.0063 (6) |
C4p2 | 0.0142 (8) | 0.0150 (8) | 0.0234 (8) | 0.0016 (7) | 0.0024 (6) | −0.0038 (6) |
C5p2 | 0.0118 (8) | 0.0163 (8) | 0.0197 (7) | 0.0019 (6) | −0.0007 (6) | −0.0014 (6) |
C6p2 | 0.0119 (8) | 0.0138 (8) | 0.0142 (6) | 0.0006 (6) | 0.0000 (5) | −0.0024 (6) |
C1p3 | 0.0120 (8) | 0.0101 (7) | 0.0103 (6) | 0.0018 (6) | 0.0000 (5) | −0.0002 (5) |
C2p3 | 0.0136 (8) | 0.0123 (7) | 0.0127 (6) | 0.0013 (6) | 0.0013 (5) | −0.0001 (5) |
C3p3 | 0.0205 (9) | 0.0126 (8) | 0.0138 (7) | 0.0035 (6) | −0.0017 (6) | −0.0025 (6) |
C4p3 | 0.0191 (9) | 0.0112 (8) | 0.0180 (7) | −0.0006 (6) | −0.0042 (6) | 0.0009 (6) |
C5p3 | 0.0141 (8) | 0.0163 (8) | 0.0186 (7) | −0.0028 (7) | 0.0017 (6) | 0.0030 (6) |
C6p3 | 0.0150 (8) | 0.0141 (8) | 0.0134 (7) | 0.0010 (6) | 0.0031 (6) | 0.0003 (5) |
C1 | 0.0153 (8) | 0.0128 (8) | 0.0180 (7) | −0.0013 (6) | 0.0020 (6) | 0.0016 (6) |
C2 | 0.0116 (8) | 0.0111 (7) | 0.0124 (6) | 0.0005 (6) | 0.0021 (5) | 0.0008 (5) |
C3 | 0.0183 (9) | 0.0190 (9) | 0.0115 (6) | −0.0004 (7) | 0.0002 (6) | 0.0024 (6) |
I1—Cu | 2.5108 (3) | C4p2—H4p2 | 1.0000 |
I2—Cu | 2.5844 (3) | C5p2—C6p2 | 1.385 (3) |
P—C1p1 | 1.7972 (15) | C5p2—H5p2 | 1.0000 |
P—C1p2 | 1.7909 (17) | C6p2—H6p2 | 1.0000 |
P—C1p3 | 1.7944 (17) | C1p3—C2p3 | 1.402 (2) |
P—C2 | 1.8242 (17) | C1p3—C6p3 | 1.401 (3) |
C1p1—C2p1 | 1.397 (2) | C2p3—C3p3 | 1.390 (2) |
C1p1—C6p1 | 1.400 (2) | C2p3—H2p3 | 1.0000 |
C2p1—C3p1 | 1.392 (2) | C3p3—C4p3 | 1.396 (3) |
C2p1—H2p1 | 1.0000 | C3p3—H3p3 | 1.0000 |
C3p1—C4p1 | 1.387 (3) | C4p3—C5p3 | 1.389 (3) |
C3p1—H3p1 | 1.0000 | C4p3—H4p3 | 1.0000 |
C4p1—C5p1 | 1.390 (3) | C5p3—C6p3 | 1.395 (3) |
C4p1—H4p1 | 1.0000 | C5p3—H5p3 | 1.0000 |
C5p1—C6p1 | 1.393 (2) | C6p3—H6p3 | 1.0000 |
C5p1—H5p1 | 1.0000 | C1—C2 | 1.536 (2) |
C6p1—H6p1 | 1.0000 | C1—H11 | 1.0000 |
C1p2—C2p2 | 1.399 (2) | C1—H12 | 1.0000 |
C1p2—C6p2 | 1.404 (2) | C1—H13 | 1.0000 |
C2p2—C3p2 | 1.385 (3) | C2—C3 | 1.539 (2) |
C2p2—H2p2 | 1.0000 | C2—H2 | 1.0000 |
C3p2—C4p2 | 1.390 (3) | C3—H31 | 1.0000 |
C3p2—H3p2 | 1.0000 | C3—H32 | 1.0000 |
C4p2—C5p2 | 1.394 (3) | C3—H33 | 1.0000 |
Cu—I2—Cui | 69.179 (8) | C4p2—C5p2—H5p2 | 120.01 |
Cui—I2—Cu | 69.179 (8) | C6p2—C5p2—H5p2 | 120.01 |
I1—Cu—I2 | 125.401 (10) | C1p2—C6p2—C5p2 | 119.97 (15) |
I2i—Cu—I2 | 110.821 (10) | C1p2—C6p2—H6p2 | 120.02 |
C1p1—P—C1p2 | 109.76 (7) | C5p2—C6p2—H6p2 | 120.01 |
C1p1—P—C1p3 | 107.29 (7) | P—C1p3—C2p3 | 119.33 (13) |
C1p1—P—C2 | 110.57 (8) | P—C1p3—C6p3 | 119.99 (12) |
C1p2—P—C1p3 | 110.45 (8) | C2p3—C1p3—C6p3 | 120.35 (15) |
C1p2—P—C2 | 108.34 (8) | C1p3—C2p3—C3p3 | 119.62 (16) |
C1p3—P—C2 | 110.43 (7) | C1p3—C2p3—H2p3 | 120.19 |
P—C1p1—C2p1 | 118.87 (13) | C3p3—C2p3—H2p3 | 120.19 |
P—C1p1—C6p1 | 120.59 (12) | C2p3—C3p3—C4p3 | 120.02 (16) |
C2p1—C1p1—C6p1 | 120.36 (14) | C2p3—C3p3—H3p3 | 119.99 |
C1p1—C2p1—C3p1 | 119.58 (17) | C4p3—C3p3—H3p3 | 119.99 |
C1p1—C2p1—H2p1 | 120.21 | C3p3—C4p3—C5p3 | 120.44 (17) |
C3p1—C2p1—H2p1 | 120.21 | C3p3—C4p3—H4p3 | 119.78 |
C2p1—C3p1—C4p1 | 120.01 (16) | C5p3—C4p3—H4p3 | 119.78 |
C2p1—C3p1—H3p1 | 120.00 | C4p3—C5p3—C6p3 | 120.12 (17) |
C4p1—C3p1—H3p1 | 120.00 | C4p3—C5p3—H5p3 | 119.94 |
C3p1—C4p1—C5p1 | 120.63 (16) | C6p3—C5p3—H5p3 | 119.94 |
C3p1—C4p1—H4p1 | 119.69 | C1p3—C6p3—C5p3 | 119.44 (16) |
C5p1—C4p1—H4p1 | 119.69 | C1p3—C6p3—H6p3 | 120.28 |
C4p1—C5p1—C6p1 | 119.97 (17) | C5p3—C6p3—H6p3 | 120.28 |
C4p1—C5p1—H5p1 | 120.02 | C2—C1—H11 | 109.47 |
C6p1—C5p1—H5p1 | 120.02 | C2—C1—H12 | 109.47 |
C1p1—C6p1—C5p1 | 119.44 (16) | C2—C1—H13 | 109.47 |
C1p1—C6p1—H6p1 | 120.28 | H11—C1—H12 | 109.47 |
C5p1—C6p1—H6p1 | 120.28 | H11—C1—H13 | 109.47 |
P—C1p2—C2p2 | 120.52 (12) | H12—C1—H13 | 109.47 |
P—C1p2—C6p2 | 119.43 (12) | P—C2—C1 | 109.88 (11) |
C2p2—C1p2—C6p2 | 119.68 (16) | P—C2—C3 | 110.64 (12) |
C1p2—C2p2—C3p2 | 119.89 (15) | P—C2—H2 | 108.84 |
C1p2—C2p2—H2p2 | 120.06 | C1—C2—C3 | 110.75 (14) |
C3p2—C2p2—H2p2 | 120.06 | C1—C2—H2 | 108.72 |
C2p2—C3p2—C4p2 | 120.25 (16) | C3—C2—H2 | 107.94 |
C2p2—C3p2—H3p2 | 119.88 | C2—C3—H31 | 109.47 |
C4p2—C3p2—H3p2 | 119.88 | C2—C3—H32 | 109.47 |
C3p2—C4p2—C5p2 | 120.20 (17) | C2—C3—H33 | 109.47 |
C3p2—C4p2—H4p2 | 119.90 | H31—C3—H32 | 109.47 |
C5p2—C4p2—H4p2 | 119.90 | H31—C3—H33 | 109.47 |
C4p2—C5p2—C6p2 | 119.97 (16) | H32—C3—H33 | 109.47 |
Symmetry code: (i) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | (C21H22P)2[Cu2I4] |
Mr | 1245.4 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 11.5503 (1), 12.2422 (1), 15.2619 (1) |
β (°) | 94.91 (1) |
V (Å3) | 2150.14 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.96 |
Crystal size (mm) | 0.34 × 0.24 × 0.11 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector |
Absorption correction | Gaussian (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.425, 0.720 |
No. of measured, independent and observed [I > 3σ(I)] reflections | 59726, 7235, 5970 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.751 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.059, 0.85 |
No. of reflections | 7235 |
No. of parameters | 227 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.42, −0.34 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SUPERFLIP (Oszlányi & Sütő, 2004), JANA2000 (Petricek et al., 2000), DIAMOND (Brandenburg, 1999).
Acknowledgements
Financial support from the Swedish Research Council is gratefully acknowledged.
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, D. W., Mifflin, J. P. L. & Coles, S. (1998). Chem Commun. pp. 2115–2116. Web of Science CSD CrossRef Google Scholar
Asplund, M. & Jagner, S. (1984a). Acta. Chem. Scand Ser. A. 38, 297–301. CrossRef Web of Science Google Scholar
Asplund, M. & Jagner, S. (1984b). Acta. Chem. Scand Ser. A. 38, 411–414. CrossRef Web of Science Google Scholar
Asplund, M., Jagner, S. & Nilsson, M. (1982). Acta. Chem. Scand Ser. A. 36, 751–755. CrossRef Web of Science Google Scholar
Basu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). Chem. Commun. pp. 1724–1725. CrossRef Google Scholar
Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147. CrossRef IUCr Journals Web of Science Google Scholar
Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539–2543. CSD CrossRef Web of Science Google Scholar
Bowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem. 633, 1024–1030. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Canty, A. J., Engelhardt, L. M., Healy, P. C., Kidden, J. D., Minchin, N. J. & White, A. H. (1987). Aust. J. Chem. 40, 1881–1891. CrossRef CAS Google Scholar
Cariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Masciocchi, N. & Sironi, A. (2007). Chem. Matter, 19, 3704–3711. Web of Science CSD CrossRef CAS Google Scholar
Cunningham, D., Gallagher, J. F., Higgins, T., McArdle, P., McGinley, J. & Sheerin, D. (1990). Chem. Commun. pp. 959–961. CrossRef Google Scholar
Feng, H., Zhou, X. P., Wu, P., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035. Web of Science CSD CrossRef CAS Google Scholar
Hartl, H., Brudgam, I. & Mahdjour Hassan Abadi, F. (1985). Z. Naturforsch. Teil B, 40, 1032–1039. Google Scholar
Herres-Pawlis, S., Haase, R., Akin, E., Florke, U. & Henkel, G. (2008). Z. Anorg. Allg. Chem. 634, 295–298. Web of Science CSD CrossRef CAS Google Scholar
Hoyer, M. & Hartl, H. (1992). Z. Anorg. Allg. Chem. 612, 45–50. CSD CrossRef CAS Web of Science Google Scholar
Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta. 360, 3369–3375. Web of Science CSD CrossRef CAS Google Scholar
Liu, Y.-F., Chen, J.-Z. & Huang, C.-C. (2007). Acta Cryst. E63, m2957. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mishra, S., Jeanneau, E., Daniele, D. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814–816. Web of Science CSD CrossRef CAS Google Scholar
Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141. Web of Science CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England. Google Scholar
Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic. Google Scholar
Pfitzner, A. & Schmitz, D. (1997). Z. Anorg. Allg. Chem. 623, 1555–1560. CSD CrossRef CAS Web of Science Google Scholar
Ramaprabhu, S., Ferretti, R., Lucken, E. A. C. & Bernardurelli, G. (1994). Inorg. Chim. Acta, 227, 153–157. CSD CrossRef CAS Web of Science Google Scholar
Su, C. Y., Cai, Y. P., Chen, C. L., Lissner, F., Kang, B. S. & Kaim, W. (2002). Angew. Chem. Int. Ed. 41, 3371–3375. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Copper halide complexes have been of great interested due to their wide structural variation. The copper atoms can be in trigonal or tetrahedral geometry and this is the main reason for so many structure variations.
A search in Cambridge Structural Database shows 20 different structures containing [Cu2I4]2- as the anion, the major difference between these are that different cations are employed in the structures. [Cu2I4]-2 unit can be in two different forms, planar or bent.
For being able to crystallize [Cu2I4]2- unit the cations needs to be large and bulky such as [N/P-R4]+ or [AsR4]+ (where R= alkyl /phenyl). Hartl et al. (1985) and Pfitzner & Schmitz (1997) discuss the different modification of [Cu2I4]2- unit with tetra phenylphosphonium as the cation.
By reacting copper powder, iodine and isopropyltriphenylphosphonium iodide in hydoxyacetone under nitrogen atmosphere and reflux colorless parallelepiped crystals are formed. X-ray crystallography shows that the mentioned crystals contain the well known [Cu2I4]2- as the anion and isopropyltriphenylphosphonium as the cation.
The anion shows some variation in the Cu–I distance 2.5108 (3)–2.5844 (3) Å and large variation in I–Cu–I angle 110.821 (19)–125.401 (10)°. The counter ion is a typical isopropyltriphenylphosphonium with P–C range 1.7909 (17)–1.8242 (17) Å, C–C (in isopropyl chain) range 1.387 (3)–1.400 (2) Å and (in phenyl rings) 1.536 (2)–1.539 (2) Å, The angles are in range C–P–C 107.29 (7)–110.57 (8)° and (P/)C–C–C 109.88 (11)–120.63 (16)°.