metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m432-m433

Bis(iso­propyl­tri­phenyl­phospho­nium) di-μ-iodido-bis­­[iodidocopper(I)]

aDepartment of Environmental and Material Chemistry, Arrhenius Laboratory, Stockholm University, 106 91 Stockholm, Sweden, and bPolymer and Materials Chemistry, Lund University, 221 00 Lund, Sweden
*Correspondence e-mail: ehsan.jalilian@mmk.su.se

(Received 15 March 2010; accepted 18 March 2010; online 24 March 2010)

The title compound, (C21H22P)2[Cu2I4], prepared from reaction between copper powder, iodine and isopropyl triphenyl­phospho­nium iodide in hydroxy­acetone (acetol), shows an already known Cu2I42− anion with a planar conformation [Cu—I range = 2.5108 (3)–2.5844 (3) Å and I—Cu—I range = 110.821 (10)–125.401 (10)°].

Related literature

For structurally fully characterized units containing a planar [Cu2I4]2− ion included in the Cambridge Structural Database (CSD; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]), see: Asplund et al. (1982[Asplund, M., Jagner, S. & Nilsson, M. (1982). Acta. Chem. Scand Ser. A. 36, 751-755.]); Asplund & Jagner (1984a[Asplund, M. & Jagner, S. (1984a). Acta. Chem. Scand Ser. A. 38, 297-301.]); Hartl et al. (1985[Hartl, H., Brudgam, I. & Mahdjour Hassan Abadi, F. (1985). Z. Naturforsch. Teil B, 40, 1032-1039.]); Basu et al. (1987[Basu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). Chem. Commun. pp. 1724-1725.]); Canty et al. (1987[Canty, A. J., Engelhardt, L. M., Healy, P. C., Kidden, J. D., Minchin, N. J. & White, A. H. (1987). Aust. J. Chem. 40, 1881-1891.]); Cunningham et al. (1990[Cunningham, D., Gallagher, J. F., Higgins, T., McArdle, P., McGinley, J. & Sheerin, D. (1990). Chem. Commun. pp. 959-961.]); Bhaduri et al. (1991[Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539-2543.]); Pfitzner & Schmitz (1997[Pfitzner, A. & Schmitz, D. (1997). Z. Anorg. Allg. Chem. 623, 1555-1560.]); Allen et al. (1998[Allen, D. W., Mifflin, J. P. L. & Coles, S. (1998). Chem Commun. pp. 2115-2116.]); Su et al. (2002[Su, C. Y., Cai, Y. P., Chen, C. L., Lissner, F., Kang, B. S. & Kaim, W. (2002). Angew. Chem. Int. Ed. 41, 3371-3375.]); Feng et al. (2006[Feng, H., Zhou, X. P., Wu, P., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027-4035.]); Bowmaker et al. (2007[Bowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem. 633, 1024-1030.]); Cariati et al. (2007[Cariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Masciocchi, N. & Sironi, A. (2007). Chem. Matter, 19, 3704-3711.]); Kia et al. (2007[Kia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta. 360, 3369-3375.]); Liu et al. (2007[Liu, Y.-F., Chen, J.-Z. & Huang, C.-C. (2007). Acta Cryst. E63, m2957.]); Herres-Pawlis et al. (2008[Herres-Pawlis, S., Haase, R., Akin, E., Florke, U. & Henkel, G. (2008). Z. Anorg. Allg. Chem. 634, 295-298.]); Mishra et al. (2008[Mishra, S., Jeanneau, E., Daniele, D. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814-816.]). For those structures in the CSD containing a bent [Cu2I4]2− ion, see: Asplund & Jagner (1984b[Asplund, M. & Jagner, S. (1984b). Acta. Chem. Scand Ser. A. 38, 411-414.]); Ramaprabhu et al. (1994[Ramaprabhu, S., Ferretti, R., Lucken, E. A. C. & Bernardurelli, G. (1994). Inorg. Chim. Acta, 227, 153-157.]); Hoyer & Hartl (1992[Hoyer, M. & Hartl, H. (1992). Z. Anorg. Allg. Chem. 612, 45-50.]). For the extinction correction see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • (C21H22P)2[Cu2I4]

  • Mr = 1245.4

  • Monoclinic, P 21 /n

  • a = 11.5503 (1) Å

  • b = 12.2422 (1) Å

  • c = 15.2619 (1) Å

  • β = 94.91 (1)°

  • V = 2150.14 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.96 mm−1

  • T = 100 K

  • 0.34 × 0.24 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur3 diffractometer with a Sapphire-3 CCD detector

  • Absorption correction: Gaussian (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.]) Tmin = 0.425, Tmax = 0.720

  • 59726 measured reflections

  • 7235 independent reflections

  • 5970 reflections with I > 3σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.059

  • S = 0.85

  • 7235 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004[Oszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134-141.]); program(s) used to refine structure: JANA2000 (Petříček et al., 2000[Petříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2000.

Supporting information


Comment top

Copper halide complexes have been of great interested due to their wide structural variation. The copper atoms can be in trigonal or tetrahedral geometry and this is the main reason for so many structure variations.

A search in Cambridge Structural Database shows 20 different structures containing [Cu2I4]2- as the anion, the major difference between these are that different cations are employed in the structures. [Cu2I4]-2 unit can be in two different forms, planar or bent.

For being able to crystallize [Cu2I4]2- unit the cations needs to be large and bulky such as [N/P-R4]+ or [AsR4]+ (where R= alkyl /phenyl). Hartl et al. (1985) and Pfitzner & Schmitz (1997) discuss the different modification of [Cu2I4]2- unit with tetra phenylphosphonium as the cation.

By reacting copper powder, iodine and isopropyltriphenylphosphonium iodide in hydoxyacetone under nitrogen atmosphere and reflux colorless parallelepiped crystals are formed. X-ray crystallography shows that the mentioned crystals contain the well known [Cu2I4]2- as the anion and isopropyltriphenylphosphonium as the cation.

The anion shows some variation in the Cu–I distance 2.5108 (3)–2.5844 (3) Å and large variation in I–Cu–I angle 110.821 (19)–125.401 (10)°. The counter ion is a typical isopropyltriphenylphosphonium with P–C range 1.7909 (17)–1.8242 (17) Å, C–C (in isopropyl chain) range 1.387 (3)–1.400 (2) Å and (in phenyl rings) 1.536 (2)–1.539 (2) Å, The angles are in range C–P–C 107.29 (7)–110.57 (8)° and (P/)C–C–C 109.88 (11)–120.63 (16)°.

Related literature top

For structurally fully characterized units containing a planar [Cu2I4]2- ion included in the Cambridge Structural Database (CSD; Allen, 2002), see: Asplund et al. (1982); Asplund & Jagner (1984a); Hartl et al. (1985); Basu et al. (1987); Canty et al. (1987); Cunningham et al. (1990); Bhaduri et al. (1991); Pfitzner & Schmitz (1997); Allen et al. (1998); Su et al. (2002); Feng et al. (2006); Bowmaker et al. (2007); Cariati et al. (2007); Kia et al. (2007); Liu et al. (2007); Herres-Pawlis et al. (2008); Mishra et al. (2008). For those structures in the CSD containing a bent [Cu2I4]2- ion, see: Asplund & Jagner (1984b); Ramaprabhu et al. (1994); Hoyer & Hartl (1992). For the extinction correction see: Becker & Coppens (1974).

Experimental top

Isopropyl triphenylphosphonium iodide (2.711 mmol), iodine (5.011 mmol) and copper powder (20.056 mmol) were mixed and heated under reflux in hydroxyacetone (50 ml) under a nitrogen atmosphere. After 3 hours the solution became pale yellow. The mixture was filtered while hot and solution was kept at 6°C. Well shaped parallelepiped crystals formed over the course of several days.

Refinement top

The structures were solved by charge-flipping, giving the I, Cu, P and main part of the C positions. The remaining C positions were found using difference Fourier analysis. All non-hydrogen positions were refined using full matrix least squares. The hydrogen atoms were located by geometrical methods and were allowed to ride, with C–H = 1.00Å and Ueq = 1.2Uiso(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SUPERFLIP (Oszlányi & Sütő, 2004); program(s) used to refine structure: JANA2000 (Petricek et al., 2000); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: JANA2000 (Petricek et al., 2000).

Figures top
[Figure 1] Fig. 1. Molecular structure and atom-labelling scheme for the anion and cation respectively in (I). Non-H atoms are shown as 50% probability displacement ellipsoids.
Bis(isopropyltriphenylphosphonium) di-µ-iodido-bis[iodidocopper(I)] top
Crystal data top
(C21H22P)2[Cu2I4]F(000) = 1192
Mr = 1245.4Dx = 1.923 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 35772 reflections
a = 11.5503 (1) Åθ = 4.3–32.2°
b = 12.2422 (1) ŵ = 3.96 mm1
c = 15.2619 (1) ÅT = 100 K
β = 94.91 (1)°Parallelepiped, colorless
V = 2150.14 (3) Å30.34 × 0.24 × 0.11 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur3
diffractometer with a Sapphire-3 CCD detector
7235 independent reflections
Radiation source: Enhance (Mo) X-ray source5970 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 16.5467 pixels mm-1θmax = 32.3°, θmin = 4.3°
ω scansh = 1616
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1817
Tmin = 0.425, Tmax = 0.720l = 2222
59726 measured reflections
Refinement top
Refinement on F2Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0025I2]
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.048
wR(F2) = 0.059Δρmax = 0.42 e Å3
S = 0.85Δρmin = 0.34 e Å3
7235 reflectionsExtinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974)
227 parametersExtinction coefficient: 64 (4)
H-atom parameters constrained
Crystal data top
(C21H22P)2[Cu2I4]V = 2150.14 (3) Å3
Mr = 1245.4Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.5503 (1) ŵ = 3.96 mm1
b = 12.2422 (1) ÅT = 100 K
c = 15.2619 (1) Å0.34 × 0.24 × 0.11 mm
β = 94.91 (1)°
Data collection top
Oxford Diffraction Xcalibur3
diffractometer with a Sapphire-3 CCD detector
7235 independent reflections
Absorption correction: gaussian
(CrysAlis RED; Oxford Diffraction, 2008)
5970 reflections with I > 3σ(I)
Tmin = 0.425, Tmax = 0.720Rint = 0.028
59726 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021227 parameters
wR(F2) = 0.059H-atom parameters constrained
S = 0.85Δρmax = 0.42 e Å3
7235 reflectionsΔρmin = 0.34 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.157523 (11)0.779996 (10)0.067564 (7)0.01803 (4)
I20.088940 (10)0.420511 (9)0.109927 (7)0.01722 (4)
Cu0.05477 (2)0.60384 (2)0.027808 (15)0.01978 (7)
P0.64953 (4)0.37043 (4)0.21738 (3)0.00966 (10)
C1p10.74345 (15)0.33415 (13)0.31293 (10)0.0109 (4)
C2p10.69514 (16)0.31940 (15)0.39296 (10)0.0143 (4)
C3p10.76541 (17)0.28472 (15)0.46633 (11)0.0173 (5)
C4p10.88223 (17)0.26343 (15)0.45940 (11)0.0176 (5)
C5p10.93029 (17)0.27634 (15)0.37964 (12)0.0167 (5)
C6p10.86142 (15)0.31277 (14)0.30603 (10)0.0135 (4)
C1p20.54471 (14)0.46880 (14)0.24661 (10)0.0112 (4)
C2p20.57038 (16)0.53997 (14)0.31737 (11)0.0144 (4)
C3p20.49367 (16)0.62306 (15)0.33355 (11)0.0170 (5)
C4p20.39280 (16)0.63785 (15)0.27840 (12)0.0175 (5)
C5p20.36630 (16)0.56700 (15)0.20803 (12)0.0160 (5)
C6p20.44136 (15)0.48239 (14)0.19229 (10)0.0134 (4)
C1p30.57856 (14)0.24771 (13)0.17715 (9)0.0109 (4)
C2p30.63395 (15)0.18004 (14)0.11953 (10)0.0129 (4)
C3p30.58422 (16)0.08039 (14)0.09410 (11)0.0158 (5)
C4p30.48000 (16)0.04790 (15)0.12623 (11)0.0164 (5)
C5p30.42538 (16)0.11456 (15)0.18379 (11)0.0163 (5)
C6p30.47469 (16)0.21450 (14)0.21023 (11)0.0141 (4)
C10.79164 (16)0.53620 (14)0.16800 (11)0.0153 (4)
C20.73307 (15)0.43027 (13)0.13327 (10)0.0116 (4)
C30.65453 (16)0.45208 (16)0.04843 (11)0.0163 (5)
H2p10.6106190.3336640.3974950.0171*
H3p10.7316770.2751480.5240390.0207*
H4p10.9323410.2385560.5123220.0211*
H5p11.0142780.2594810.3750660.0201*
H6p10.8959320.3235650.2487560.0162*
H2p20.6439910.5308560.3561760.0173*
H3p20.5109370.6725960.3851130.0204*
H4p20.3390480.69950.2892340.021*
H5p20.2931240.5772680.1689350.0192*
H6p20.4219470.4310030.1422510.0161*
H2p30.7088140.2033520.0968680.0154*
H3p30.6231050.0319340.0527660.019*
H4p30.4444160.0238180.1076940.0197*
H5p30.3505590.0908240.2063070.0196*
H6p30.4362580.2620440.2524510.0169*
H110.8450370.5196820.2214170.0184*
H120.8371360.5686420.1215540.0184*
H130.7308750.5892580.1836350.0184*
H310.6202050.3816510.0254230.0196*
H320.5907440.5032850.0614060.0196*
H330.7016250.4854510.0033630.0196*
H20.7947090.3774090.1189670.014*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01934 (7)0.01958 (7)0.01576 (6)0.00147 (4)0.00501 (4)0.00177 (4)
I20.01794 (7)0.01351 (6)0.02015 (6)0.00133 (4)0.00141 (4)0.00095 (4)
Cu0.01934 (12)0.02089 (12)0.01968 (10)0.00260 (9)0.00502 (8)0.00201 (8)
P0.00942 (19)0.00998 (19)0.00955 (15)0.00068 (14)0.00067 (13)0.00029 (13)
C1p10.0118 (7)0.0095 (7)0.0110 (6)0.0001 (6)0.0015 (5)0.0001 (5)
C2p10.0144 (8)0.0142 (8)0.0143 (7)0.0009 (6)0.0012 (6)0.0014 (6)
C3p10.0222 (9)0.0170 (8)0.0121 (7)0.0025 (7)0.0015 (6)0.0016 (6)
C4p10.0215 (9)0.0143 (8)0.0155 (7)0.0017 (7)0.0070 (6)0.0021 (6)
C5p10.0141 (8)0.0133 (8)0.0219 (8)0.0006 (6)0.0032 (6)0.0010 (6)
C6p10.0141 (8)0.0111 (7)0.0152 (7)0.0001 (6)0.0004 (6)0.0003 (6)
C1p20.0101 (7)0.0118 (7)0.0116 (6)0.0017 (6)0.0009 (5)0.0011 (5)
C2p20.0140 (8)0.0131 (8)0.0159 (7)0.0007 (6)0.0003 (6)0.0036 (6)
C3p20.0173 (9)0.0143 (8)0.0197 (7)0.0004 (7)0.0025 (6)0.0063 (6)
C4p20.0142 (8)0.0150 (8)0.0234 (8)0.0016 (7)0.0024 (6)0.0038 (6)
C5p20.0118 (8)0.0163 (8)0.0197 (7)0.0019 (6)0.0007 (6)0.0014 (6)
C6p20.0119 (8)0.0138 (8)0.0142 (6)0.0006 (6)0.0000 (5)0.0024 (6)
C1p30.0120 (8)0.0101 (7)0.0103 (6)0.0018 (6)0.0000 (5)0.0002 (5)
C2p30.0136 (8)0.0123 (7)0.0127 (6)0.0013 (6)0.0013 (5)0.0001 (5)
C3p30.0205 (9)0.0126 (8)0.0138 (7)0.0035 (6)0.0017 (6)0.0025 (6)
C4p30.0191 (9)0.0112 (8)0.0180 (7)0.0006 (6)0.0042 (6)0.0009 (6)
C5p30.0141 (8)0.0163 (8)0.0186 (7)0.0028 (7)0.0017 (6)0.0030 (6)
C6p30.0150 (8)0.0141 (8)0.0134 (7)0.0010 (6)0.0031 (6)0.0003 (5)
C10.0153 (8)0.0128 (8)0.0180 (7)0.0013 (6)0.0020 (6)0.0016 (6)
C20.0116 (8)0.0111 (7)0.0124 (6)0.0005 (6)0.0021 (5)0.0008 (5)
C30.0183 (9)0.0190 (9)0.0115 (6)0.0004 (7)0.0002 (6)0.0024 (6)
Geometric parameters (Å, º) top
I1—Cu2.5108 (3)C4p2—H4p21.0000
I2—Cu2.5844 (3)C5p2—C6p21.385 (3)
P—C1p11.7972 (15)C5p2—H5p21.0000
P—C1p21.7909 (17)C6p2—H6p21.0000
P—C1p31.7944 (17)C1p3—C2p31.402 (2)
P—C21.8242 (17)C1p3—C6p31.401 (3)
C1p1—C2p11.397 (2)C2p3—C3p31.390 (2)
C1p1—C6p11.400 (2)C2p3—H2p31.0000
C2p1—C3p11.392 (2)C3p3—C4p31.396 (3)
C2p1—H2p11.0000C3p3—H3p31.0000
C3p1—C4p11.387 (3)C4p3—C5p31.389 (3)
C3p1—H3p11.0000C4p3—H4p31.0000
C4p1—C5p11.390 (3)C5p3—C6p31.395 (3)
C4p1—H4p11.0000C5p3—H5p31.0000
C5p1—C6p11.393 (2)C6p3—H6p31.0000
C5p1—H5p11.0000C1—C21.536 (2)
C6p1—H6p11.0000C1—H111.0000
C1p2—C2p21.399 (2)C1—H121.0000
C1p2—C6p21.404 (2)C1—H131.0000
C2p2—C3p21.385 (3)C2—C31.539 (2)
C2p2—H2p21.0000C2—H21.0000
C3p2—C4p21.390 (3)C3—H311.0000
C3p2—H3p21.0000C3—H321.0000
C4p2—C5p21.394 (3)C3—H331.0000
Cu—I2—Cui69.179 (8)C4p2—C5p2—H5p2120.01
Cui—I2—Cu69.179 (8)C6p2—C5p2—H5p2120.01
I1—Cu—I2125.401 (10)C1p2—C6p2—C5p2119.97 (15)
I2i—Cu—I2110.821 (10)C1p2—C6p2—H6p2120.02
C1p1—P—C1p2109.76 (7)C5p2—C6p2—H6p2120.01
C1p1—P—C1p3107.29 (7)P—C1p3—C2p3119.33 (13)
C1p1—P—C2110.57 (8)P—C1p3—C6p3119.99 (12)
C1p2—P—C1p3110.45 (8)C2p3—C1p3—C6p3120.35 (15)
C1p2—P—C2108.34 (8)C1p3—C2p3—C3p3119.62 (16)
C1p3—P—C2110.43 (7)C1p3—C2p3—H2p3120.19
P—C1p1—C2p1118.87 (13)C3p3—C2p3—H2p3120.19
P—C1p1—C6p1120.59 (12)C2p3—C3p3—C4p3120.02 (16)
C2p1—C1p1—C6p1120.36 (14)C2p3—C3p3—H3p3119.99
C1p1—C2p1—C3p1119.58 (17)C4p3—C3p3—H3p3119.99
C1p1—C2p1—H2p1120.21C3p3—C4p3—C5p3120.44 (17)
C3p1—C2p1—H2p1120.21C3p3—C4p3—H4p3119.78
C2p1—C3p1—C4p1120.01 (16)C5p3—C4p3—H4p3119.78
C2p1—C3p1—H3p1120.00C4p3—C5p3—C6p3120.12 (17)
C4p1—C3p1—H3p1120.00C4p3—C5p3—H5p3119.94
C3p1—C4p1—C5p1120.63 (16)C6p3—C5p3—H5p3119.94
C3p1—C4p1—H4p1119.69C1p3—C6p3—C5p3119.44 (16)
C5p1—C4p1—H4p1119.69C1p3—C6p3—H6p3120.28
C4p1—C5p1—C6p1119.97 (17)C5p3—C6p3—H6p3120.28
C4p1—C5p1—H5p1120.02C2—C1—H11109.47
C6p1—C5p1—H5p1120.02C2—C1—H12109.47
C1p1—C6p1—C5p1119.44 (16)C2—C1—H13109.47
C1p1—C6p1—H6p1120.28H11—C1—H12109.47
C5p1—C6p1—H6p1120.28H11—C1—H13109.47
P—C1p2—C2p2120.52 (12)H12—C1—H13109.47
P—C1p2—C6p2119.43 (12)P—C2—C1109.88 (11)
C2p2—C1p2—C6p2119.68 (16)P—C2—C3110.64 (12)
C1p2—C2p2—C3p2119.89 (15)P—C2—H2108.84
C1p2—C2p2—H2p2120.06C1—C2—C3110.75 (14)
C3p2—C2p2—H2p2120.06C1—C2—H2108.72
C2p2—C3p2—C4p2120.25 (16)C3—C2—H2107.94
C2p2—C3p2—H3p2119.88C2—C3—H31109.47
C4p2—C3p2—H3p2119.88C2—C3—H32109.47
C3p2—C4p2—C5p2120.20 (17)C2—C3—H33109.47
C3p2—C4p2—H4p2119.90H31—C3—H32109.47
C5p2—C4p2—H4p2119.90H31—C3—H33109.47
C4p2—C5p2—C6p2119.97 (16)H32—C3—H33109.47
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula(C21H22P)2[Cu2I4]
Mr1245.4
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.5503 (1), 12.2422 (1), 15.2619 (1)
β (°) 94.91 (1)
V3)2150.14 (3)
Z2
Radiation typeMo Kα
µ (mm1)3.96
Crystal size (mm)0.34 × 0.24 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur3
diffractometer with a Sapphire-3 CCD detector
Absorption correctionGaussian
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.425, 0.720
No. of measured, independent and
observed [I > 3σ(I)] reflections
59726, 7235, 5970
Rint0.028
(sin θ/λ)max1)0.751
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.059, 0.85
No. of reflections7235
No. of parameters227
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SUPERFLIP (Oszlányi & Sütő, 2004), JANA2000 (Petricek et al., 2000), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

Financial support from the Swedish Research Council is gratefully acknowledged.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, D. W., Mifflin, J. P. L. & Coles, S. (1998). Chem Commun. pp. 2115–2116.  Web of Science CSD CrossRef Google Scholar
First citationAsplund, M. & Jagner, S. (1984a). Acta. Chem. Scand Ser. A. 38, 297–301.  CrossRef Web of Science Google Scholar
First citationAsplund, M. & Jagner, S. (1984b). Acta. Chem. Scand Ser. A. 38, 411–414.  CrossRef Web of Science Google Scholar
First citationAsplund, M., Jagner, S. & Nilsson, M. (1982). Acta. Chem. Scand Ser. A. 36, 751–755.  CrossRef Web of Science Google Scholar
First citationBasu, A., Bhaduri, S., Sapre, N. Y. & Jones, P. G. (1987). Chem. Commun. pp. 1724–1725.  CrossRef Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBhaduri, S., Sapre, N. Y. & Jones, P. G. (1991). J. Chem. Soc. Dalton Trans. pp. 2539–2543.  CSD CrossRef Web of Science Google Scholar
First citationBowmaker, G. A., Bruce, M. I., Skelton, B. W., Somers, N. & White, A. H. (2007). Z. Anorg. Allg. Chem. 633, 1024–1030.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCanty, A. J., Engelhardt, L. M., Healy, P. C., Kidden, J. D., Minchin, N. J. & White, A. H. (1987). Aust. J. Chem. 40, 1881–1891.  CrossRef CAS Google Scholar
First citationCariati, E., Macchi, R., Roberto, D., Ugo, R., Galli, S., Masciocchi, N. & Sironi, A. (2007). Chem. Matter, 19, 3704–3711.  Web of Science CSD CrossRef CAS Google Scholar
First citationCunningham, D., Gallagher, J. F., Higgins, T., McArdle, P., McGinley, J. & Sheerin, D. (1990). Chem. Commun. pp. 959–961.  CrossRef Google Scholar
First citationFeng, H., Zhou, X. P., Wu, P., Li, D., Yin, Y. G. & Ng, S. W. (2006). Inorg. Chim. Acta, 359, 4027–4035.  Web of Science CSD CrossRef CAS Google Scholar
First citationHartl, H., Brudgam, I. & Mahdjour Hassan Abadi, F. (1985). Z. Naturforsch. Teil B, 40, 1032–1039.  Google Scholar
First citationHerres-Pawlis, S., Haase, R., Akin, E., Florke, U. & Henkel, G. (2008). Z. Anorg. Allg. Chem. 634, 295–298.  Web of Science CSD CrossRef CAS Google Scholar
First citationHoyer, M. & Hartl, H. (1992). Z. Anorg. Allg. Chem. 612, 45–50.  CSD CrossRef CAS Web of Science Google Scholar
First citationKia, R., Mirkhani, V., Harkema, S. & van Hummel, G. J. (2007). Inorg. Chim. Acta. 360, 3369–3375.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Y.-F., Chen, J.-Z. & Huang, C.-C. (2007). Acta Cryst. E63, m2957.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMishra, S., Jeanneau, E., Daniele, D. & Hubert-Pfalzgraf, L. (2008). CrystEngComm, 10, 814–816.  Web of Science CSD CrossRef CAS Google Scholar
First citationOszlányi, G. & Sütő, A. (2004). Acta Cryst. A60, 134–141.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton,England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2000). JANA2000. Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic.  Google Scholar
First citationPfitzner, A. & Schmitz, D. (1997). Z. Anorg. Allg. Chem. 623, 1555–1560.  CSD CrossRef CAS Web of Science Google Scholar
First citationRamaprabhu, S., Ferretti, R., Lucken, E. A. C. & Bernardurelli, G. (1994). Inorg. Chim. Acta, 227, 153–157.  CSD CrossRef CAS Web of Science Google Scholar
First citationSu, C. Y., Cai, Y. P., Chen, C. L., Lissner, F., Kang, B. S. & Kaim, W. (2002). Angew. Chem. Int. Ed. 41, 3371–3375.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m432-m433
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds