organic compounds
2-(4-Bromophenyl)-6-methyl-4H-1-benzopyran-4-one (4′-bromo-6-methylflavone)
aDepartment of Chemistry, Wrocław University of Environmental and Life Sciences, 25 Norwida, 50-375 Wrocław, Poland, and bFaculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
*Correspondence e-mail: bialonsk@eto.wchuwr.pl
Planar (r.m.s. deviation from the plane through all non-H atoms = 0.036 Å) molecules of the title compound, C16H11BrO2, form a layered structure stabilized by C—H⋯O hydrogen bonds and π–π stacking interactions.
Related literature
For background information on flavones and their properties, see: Hsiao et al. (2007); Manthey et al. (2001); Middleton et al. (2000). Millot et al. (2009); Moulari et al. (2006); Ren et al. (2003); Moon et al. (2007). For related structures, see: Kumar et al. (1998); Artali et al. (2003); Białońska et al. (2007); Ghalib et al. (2010).
Experimental
Crystal data
|
Data collection
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536810010718/ds2025sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536810010718/ds2025Isup2.hkl
The title compound was obtained according to the procedure: A mixture of the para-cresol 1,08 g (10,0 mmol) and 3,4'-dibromopropiophenone 0,59 g (2,0 mmol) in BF3.OEt2 (20 ml) was heated at 60 °C and stirred for 8 h. The products of reaction were extracted from the mixtures with chloroform. Titled product was separated by δ, p.p.m.): 6.81 (s, 1H, H3), 7.48 (d, 1H, J=8.56 Hz, H8), 7.54 (dd, 1H, J=8.56, 2.12 Hz, H7), 7.68 (m, 2H Wh=8.60 Hz, H5' and H7'), 7.80 (m, 2H, Wh=8.60 Hz, H2' and H6'), 8.04 (d, 1H, J=2.12 Hz, H-5). 13 C NMR (150 MHz, CDCl3 δ, p.p.m.): 20.98 (-CH3); 107.55 (C3); 117.83 (C8); 123.56 (C10); 125.13 (C5); 126.25 (C6); 127.71 (C3' i C5'); 130.84 (C1'); 132.35 (C2' i C6'); 135.21 (C7); 135.47 (C4'); 154.48 (C9) 162.23 (C2); 178.48 (C4).
on silica gel with hexane/methyl chloride/acetone (10:1:1 v/v/v) as (Scheme). Crystals suitable for X-ray structure analysis were obtained by slow evaporation from the at room temperature. Structure of the titled product was confirmed by means of the 1H NMR and 13 C NMR spectra. 1H NMR (600 MHz, CDCl3Non-hydrogen atoms were refined with anisotropic displacement parameters. All H atoms were placed at calculated positions and were treated as riding atoms, with C—H distances of 0.95 - 1.00 Å.
Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell
CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Selected view of 4'-bromo-6-methyloflavone with the numbering scheme employed. | |
Fig. 2. Molecular packing of 4'-bromo-6-methyloflavone. |
C16H11BrO2 | F(000) = 632 |
Mr = 315.16 | Dx = 1.645 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11464 reflections |
a = 13.759 (3) Å | θ = 3.0–36.9° |
b = 6.873 (2) Å | µ = 3.22 mm−1 |
c = 13.460 (2) Å | T = 100 K |
β = 90.25 (3)° | Plate, colorless |
V = 1272.8 (5) Å3 | 0.31 × 0.29 × 0.04 mm |
Z = 4 |
Kuma KM-4-CCD diffractometer | 5962 independent reflections |
Radiation source: fine-focus sealed tube | 3659 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scan | θmax = 36.0°, θmin = 3.0° |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] | h = −22→22 |
Tmin = 0.474, Tmax = 0.893 | k = −11→10 |
25822 measured reflections | l = −21→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 0.88 | w = 1/[σ2(Fo2) + (0.0385P)2] where P = (Fo2 + 2Fc2)/3 |
5962 reflections | (Δ/σ)max < 0.001 |
172 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
C16H11BrO2 | V = 1272.8 (5) Å3 |
Mr = 315.16 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.759 (3) Å | µ = 3.22 mm−1 |
b = 6.873 (2) Å | T = 100 K |
c = 13.460 (2) Å | 0.31 × 0.29 × 0.04 mm |
β = 90.25 (3)° |
Kuma KM-4-CCD diffractometer | 5962 independent reflections |
Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] | 3659 reflections with I > 2σ(I) |
Tmin = 0.474, Tmax = 0.893 | Rint = 0.047 |
25822 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.070 | H-atom parameters constrained |
S = 0.88 | Δρmax = 0.69 e Å−3 |
5962 reflections | Δρmin = −0.37 e Å−3 |
172 parameters |
Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.33.42 (release 29-05-2009 CrysAlis171 .NET) (compiled May 29 2009,17:40:42) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br | 0.122301 (8) | 0.12666 (2) | 0.048602 (10) | 0.02299 (4) | |
O1 | 0.59232 (6) | 0.12638 (15) | 0.20324 (6) | 0.01526 (15) | |
C2 | 0.51619 (8) | 0.12091 (19) | 0.26748 (8) | 0.01346 (19) | |
C3 | 0.52887 (8) | 0.1170 (2) | 0.36736 (8) | 0.0158 (2) | |
H3A | 0.4733 | 0.1138 | 0.4089 | 0.019* | |
O4 | 0.63780 (7) | 0.11445 (16) | 0.50391 (6) | 0.02132 (18) | |
C4 | 0.62442 (8) | 0.1176 (2) | 0.41278 (9) | 0.0152 (2) | |
C5 | 0.80289 (8) | 0.1197 (2) | 0.37337 (9) | 0.0158 (2) | |
H5A | 0.8173 | 0.1160 | 0.4424 | 0.019* | |
C6 | 0.87838 (8) | 0.1235 (2) | 0.30587 (9) | 0.0173 (2) | |
C7 | 0.85504 (9) | 0.1311 (2) | 0.20364 (9) | 0.0188 (2) | |
H7A | 0.9062 | 0.1348 | 0.1565 | 0.023* | |
C8 | 0.76018 (9) | 0.1335 (2) | 0.17014 (9) | 0.0179 (2) | |
H8A | 0.7459 | 0.1396 | 0.1011 | 0.021* | |
C9 | 0.70523 (8) | 0.1212 (2) | 0.34182 (8) | 0.01366 (19) | |
C10 | 0.68548 (8) | 0.1267 (2) | 0.24016 (9) | 0.01469 (19) | |
C11 | 0.42181 (8) | 0.12034 (19) | 0.21497 (8) | 0.01378 (19) | |
C12 | 0.41819 (9) | 0.1370 (2) | 0.11092 (9) | 0.0170 (2) | |
H12A | 0.4768 | 0.1477 | 0.0743 | 0.020* | |
C13 | 0.32929 (9) | 0.1380 (2) | 0.06124 (9) | 0.0181 (2) | |
H13A | 0.3269 | 0.1486 | −0.0091 | 0.022* | |
C14 | 0.24418 (8) | 0.1234 (2) | 0.11563 (9) | 0.0169 (2) | |
C15 | 0.24576 (9) | 0.1070 (2) | 0.21903 (10) | 0.0184 (2) | |
H15A | 0.1869 | 0.0980 | 0.2553 | 0.022* | |
C16 | 0.33448 (9) | 0.1041 (2) | 0.26785 (9) | 0.0166 (2) | |
H16A | 0.3363 | 0.0910 | 0.3381 | 0.020* | |
C17 | 0.98418 (9) | 0.1213 (2) | 0.33957 (10) | 0.0217 (2) | |
H17A | 0.9871 | 0.1160 | 0.4123 | 0.033* | |
H17B | 1.0167 | 0.2396 | 0.3163 | 0.033* | |
H17C | 1.0168 | 0.0069 | 0.3118 | 0.033* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br | 0.01513 (6) | 0.02745 (7) | 0.02633 (7) | 0.00270 (6) | −0.00771 (4) | −0.00266 (6) |
O1 | 0.0108 (3) | 0.0227 (4) | 0.0123 (3) | −0.0008 (4) | −0.0008 (3) | 0.0003 (4) |
C2 | 0.0130 (4) | 0.0128 (5) | 0.0145 (5) | −0.0002 (5) | 0.0009 (4) | 0.0007 (5) |
C3 | 0.0135 (4) | 0.0200 (5) | 0.0139 (5) | −0.0007 (5) | 0.0013 (4) | 0.0001 (5) |
O4 | 0.0200 (4) | 0.0308 (5) | 0.0132 (4) | −0.0045 (4) | −0.0010 (3) | 0.0008 (4) |
C4 | 0.0155 (5) | 0.0155 (5) | 0.0145 (5) | −0.0015 (5) | −0.0006 (4) | 0.0003 (5) |
C5 | 0.0146 (5) | 0.0159 (5) | 0.0169 (5) | −0.0008 (5) | −0.0031 (4) | −0.0006 (5) |
C6 | 0.0128 (4) | 0.0177 (5) | 0.0215 (5) | −0.0009 (5) | −0.0020 (4) | −0.0009 (5) |
C7 | 0.0137 (5) | 0.0232 (6) | 0.0195 (5) | −0.0004 (5) | 0.0019 (4) | −0.0014 (6) |
C8 | 0.0147 (5) | 0.0239 (6) | 0.0150 (5) | −0.0004 (5) | 0.0004 (4) | −0.0012 (5) |
C9 | 0.0124 (4) | 0.0143 (5) | 0.0144 (5) | −0.0010 (5) | −0.0005 (4) | 0.0002 (5) |
C10 | 0.0115 (4) | 0.0157 (5) | 0.0168 (5) | −0.0008 (5) | −0.0012 (4) | −0.0007 (5) |
C11 | 0.0122 (4) | 0.0138 (5) | 0.0154 (5) | −0.0001 (5) | −0.0015 (4) | −0.0002 (5) |
C12 | 0.0149 (5) | 0.0191 (6) | 0.0171 (5) | −0.0007 (5) | −0.0005 (4) | 0.0017 (5) |
C13 | 0.0178 (5) | 0.0195 (6) | 0.0170 (5) | −0.0008 (5) | −0.0031 (4) | 0.0008 (5) |
C14 | 0.0144 (5) | 0.0160 (5) | 0.0203 (5) | 0.0017 (5) | −0.0046 (4) | −0.0008 (5) |
C15 | 0.0139 (5) | 0.0196 (6) | 0.0216 (6) | 0.0003 (5) | −0.0001 (4) | −0.0012 (5) |
C16 | 0.0138 (5) | 0.0198 (6) | 0.0163 (5) | −0.0001 (5) | 0.0000 (4) | −0.0002 (5) |
C17 | 0.0140 (5) | 0.0270 (6) | 0.0240 (6) | 0.0002 (6) | −0.0036 (4) | −0.0022 (6) |
Br—C14 | 1.9008 (13) | C8—C10 | 1.3983 (16) |
O1—C2 | 1.3617 (14) | C8—H8A | 0.9500 |
O1—C10 | 1.3727 (14) | C9—C10 | 1.3944 (16) |
C2—C3 | 1.3551 (16) | C11—C16 | 1.4036 (17) |
C2—C11 | 1.4757 (16) | C11—C12 | 1.4059 (16) |
C3—C4 | 1.4475 (17) | C12—C13 | 1.3914 (17) |
C3—H3A | 0.9500 | C12—H12A | 0.9500 |
O4—C4 | 1.2397 (15) | C13—C14 | 1.3875 (17) |
C4—C9 | 1.4692 (16) | C13—H13A | 0.9500 |
C5—C6 | 1.3832 (17) | C14—C15 | 1.3964 (18) |
C5—C9 | 1.4075 (16) | C15—C16 | 1.3839 (17) |
C5—H5A | 0.9500 | C15—H15A | 0.9500 |
C6—C7 | 1.4126 (18) | C16—H16A | 0.9500 |
C6—C17 | 1.5228 (17) | C17—H17A | 0.9800 |
C7—C8 | 1.3792 (17) | C17—H17B | 0.9800 |
C7—H7A | 0.9500 | C17—H17C | 0.9800 |
C2—O1—C10 | 119.33 (9) | O1—C10—C8 | 116.36 (10) |
C3—C2—O1 | 122.30 (10) | C9—C10—C8 | 121.44 (10) |
C3—C2—C11 | 125.75 (11) | C16—C11—C12 | 119.01 (11) |
O1—C2—C11 | 111.95 (9) | C16—C11—C2 | 120.72 (10) |
C2—C3—C4 | 122.12 (11) | C12—C11—C2 | 120.27 (10) |
C2—C3—H3A | 118.9 | C13—C12—C11 | 120.42 (11) |
C4—C3—H3A | 118.9 | C13—C12—H12A | 119.8 |
O4—C4—C3 | 123.27 (11) | C11—C12—H12A | 119.8 |
O4—C4—C9 | 122.28 (11) | C14—C13—C12 | 119.23 (11) |
C3—C4—C9 | 114.45 (10) | C14—C13—H13A | 120.4 |
C6—C5—C9 | 121.35 (11) | C12—C13—H13A | 120.4 |
C6—C5—H5A | 119.3 | C13—C14—C15 | 121.48 (11) |
C9—C5—H5A | 119.3 | C13—C14—Br | 119.58 (9) |
C5—C6—C7 | 118.19 (11) | C15—C14—Br | 118.94 (9) |
C5—C6—C17 | 121.59 (11) | C16—C15—C14 | 118.97 (12) |
C7—C6—C17 | 120.23 (11) | C16—C15—H15A | 120.5 |
C8—C7—C6 | 121.99 (11) | C14—C15—H15A | 120.5 |
C8—C7—H7A | 119.0 | C15—C16—C11 | 120.88 (12) |
C6—C7—H7A | 119.0 | C15—C16—H16A | 119.6 |
C7—C8—C10 | 118.46 (11) | C11—C16—H16A | 119.6 |
C7—C8—H8A | 120.8 | C6—C17—H17A | 109.5 |
C10—C8—H8A | 120.8 | C6—C17—H17B | 109.5 |
C10—C9—C5 | 118.56 (10) | H17A—C17—H17B | 109.5 |
C10—C9—C4 | 119.58 (10) | C6—C17—H17C | 109.5 |
C5—C9—C4 | 121.87 (10) | H17A—C17—H17C | 109.5 |
O1—C10—C9 | 122.20 (10) | H17B—C17—H17C | 109.5 |
C10—O1—C2—C3 | 0.45 (19) | C4—C9—C10—O1 | −0.9 (2) |
C10—O1—C2—C11 | −179.69 (13) | C5—C9—C10—C8 | −0.9 (2) |
O1—C2—C3—C4 | −0.3 (2) | C4—C9—C10—C8 | 178.91 (13) |
C11—C2—C3—C4 | 179.90 (13) | C7—C8—C10—O1 | −179.04 (14) |
C2—C3—C4—O4 | 179.89 (13) | C7—C8—C10—C9 | 1.2 (2) |
C2—C3—C4—C9 | −0.5 (2) | C3—C2—C11—C16 | −3.7 (2) |
C9—C5—C6—C7 | 0.7 (2) | O1—C2—C11—C16 | 176.44 (12) |
C9—C5—C6—C17 | −179.82 (14) | C3—C2—C11—C12 | 175.99 (13) |
C5—C6—C7—C8 | −0.4 (2) | O1—C2—C11—C12 | −3.86 (18) |
C17—C6—C7—C8 | −179.95 (14) | C16—C11—C12—C13 | 0.2 (2) |
C6—C7—C8—C10 | −0.5 (2) | C2—C11—C12—C13 | −179.51 (13) |
C6—C5—C9—C10 | 0.0 (2) | C11—C12—C13—C14 | 0.3 (2) |
C6—C5—C9—C4 | −179.84 (13) | C12—C13—C14—C15 | −0.2 (2) |
O4—C4—C9—C10 | −179.34 (13) | C12—C13—C14—Br | 179.51 (11) |
C3—C4—C9—C10 | 1.0 (2) | C13—C14—C15—C16 | −0.4 (2) |
O4—C4—C9—C5 | 0.5 (2) | Br—C14—C15—C16 | 179.84 (11) |
C3—C4—C9—C5 | −179.17 (13) | C14—C15—C16—C11 | 1.0 (2) |
C2—O1—C10—C9 | 0.1 (2) | C12—C11—C16—C15 | −0.8 (2) |
C2—O1—C10—C8 | −179.67 (12) | C2—C11—C16—C15 | 178.85 (14) |
C5—C9—C10—O1 | 179.28 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O4i | 0.95 | 2.49 | 3.2904 (17) | 142 |
C16—H16A···O4i | 0.95 | 2.58 | 3.4394 (16) | 151 |
Symmetry code: (i) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C16H11BrO2 |
Mr | 315.16 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 13.759 (3), 6.873 (2), 13.460 (2) |
β (°) | 90.25 (3) |
V (Å3) | 1272.8 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 3.22 |
Crystal size (mm) | 0.31 × 0.29 × 0.04 |
Data collection | |
Diffractometer | Kuma KM-4-CCD diffractometer |
Absorption correction | Analytical [CrysAlis RED (Oxford Diffraction, 2009); analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.474, 0.893 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25822, 5962, 3659 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.827 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.070, 0.88 |
No. of reflections | 5962 |
No. of parameters | 172 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.37 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···O4i | 0.95 | 2.49 | 3.2904 (17) | 142.2 |
C16—H16A···O4i | 0.95 | 2.58 | 3.4394 (16) | 151.2 |
Symmetry code: (i) −x+1, −y, −z+1. |
Cg(1) and Cg(2) are the centroids of the C5–C10 and C11–C16 rings, respectively. |
Cg(I) | Cg(J) | Cg–Cg | Alpha | CgI_perp | CgJ_Perp | Slippage |
Cg(1) | Cg(2)i | 3.895 | 7.13 (3) | 3.579 (2) | -3.430 (2) | 1.84 |
Cg(1) | Cg(2)ii | 3.843 | 7.13 (3) | -3.266 (2) | 3.438 (2) | 1.72 |
Notes: Cg–Cg = distance between ring centroids; Alpha = dihedral angle between planes I and J; CgI_Perp = perpendicular distance of Cg(I) on ring J; CgJ_Perp = perpendicular distance of Cg(J) on ring I; Slippage = distance between Cg(I) and perpendicular projection of Cg(J) on Ring I. Symmetry codes: (i) 1-x, -0.5+y, 0.5-z, (ii) 1-x, 0.5+y, 0.5-z. |
References
Artali, R., Barili, P. L., Bombieri, G., Re, P. D., Marchini, N., Meneghetti, F. & Valenti, P. (2003). Farmaco, 58, 875–881. CSD CrossRef PubMed CAS Google Scholar
Białońska, A., Ciunik, Z., Kostrzewa-Susłow, E. & Dmochowska-Gładysz, J. (2007). Acta Cryst. E63, o430–o431. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bruker (1999). XP. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Ghalib, R. M., Mehdi, S. H., Hashim, R., Sulaiman, O., Valkonen, A., Rissanen, K. & Trifunović, S. R. (2010). J. Chem. Crystallogr. doi, 10,1007/s10870-010-9687-9. Google Scholar
Hsiao, Y.-C., Kuo, W.-H., Chen, P.-N., Chang, H.-R., Lin, T.-H., Yang, W.-E., Hsieh, Y.-S. & Chu, S.-C. (2007). Chem. Biol. Interact. 167, 193–206. Web of Science CrossRef PubMed CAS Google Scholar
Kumar, S., Ramanathan, T., Subramanian, K. & Steiner, T. (1998). J. Chem. Crystallogr. 28, 931–933. Web of Science CSD CrossRef CAS Google Scholar
Manthey, J. A., Grohmann, K. & Guthrie, N. (2001). Curr. Med. Chem. 8, 135–153. Web of Science CrossRef PubMed CAS Google Scholar
Middleton, E. Jr, Kandaswami, C. & Theoharides, T. C. (2000). Pharmacol. Rev. 52, 673–751. Web of Science PubMed CAS Google Scholar
Millot, M., Tomasi, S., Studzinska, S., Rouaud, I. & Boustie, J. (2009). J. Nat. Prod. 72, 2177–2180. Web of Science CrossRef PubMed CAS Google Scholar
Moon, T. C., Quan, Z., Kim, J., Kim, H. P., Kudo, I., Murakami, M., Park, H. & Chang, H. W. (2007). Bioorg. Med. Chem. 15, 7138–7143. Web of Science CrossRef PubMed CAS Google Scholar
Moulari, B., Pellequer, Y., Lboutounne, H., Girard, C., Chaumont, J. P., Millet, J. & Muyard, F. (2006). J. Ethnopharmacol. 106, 272–278. Web of Science CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction, Yarnton, England. Google Scholar
Ren, W., Qiao, Z., Wang, H., Zhu, L. & Zhang, L. (2003). Med. Res. Rev. 23, 519–534. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Seeds, fruit skin, bark and flowers of most plants contain significant amount of flavonoids. They have been classified to one subclass of flavonoids according to their chemical structures (Hsiao et al., 2007). Several naturally occurring and synthetic flavones are well know in respect to their anti-oxidant, anti-neoplastic, anti-malarial, anti-inflammatory and insecticidal activity (Manthey et al., 2001; Millot et al., 2009; Moulari et al., 2006). Halogenoflavones have been used as precursors for the synthesis of a variety of bioactive organic compounds including biflavodoids (Ren et al., 2003; Moon et al., 2007). The title compound is a flavone derivative with 4'-bromo and 6-methyl substituents in the biologically active region (Scheme) (Middleton et al., 2000).
Crystal structures of the following related flavones were reported: 7-hydroxyflavone monohydrate (Kumar et al., 1998), 6-(3-hydroxy-3-methylbut-1-ynyl)-flavone and 6-(3-methylbut-3-en-1-ynyl)-flavone (Artali et al., 2003), 2-phenyl-6-hydroxy-4H-1-benzopyran-4-one (6-hydroxyflavone) (Białońska et al., 2007), 3,5,4'-trihydroxy-6,7-dimethoxy-flavone (Eupalitin) (Ghalib et al., 2010).
Structure of 2-(4-bromophenyl)-6-methyl-4H-1-benzopyran-4-one with the numbering scheme employed is presented in Fig. 1 Molecules of the titled compound form ribbons stabilized by π–π stacking interactions exteded along the [010] direction (Table 2). The neighboring ribbons are linked by C—H···O hydrogen bonds, in which the carbonyl O4 atom is their acceptor (Table 1). The resulting layers perpendicular to the [100] direction (Fig. 2).