organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl­ammonium 4-nitro­phenolate–4-nitro­phenol (1/1)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xjm_cool@163.com

(Received 23 August 2009; accepted 4 March 2010; online 10 March 2010)

The title compound, C2H8N+·C6H4NO3·C6H5NO3, was synthesized from dimethyl­amine and 4-nitro­phenol in an overall yield of 85%. The dihdral angles between the nphenyl rings and their attached nitro groups are 5.7 (6) and 2.5 (7)°. In the crystal, there are strong hydrogen bonds between the ammonium group and the nitro­phenol and nitro­phenolate O atoms, and between the nitro­phenol and nitro­phenolate O atoms, forming a chain along the b-axis direction.

Related literature

For background to dialectric behaviour, see: Horiuchi et al. (2007[Horiuchi, S., Kumai, R. & Tokura, Y. (2007). Angew. Chem. Int. Ed. 46, 3497-3501.]); Kumai et al. (2006[Kumai, R., Horiuchi, S., Okimoto, Y. & Tokura, Y. (2006). J. Chem. Phys. 125, 084715.]).

[Scheme 1]

Experimental

Crystal data
  • C2H8N+·C6H4NO3·C6H5NO3

  • Mr = 323.31

  • Monoclinic, P 21 /n

  • a = 6.3185 (10) Å

  • b = 16.8867 (10) Å

  • c = 15.1015 (14) Å

  • β = 101.928 (10)°

  • V = 1576.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.977

  • 15857 measured reflections

  • 3617 independent reflections

  • 1474 reflections with I > 2σ(I)

  • Rint = 0.134

Refinement
  • R[F2 > 2σ(F2)] = 0.076

  • wR(F2) = 0.212

  • S = 1.00

  • 3617 reflections

  • 214 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O4i 0.90 2.11 3.000 (4) 170
N3—H3C⋯O1 0.90 1.82 2.704 (4) 165
O2—H1⋯O1ii 0.91 (4) 1.64 (4) 2.548 (3) 175 (4)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Studying dielectric behavior is the basic method of characterization for potential ferroelectrics in which there is a dielectric anomaly at the transition temperature (Kumai et al., 2006; Horiuchi et al. 2007). In our case, unfortunately, the title compound has no dielectric disuniformity between 80 K to 350 K (m.p. 381–365 K), however its structure is reported here.

In this report we have established unambiguously the structure of dimethylammonium 4-nitrophenolate-4-nitrophenol (1/1) in the solid state by X-ray diffraction analysis, as shown in Fig. 1. Intermolecular N—H···O, N—H···N and O—H···O hydrogen bonds are found between the dimethylammonium cation and 4-nitrophenolate anion and the 4-nitrophenolate cation and 4-nitrophenol molecule, forming a chain along the b-axis.

Related literature top

For background to dialectric behaviour, see: Horiuchi et al. (2007); Kumai et al. (2006).

Experimental top

The title complex was obtained by mixing dimethylamine water solution (33%, 0.68 g) and 4-nitrophenol (5 mmol, 0.695 g) in 15 ml ethanol, in the stoichiometric ratio 1:1. After a few weeks, yellow crystals were obtained by slow evaporation.

Refinement top

All H-atoms were located from difference maps and those on N and C were positioned geometrically and refined using a riding model with (N—H = 0.90, C—H = 0.93 and 0.96 Å for aromatic, methyl H respectively) and constrained to ride on their parent atoms with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms. Atom H1 on atom O2 was refined isotropically.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Dimethylammonium 4-nitrophenolate–4-nitrophenol (1/1) top
Crystal data top
C2H8N+·C6H4NO3·C6H5NO3F(000) = 680
Mr = 323.31Dx = 1.362 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 0 reflections
a = 6.3185 (10) Åθ = 2.7–27.3°
b = 16.8867 (10) ŵ = 0.11 mm1
c = 15.1015 (14) ÅT = 293 K
β = 101.928 (10)°Prism, yellow
V = 1576.5 (3) Å30.40 × 0.30 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
3617 independent reflections
Radiation source: fine-focus sealed tube1474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.134
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2121
Tmin = 0.960, Tmax = 0.977l = 1919
15857 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0781P)2]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max < 0.001
214 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C2H8N+·C6H4NO3·C6H5NO3V = 1576.5 (3) Å3
Mr = 323.31Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3185 (10) ŵ = 0.11 mm1
b = 16.8867 (10) ÅT = 293 K
c = 15.1015 (14) Å0.40 × 0.30 × 0.20 mm
β = 101.928 (10)°
Data collection top
Rigaku Mercury2
diffractometer
3617 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1474 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.977Rint = 0.134
15857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0760 restraints
wR(F2) = 0.212H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.19 e Å3
3617 reflectionsΔρmin = 0.19 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1166 (5)0.16858 (18)0.2568 (2)0.0476 (8)
C20.0163 (5)0.13397 (19)0.3106 (2)0.0551 (9)
H20.15030.15640.31150.066*
C30.0485 (6)0.0682 (2)0.3612 (2)0.0622 (10)
H3A0.04330.04510.39460.075*
C40.2496 (6)0.03589 (19)0.3631 (2)0.0541 (9)
C50.3856 (6)0.06954 (19)0.3122 (2)0.0566 (9)
H50.52080.04740.31310.068*
C60.3216 (5)0.13475 (19)0.2612 (2)0.0530 (9)
H60.41540.15750.22840.064*
C70.1727 (5)0.15350 (19)0.7572 (2)0.0492 (9)
C80.0224 (5)0.1312 (2)0.7775 (2)0.0563 (9)
H80.14640.16060.75530.068*
C90.0337 (6)0.0659 (2)0.8302 (2)0.0575 (9)
H90.16550.05060.84310.069*
C100.1485 (6)0.02359 (19)0.8637 (2)0.0499 (9)
C110.3448 (6)0.0449 (2)0.8463 (3)0.0668 (11)
H110.46830.01560.86960.080*
C120.3560 (6)0.1109 (2)0.7933 (3)0.0642 (11)
H120.48880.12670.78190.077*
C130.0771 (7)0.2605 (2)0.0167 (3)0.0913 (14)
H13A0.07130.28020.07580.137*
H13B0.17680.29180.00850.137*
H13C0.12440.20640.02140.137*
C140.3086 (7)0.2208 (2)0.0111 (3)0.0861 (13)
H14A0.27500.16530.01000.129*
H14B0.44510.22990.05140.129*
H14C0.31680.23790.04880.129*
N10.3125 (7)0.03649 (18)0.4114 (2)0.0694 (9)
N20.1366 (7)0.04734 (19)0.9189 (2)0.0692 (9)
N30.1396 (5)0.26538 (15)0.0422 (2)0.0671 (9)
H3B0.17930.31660.04780.081*
H3C0.13100.24770.09760.081*
O10.0540 (4)0.23037 (12)0.20599 (14)0.0553 (7)
O20.1749 (4)0.21762 (15)0.70479 (17)0.0650 (8)
O30.4907 (5)0.06544 (16)0.4107 (2)0.0896 (10)
O40.1846 (5)0.06924 (15)0.45180 (19)0.0896 (10)
O50.3015 (6)0.08400 (18)0.9483 (2)0.1126 (12)
O60.0419 (5)0.06671 (15)0.93146 (17)0.0791 (9)
H10.313 (7)0.233 (2)0.704 (3)0.104 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (2)0.0400 (19)0.045 (2)0.0029 (17)0.0077 (17)0.0043 (16)
C20.061 (2)0.048 (2)0.060 (2)0.0018 (18)0.0225 (19)0.0010 (18)
C30.074 (3)0.051 (2)0.067 (3)0.007 (2)0.028 (2)0.0028 (19)
C40.069 (2)0.0402 (19)0.053 (2)0.0022 (18)0.011 (2)0.0003 (17)
C50.060 (2)0.046 (2)0.064 (2)0.0070 (18)0.012 (2)0.0058 (19)
C60.053 (2)0.045 (2)0.063 (2)0.0023 (17)0.0166 (19)0.0012 (18)
C70.052 (2)0.0426 (19)0.055 (2)0.0042 (17)0.0154 (18)0.0032 (17)
C80.046 (2)0.053 (2)0.067 (2)0.0017 (17)0.0077 (19)0.0025 (19)
C90.051 (2)0.058 (2)0.065 (2)0.0081 (19)0.014 (2)0.002 (2)
C100.057 (2)0.046 (2)0.048 (2)0.0057 (18)0.0156 (18)0.0008 (16)
C110.055 (2)0.061 (2)0.087 (3)0.0125 (19)0.020 (2)0.011 (2)
C120.054 (2)0.057 (2)0.086 (3)0.0044 (19)0.024 (2)0.014 (2)
C130.099 (4)0.077 (3)0.088 (3)0.004 (2)0.004 (3)0.014 (2)
C140.098 (3)0.087 (3)0.083 (3)0.012 (3)0.041 (3)0.013 (2)
N10.102 (3)0.046 (2)0.059 (2)0.003 (2)0.013 (2)0.0026 (16)
N20.089 (3)0.055 (2)0.065 (2)0.014 (2)0.018 (2)0.0048 (17)
N30.102 (3)0.0431 (17)0.0586 (19)0.0083 (17)0.022 (2)0.0005 (15)
O10.0664 (16)0.0450 (13)0.0580 (15)0.0080 (12)0.0205 (12)0.0035 (12)
O20.0596 (18)0.0565 (16)0.0798 (18)0.0041 (13)0.0167 (15)0.0149 (13)
O30.095 (2)0.0640 (18)0.110 (2)0.0230 (17)0.022 (2)0.0174 (16)
O40.132 (3)0.0583 (17)0.087 (2)0.0032 (17)0.044 (2)0.0174 (15)
O50.102 (3)0.084 (2)0.148 (3)0.0146 (19)0.018 (2)0.054 (2)
O60.098 (2)0.0679 (18)0.078 (2)0.0276 (16)0.0314 (17)0.0043 (14)
Geometric parameters (Å, º) top
C1—O11.307 (3)C10—N21.471 (4)
C1—C61.405 (4)C11—C121.382 (4)
C1—C21.410 (4)C11—H110.9300
C2—C31.362 (4)C12—H120.9300
C2—H20.9300C13—N31.473 (5)
C3—C41.378 (5)C13—H13A0.9600
C3—H3A0.9300C13—H13B0.9600
C4—C51.387 (4)C13—H13C0.9600
C4—N11.436 (4)C14—N31.462 (4)
C5—C61.357 (4)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—O21.343 (4)N1—O31.229 (4)
C7—C121.376 (4)N1—O41.239 (4)
C7—C81.382 (4)N2—O51.214 (4)
C8—C91.371 (4)N2—O61.226 (4)
C8—H80.9300N3—H3B0.9000
C9—C101.360 (4)N3—H3C0.9000
C9—H90.9300O2—H10.91 (4)
C10—C111.368 (4)
O1—C1—C6121.1 (3)C10—C11—H11120.6
O1—C1—C2121.7 (3)C12—C11—H11120.6
C6—C1—C2117.2 (3)C7—C12—C11120.7 (3)
C3—C2—C1121.0 (3)C7—C12—H12119.7
C3—C2—H2119.5C11—C12—H12119.7
C1—C2—H2119.5N3—C13—H13A109.5
C2—C3—C4120.2 (3)N3—C13—H13B109.5
C2—C3—H3A119.9H13A—C13—H13B109.5
C4—C3—H3A119.9N3—C13—H13C109.5
C3—C4—C5120.0 (3)H13A—C13—H13C109.5
C3—C4—N1120.3 (3)H13B—C13—H13C109.5
C5—C4—N1119.4 (3)N3—C14—H14A109.5
C6—C5—C4120.1 (3)N3—C14—H14B109.5
C6—C5—H5120.0H14A—C14—H14B109.5
C4—C5—H5120.0N3—C14—H14C109.5
C5—C6—C1121.3 (3)H14A—C14—H14C109.5
C5—C6—H6119.3H14B—C14—H14C109.5
C1—C6—H6119.3O3—N1—O4121.2 (3)
O2—C7—C12122.9 (3)O3—N1—C4119.5 (4)
O2—C7—C8117.9 (3)O4—N1—C4119.3 (4)
C12—C7—C8119.1 (3)O5—N2—O6123.7 (3)
C9—C8—C7120.2 (3)O5—N2—C10118.8 (4)
C9—C8—H8119.9O6—N2—C10117.5 (4)
C7—C8—H8119.9C14—N3—C13115.2 (3)
C10—C9—C8119.8 (3)C14—N3—H3B108.5
C10—C9—H9120.1C13—N3—H3B108.5
C8—C9—H9120.1C14—N3—H3C108.5
C9—C10—C11121.4 (3)C13—N3—H3C108.5
C9—C10—N2120.0 (3)H3B—N3—H3C107.5
C11—C10—N2118.6 (3)C7—O2—H1111 (3)
C10—C11—C12118.7 (3)
O1—C1—C2—C3178.1 (3)C8—C9—C10—N2178.9 (3)
C6—C1—C2—C33.0 (5)C9—C10—C11—C120.2 (5)
C1—C2—C3—C42.3 (5)N2—C10—C11—C12179.1 (3)
C2—C3—C4—C51.0 (5)O2—C7—C12—C11179.5 (3)
C2—C3—C4—N1175.7 (3)C8—C7—C12—C112.4 (5)
C3—C4—C5—C60.6 (5)C10—C11—C12—C71.2 (5)
N1—C4—C5—C6175.3 (3)C3—C4—N1—O3178.4 (3)
C4—C5—C6—C11.4 (5)C5—C4—N1—O33.7 (5)
O1—C1—C6—C5178.5 (3)C3—C4—N1—O40.5 (5)
C2—C1—C6—C52.6 (5)C5—C4—N1—O4175.2 (3)
O2—C7—C8—C9179.5 (3)C9—C10—N2—O5179.8 (4)
C12—C7—C8—C92.3 (5)C11—C10—N2—O51.0 (5)
C7—C8—C9—C100.9 (5)C9—C10—N2—O61.4 (5)
C8—C9—C10—C110.3 (5)C11—C10—N2—O6177.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O4i0.902.113.000 (4)170
N3—H3C···O10.901.822.704 (4)165
O2—H1···O1ii0.91 (4)1.64 (4)2.548 (3)175 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC2H8N+·C6H4NO3·C6H5NO3
Mr323.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.3185 (10), 16.8867 (10), 15.1015 (14)
β (°) 101.928 (10)
V3)1576.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.960, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15857, 3617, 1474
Rint0.134
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.212, 1.00
No. of reflections3617
No. of parameters214
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O4i0.902.113.000 (4)169.7
N3—H3C···O10.901.822.704 (4)164.8
O2—H1···O1ii0.91 (4)1.64 (4)2.548 (3)175 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University.

References

First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2007). Angew. Chem. Int. Ed. 46, 3497–3501.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumai, R., Horiuchi, S., Okimoto, Y. & Tokura, Y. (2006). J. Chem. Phys. 125, 084715.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds