organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o839-o840

1,4-Bis[4-(tert-butyl­di­phenyl­silyl)buta-1,3-diyn­yl]benzene

aInstitute of Chemistry, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch

(Received 20 January 2010; accepted 28 January 2010; online 13 March 2010)

The title centrosymmetric mol­ecule, C46H42Si2, is composed of a central benzene ring with buta-1,3-diynyl chains at positions 1 and 4. These chains are terminated by tert-butyl­diphenyl­silyl groups, hence the molecule is dumbbell in shape. The mol­ecules are connected via C—H⋯π inter­actions in the structure, so forming an undulating two-dimensional network in the bc plane. There is also a weak ππ inter­action involving centrosymmetrically related phenyl rings with a centroid–centroid distance of 3.8359 (11) Å.

Related literature

For polyynes and acetyl­enic arrays, see: Ginsburg et al. (1995[Ginsburg, E. J., Gorman, C. B. & Grubbs, R. H. (1995). Modern Acetylene Chemistry, edited by P. J. Stang & F. Diederich, pp. 535-383. Weinheim: Wiley-VCH.]); Siemsen et al. (2000[Siemsen, P., Livingston, R. C. & Diederich, F. (2000). Angew. Chem. Int. Ed. 39, 2632-2657.]); Brandsma (1988[Brandsma, L. (1988). Preparative Acetylenic Chemistry. Amsterdam: Elsevier.]). For uses and other properties of conjugated carbon–carbon triple bonds, see: Swager (2005[Swager, T. M. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 233-256. Weinheim: Wiley-VCH.]); Tobe & Wakabayashi (2005[Tobe, Y. & Wakabayashi, T. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 387-420. Weinheim: Wiley-VCH.]); Höger (2005[Höger, S. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 427-449. Weinheim: Wiley-VCH.]); Zhou et al. (1994[Zhou, Q., Carroll, P. J. & Swager, T. M. (1994). J. Org. Chem. 59, 1294-1301.]); Maruyama & Kawabata (1990[Maruyama, K. & Kawabata, S. (1990). Bull. Chem. Soc. Jpn, 63, 170-175.]); Lee et al. (2000[Lee, L.-H., Lynch, V. & Lagow, R. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2805-2809.]). For information on the `one-pot' tandem synthesis – Corey–Fuchs reaction/Negishi coupling, see: Corey & Fuchs (1972[Corey, E. J. & Fuchs, P. L. (1972). Tetrahedron Lett. 36, 3769-3772.]); Desai & McKelvie (1962[Desai, N. B. & McKelvie, N. (1962). J. Am. Chem. Soc. 84, 1745-1747.]); King et al. (1977[King, A. O., Okukado, N. & Negishi, E. I. (1977). J. Chem. Soc. Chem. Commun. pp. 683-684.]). For the crystal structure of the trimethyl­silyl analogue, see: Shi Shun et al. (2003[Shi Shun, A. L. K., Chernick, E. T., Eisler, S. & Tykwinski, R. R. (2003). J. Org. Chem. 68, 1339-1347.]). For the synthesis and crystal structure of related compounds, see: Chalifoux et al. (2009[Chalifoux, W. A., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Angew. Chem. Int. Ed. 48, 7915-7919.]); Kim (2009[Kim, S. (2009). Angew. Chem. Int. Ed. 48, 7740-7743.]); West et al. (2008[West, K., Wang, C., Batsanov, A. S. & Bryce, M. R. (2008). Org. Biomol. Chem. 6, 1934-1937.]). For a description of the Cambridge Structural Database, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C46H42Si2

  • Mr = 650.98

  • Monoclinic, P 21 /c

  • a = 8.535 (1) Å

  • b = 17.2060 (14) Å

  • c = 13.4923 (14) Å

  • β = 104.064 (9)°

  • V = 1922.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.45 × 0.38 × 0.30 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) Tmin = 0.919, Tmax = 1.184

  • 19707 measured reflections

  • 4403 independent reflections

  • 3260 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 0.96

  • 4403 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
C—H⋯π inter­actions (Å, °)

Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively.

D H Centroid C—H H⋯Cg DCg D—H⋯Cg
C6 H6 Cg2i 0.95 2.85 3.7703 (17) 164
C7 H7 Cg1ii 0.95 2.95 3.8516 (18) 160
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The unique properties of polyynes and acetylenic arrays continue to be of great interest (Ginsburg et al., 1995; Siemsen et al., 2000; Brandsma, 1988). Compounds containing conjugated carbon-carbon triple bonds are important building blocks because they can function as carbon-rich scaffolds when incorporated into organic materials (Swager, 2005; Tobe & Wakabayashi, 2005; Höger, 2005; Zhou et al., 1994). Consequently, research into the synthesis of well-defined polyynes continues to expand. The efficiency of the energy and electron transfer processes in polyyne-bridged porphyrin systems (Maruyama & Kawabata, 1990) and bis(benzocrown ether)s (Lee et al., 2000) have been examined for their potential use as molecular wires and chemosensors.

The title compound was designed as a spacer-unit in linked materials for the creation of structured, discotic mesophases. It was synthesized from tert-Butyl(4,4-dibromobut-3-en-1-ynyl)diphenylsilane using a "one-pot" tandem synthesis, consisting of a Corey-Fuchs reaction (Corey & Fuchs, 1972; Desai & McKelvie, 1962) and a Negishi coupling reaction (King et al., 1977). The synthesis and crystal structure of the trimethylsilyl analogue has been described by (Shi Shun et al., 2003), and for some other related compounds by Chalifoux et al., 2009; Kim, 2009; West et al. (2008).

The title molecule is shown in Fig. 1. The bond lengths are normal (Allen et al., 1987) and the geometrical parameters are similar to those in the centrosymmetric trimethylsilyl analogue mentioned above (Shi Shun et al., 2003). The title molecule consists of a central benzene ring to which are attached buta-1,3-diynyl chains in positions 1 and 4. These chains are terminated with tert-butyldiphenylsilyl groups. The molecule is essentially linear and shaped like a dumbbell. The centers of the benzene rings are situated on crystallographic centers of symmetry, therefore the molecule has symmetry 1.

In the crystal of the title compound symmetry related molecules are connected via C—H···π interactions, involving the H-atoms of the central aromatic ring and the silyl phenyl rings, giving rise to the formation of an undulating two-dimensional network in the bc plane (Tab. 1 and Fig. 2). Centrosymmetrically related phenyl rings (C14 - C19), are involved in a weak ππ interaction with a centroid-to-centroid distance [Cg1···Cg1i, symmetry code: (i) = 1-x, 1-y, 1-z] of 3.836 (1) Å.

Related literature top

For polyynes and acetylenic arrays, see: Ginsburg et al. (1995); Siemsen et al. (2000); Brandsma (1988). For uses and other properties of conjugated carbon–carbon triple bonds, see: Swager (2005); Tobe & Wakabayashi (2005); Höger (2005); Zhou et al. (1994); Maruyama & Kawabata (1990); Lee et al. (2000). For information on the `one-pot' tandem synthesis – Corey–Fuchs reaction/Negishi coupling, see: Corey & Fuchs (1972); Desai & McKelvie (1962); King et al. (1977). For the crystal structure of the trimethylsilyl analogue, see: Shi Shun et al. (2003). For the synthesis and crystal structure of related compounds, see: Chalifoux et al. (2009); Kim (2009); West et al. (2008). For a description of the Cambridge Structural Database, see: Allen et al. (1987).

Experimental top

The synthesis of the title compound was carried out under a nitrogen atmosphere. To a solution of tert-butyl(4,4-dibromobut-3-en-1-ynyl)diphenylsilane (2.64 mmol in 5.0 ml of dry tetrahydrofuran) was added N-butyl lithium (3.63 ml of 1.6 M in hexane; 5.81 mmol) at 193 K. The mixture was stirred at 193 K to 233 K for 2 h. Anhydrous ZnCl2 (5.28 mmol dissolved in 5.0 ml of tetrahydrofuran) was then added and the mixture was stirred at 233 K to 293 K for 1 h. Subsequently 1,4-diiodobenzene (0.88 mmol dissolved in 5 ml of dimethylformamide) and Pd(dppf)Cl2 [dppf = 1,1'-bis(diphenylphosphino)ferrocene] (0.17 mmol dissolved in 5 ml of CH2Cl2) were added and the mixture stirred at 353 K for 24 h. The reaction mixture was then filtered over Celite (a diatomaceous earth, which is a naturally occurring, soft, siliceous sedimentray rock, used for filtration purposes) and concentrated. The crude product was purified by column chromatography (silica gel, petroleum ether:CH2Cl2 (9:1)). Colourless rod-like crystals (average size 0.8 × 0.4 × 0.3 mm) of the title compound were grown by slow evaporation of a concentrated solution in hexane at 277 K.

1H NMR, 400 MHz (CDCl3) δ 7.80 (m, 8H, Ha,a'), 7.51 (s, 4H, H2,3,5,6), 7.46-7.38 (m, 12H, Hb,b',c), 1.14 (s, 18H, C(CH3)3)) ; 13C NMR, 100 MHz (CDCl3) δ 135.7 (Ca,a'), 132.9 (C2,3,5,6), 132.5 (Car-Si), 129.9 (Cc), 128.0 (Cb,b'), 122.5 (C1,4), (91.3, 80.0, 77.3) (C12,13,14, 42,43,44), 76.34 (C11,41), 27.2 (C(CH3)3), 19.1 (C(CH3)3); HRMS (ESI, +): [M+Na]+ = 673.27201. The numbering scheme for the interpretation of the NMR spectra is given in Fig. 3.

Refinement top

The H-atoms could all be located in difference electron-density maps. In the final cycles of refinement they were included in calculated positions and treated as riding atoms: C—H = 0.95 Å for H-aryl and 0.98 Å for methyl H-atoms, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for aryl and k = 1.5 for methyl H-atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipoids drawn at the 50% probability level [symmetry code: (i) = -x, -y+1, -z+2].
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound. The C—H···π interactions are represented by the H···C contacts shown as dotted cyan lines (see Tab. 1 for details).
[Figure 3] Fig. 3. The numbering scheme of the title compound for the interpretation of the NMR spectra.
1,4-Bis[4-(tert--butyldiphenylsilyl)buta-1,3-diynyl]benzene top
Crystal data top
C46H42Si2F(000) = 692
Mr = 650.98Dx = 1.125 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13367 reflections
a = 8.535 (1) Åθ = 2.0–29.6°
b = 17.2060 (14) ŵ = 0.12 mm1
c = 13.4923 (14) ÅT = 173 K
β = 104.064 (9)°Block, colourless
V = 1922.0 (3) Å30.45 × 0.38 × 0.30 mm
Z = 2
Data collection top
Stoe IPDS-2
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
h = 1111
Tmin = 0.919, Tmax = 1.184k = 2222
19707 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: difference Fourier map
wR(F2) = 0.104H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0586P)2]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
81 constraints
Crystal data top
C46H42Si2V = 1922.0 (3) Å3
Mr = 650.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.535 (1) ŵ = 0.12 mm1
b = 17.2060 (14) ÅT = 173 K
c = 13.4923 (14) Å0.45 × 0.38 × 0.30 mm
β = 104.064 (9)°
Data collection top
Stoe IPDS-2
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(MULscanABS in PLATON; Spek, 2009)
3260 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.184Rint = 0.098
19707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.104H-atom parameters constrained
S = 0.96Δρmax = 0.35 e Å3
4403 reflectionsΔρmin = 0.29 e Å3
220 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.21188 (5)0.33985 (2)0.45574 (3)0.0274 (1)
C10.17432 (18)0.37157 (8)0.57829 (12)0.0319 (4)
C20.15087 (18)0.39564 (8)0.65764 (11)0.0304 (4)
C30.12243 (18)0.42333 (8)0.74707 (11)0.0313 (4)
C40.09221 (18)0.44715 (8)0.82412 (11)0.0312 (4)
C50.04697 (17)0.47453 (8)0.91335 (11)0.0284 (4)
C60.09906 (19)0.51441 (9)0.90339 (11)0.0330 (4)
C70.14561 (19)0.46019 (9)1.01075 (11)0.0331 (5)
C80.35951 (17)0.25716 (8)0.48565 (11)0.0305 (4)
C90.4176 (2)0.21781 (10)0.41082 (14)0.0442 (5)
C100.5271 (2)0.15713 (11)0.43600 (17)0.0545 (6)
C110.5821 (2)0.13405 (11)0.53583 (19)0.0556 (7)
C120.5256 (2)0.17083 (11)0.61040 (16)0.0559 (7)
C130.4161 (2)0.23146 (10)0.58596 (13)0.0397 (5)
C140.29838 (17)0.42645 (8)0.40325 (11)0.0304 (4)
C150.2355 (2)0.50019 (9)0.41244 (14)0.0423 (5)
C160.2954 (2)0.56598 (10)0.37522 (15)0.0478 (6)
C170.4212 (2)0.55952 (10)0.32833 (14)0.0458 (6)
C180.4861 (2)0.48762 (11)0.31796 (16)0.0504 (6)
C190.4256 (2)0.42169 (10)0.35525 (14)0.0420 (5)
C200.00954 (18)0.30897 (9)0.37155 (13)0.0346 (4)
C210.0513 (2)0.23744 (11)0.41817 (17)0.0535 (7)
C220.0254 (2)0.28984 (12)0.26356 (14)0.0521 (6)
C230.1143 (2)0.37500 (11)0.36436 (16)0.0518 (6)
H60.166500.524100.837400.0400*
H70.244600.433001.017900.0400*
H90.381000.233000.341300.0530*
H100.564400.131400.383800.0650*
H110.658300.093000.553100.0670*
H120.561900.154600.679500.0670*
H130.378700.256100.638900.0480*
H150.149300.505400.445100.0510*
H160.249700.615500.382000.0570*
H170.463200.604600.303200.0550*
H180.572400.483000.285200.0610*
H190.471800.372400.347900.0500*
H21A0.066500.250600.485900.0800*
H21B0.028000.195400.424500.0800*
H21C0.154400.220500.374000.0800*
H22A0.065400.335600.234100.0780*
H22B0.080400.275000.220900.0780*
H22C0.101400.246700.266600.0780*
H23A0.123900.388800.433100.0780*
H23B0.219500.357800.323200.0780*
H23C0.078300.420500.332200.0780*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0368 (2)0.0266 (2)0.0211 (2)0.0044 (2)0.0119 (2)0.0017 (2)
C10.0410 (8)0.0295 (7)0.0284 (8)0.0031 (6)0.0144 (6)0.0001 (6)
C20.0400 (8)0.0268 (7)0.0270 (8)0.0025 (6)0.0131 (6)0.0007 (5)
C30.0434 (8)0.0276 (7)0.0251 (7)0.0022 (6)0.0128 (6)0.0007 (5)
C40.0443 (8)0.0256 (7)0.0258 (8)0.0017 (6)0.0126 (6)0.0002 (5)
C50.0414 (8)0.0238 (6)0.0222 (7)0.0018 (5)0.0123 (6)0.0034 (5)
C60.0428 (8)0.0344 (8)0.0205 (7)0.0048 (6)0.0053 (6)0.0006 (5)
C70.0385 (8)0.0343 (8)0.0274 (8)0.0069 (6)0.0099 (6)0.0016 (6)
C80.0347 (7)0.0297 (7)0.0286 (8)0.0012 (6)0.0106 (6)0.0017 (6)
C90.0543 (10)0.0447 (9)0.0381 (9)0.0140 (8)0.0200 (8)0.0009 (7)
C100.0552 (10)0.0494 (10)0.0658 (13)0.0164 (9)0.0279 (10)0.0062 (9)
C110.0427 (9)0.0473 (10)0.0738 (15)0.0183 (8)0.0083 (9)0.0025 (9)
C120.0556 (11)0.0562 (12)0.0482 (11)0.0151 (9)0.0023 (9)0.0086 (9)
C130.0449 (8)0.0413 (9)0.0309 (8)0.0075 (7)0.0052 (7)0.0000 (7)
C140.0377 (8)0.0326 (7)0.0206 (7)0.0008 (6)0.0065 (6)0.0013 (5)
C150.0587 (10)0.0329 (8)0.0408 (10)0.0019 (7)0.0230 (8)0.0018 (7)
C160.0661 (11)0.0312 (8)0.0468 (11)0.0019 (8)0.0151 (9)0.0006 (7)
C170.0515 (10)0.0422 (9)0.0400 (10)0.0132 (8)0.0040 (8)0.0058 (7)
C180.0444 (9)0.0535 (11)0.0583 (12)0.0030 (8)0.0219 (9)0.0091 (9)
C190.0415 (8)0.0396 (9)0.0494 (11)0.0023 (7)0.0195 (8)0.0043 (7)
C200.0388 (8)0.0296 (7)0.0348 (8)0.0038 (6)0.0079 (6)0.0041 (6)
C210.0524 (10)0.0420 (10)0.0671 (14)0.0065 (8)0.0165 (10)0.0016 (9)
C220.0584 (11)0.0587 (11)0.0357 (10)0.0017 (9)0.0049 (8)0.0165 (8)
C230.0429 (9)0.0461 (10)0.0598 (13)0.0130 (8)0.0001 (9)0.0124 (9)
Geometric parameters (Å, º) top
Si1—C11.8418 (16)C20—C221.532 (2)
Si1—C81.8782 (15)C20—C231.539 (2)
Si1—C141.8764 (15)C6—H60.9500
Si1—C201.8978 (17)C7—H70.9500
C1—C21.209 (2)C9—H90.9500
C2—C31.373 (2)C10—H100.9500
C3—C41.202 (2)C11—H110.9500
C4—C51.431 (2)C12—H120.9500
C5—C61.400 (2)C13—H130.9500
C5—C71.400 (2)C15—H150.9500
C6—C7i1.384 (2)C16—H160.9500
C8—C91.402 (2)C17—H170.9500
C8—C131.394 (2)C18—H180.9500
C9—C101.387 (3)C19—H190.9500
C10—C111.373 (3)C21—H21A0.9800
C11—C121.372 (3)C21—H21B0.9800
C12—C131.386 (3)C21—H21C0.9800
C14—C151.395 (2)C22—H22A0.9800
C14—C191.395 (2)C22—H22B0.9800
C15—C161.386 (2)C22—H22C0.9800
C16—C171.377 (3)C23—H23A0.9800
C17—C181.376 (3)C23—H23B0.9800
C18—C191.390 (3)C23—H23C0.9800
C20—C211.529 (3)
C1—Si1—C8106.60 (7)C6i—C7—H7120.00
C1—Si1—C14105.89 (6)C8—C9—H9119.00
C1—Si1—C20106.78 (7)C10—C9—H9119.00
C8—Si1—C14112.19 (7)C9—C10—H10120.00
C8—Si1—C20112.45 (7)C11—C10—H10120.00
C14—Si1—C20112.38 (7)C10—C11—H11120.00
Si1—C1—C2177.19 (13)C12—C11—H11120.00
C1—C2—C3179.29 (17)C11—C12—H12120.00
C2—C3—C4177.85 (17)C13—C12—H12120.00
C3—C4—C5176.80 (17)C8—C13—H13119.00
C4—C5—C6119.77 (13)C12—C13—H13119.00
C4—C5—C7120.55 (14)C14—C15—H15119.00
C6—C5—C7119.65 (14)C16—C15—H15119.00
C5—C6—C7i120.29 (14)C15—C16—H16120.00
C5—C7—C6i120.06 (15)C17—C16—H16120.00
Si1—C8—C9123.17 (12)C16—C17—H17120.00
Si1—C8—C13120.33 (12)C18—C17—H17120.00
C9—C8—C13116.50 (14)C17—C18—H18120.00
C8—C9—C10121.47 (17)C19—C18—H18120.00
C9—C10—C11120.49 (18)C14—C19—H19119.00
C10—C11—C12119.27 (18)C18—C19—H19119.00
C11—C12—C13120.65 (19)C20—C21—H21A109.00
C8—C13—C12121.63 (16)C20—C21—H21B109.00
Si1—C14—C15119.58 (12)C20—C21—H21C110.00
Si1—C14—C19123.40 (11)H21A—C21—H21B110.00
C15—C14—C19117.02 (14)H21A—C21—H21C109.00
C14—C15—C16121.81 (16)H21B—C21—H21C109.00
C15—C16—C17119.88 (16)C20—C22—H22A109.00
C16—C17—C18119.82 (16)C20—C22—H22B109.00
C17—C18—C19120.17 (17)C20—C22—H22C109.00
C14—C19—C18121.29 (16)H22A—C22—H22B109.00
Si1—C20—C21109.25 (12)H22A—C22—H22C109.00
Si1—C20—C22110.59 (11)H22B—C22—H22C109.00
Si1—C20—C23110.02 (11)C20—C23—H23A109.00
C21—C20—C22109.62 (15)C20—C23—H23B109.00
C21—C20—C23108.87 (14)C20—C23—H23C109.00
C22—C20—C23108.48 (15)H23A—C23—H23B109.00
C5—C6—H6120.00H23A—C23—H23C109.00
C7i—C6—H6120.00H23B—C23—H23C109.00
C5—C7—H7120.00
C1—Si1—C8—C9179.84 (13)C4—C5—C6—C7i178.71 (14)
C1—Si1—C8—C130.69 (15)C7—C5—C6—C7i0.2 (2)
C14—Si1—C8—C964.36 (15)C4—C5—C7—C6i178.70 (14)
C14—Si1—C8—C13116.16 (13)C6—C5—C7—C6i0.2 (2)
C20—Si1—C8—C963.47 (15)C5—C6—C7i—C5i0.2 (2)
C20—Si1—C8—C13116.00 (13)Si1—C8—C9—C10179.77 (13)
C1—Si1—C14—C1540.17 (15)C13—C8—C9—C100.7 (2)
C1—Si1—C14—C19139.24 (14)Si1—C8—C13—C12179.70 (13)
C8—Si1—C14—C15156.07 (13)C9—C8—C13—C120.8 (2)
C8—Si1—C14—C1923.34 (16)C8—C9—C10—C110.2 (3)
C20—Si1—C14—C1576.05 (14)C9—C10—C11—C121.1 (3)
C20—Si1—C14—C19104.54 (14)C10—C11—C12—C131.0 (3)
C1—Si1—C20—C2165.38 (13)C11—C12—C13—C80.1 (3)
C1—Si1—C20—C22173.89 (12)Si1—C14—C15—C16179.82 (14)
C1—Si1—C20—C2354.08 (13)C19—C14—C15—C160.4 (3)
C8—Si1—C20—C2151.20 (13)Si1—C14—C19—C18179.71 (14)
C8—Si1—C20—C2269.54 (13)C15—C14—C19—C180.3 (3)
C8—Si1—C20—C23170.66 (11)C14—C15—C16—C170.5 (3)
C14—Si1—C20—C21178.93 (11)C15—C16—C17—C180.5 (3)
C14—Si1—C20—C2258.20 (13)C16—C17—C18—C190.4 (3)
C14—Si1—C20—C2361.61 (14)C17—C18—C19—C140.3 (3)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC46H42Si2
Mr650.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.535 (1), 17.2060 (14), 13.4923 (14)
β (°) 104.064 (9)
V3)1922.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.45 × 0.38 × 0.30
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionMulti-scan
(MULscanABS in PLATON; Spek, 2009)
Tmin, Tmax0.919, 1.184
No. of measured, independent and
observed [I > 2σ(I)] reflections
19707, 4403, 3260
Rint0.098
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 0.96
No. of reflections4403
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

C—H···π interactions (Å, °) top
Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively.
DHCentroidC—HH···CgD···CgD—H···Cg
C6H6Cg2i0.952.853.7703 (17)164
C7H7Cg1ii0.952.953.8516 (18)160
Symmetry codes (i) = -x, -y+1, -z+1; (ii) x, -y+1/2, z+1/2.
 

Acknowledgements

HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBrandsma, L. (1988). Preparative Acetylenic Chemistry. Amsterdam: Elsevier.  Google Scholar
First citationChalifoux, W. A., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Angew. Chem. Int. Ed. 48, 7915–7919.  Web of Science CSD CrossRef CAS Google Scholar
First citationCorey, E. J. & Fuchs, P. L. (1972). Tetrahedron Lett. 36, 3769–3772.  CrossRef Google Scholar
First citationDesai, N. B. & McKelvie, N. (1962). J. Am. Chem. Soc. 84, 1745–1747.  CrossRef Google Scholar
First citationGinsburg, E. J., Gorman, C. B. & Grubbs, R. H. (1995). Modern Acetylene Chemistry, edited by P. J. Stang & F. Diederich, pp. 535–383. Weinheim: Wiley-VCH.  Google Scholar
First citationHöger, S. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 427–449. Weinheim: Wiley-VCH.  Google Scholar
First citationKim, S. (2009). Angew. Chem. Int. Ed. 48, 7740–7743.  Web of Science CrossRef CAS Google Scholar
First citationKing, A. O., Okukado, N. & Negishi, E. I. (1977). J. Chem. Soc. Chem. Commun. pp. 683–684.  CrossRef Web of Science Google Scholar
First citationLee, L.-H., Lynch, V. & Lagow, R. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2805–2809.  Web of Science CSD CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaruyama, K. & Kawabata, S. (1990). Bull. Chem. Soc. Jpn, 63, 170–175.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi Shun, A. L. K., Chernick, E. T., Eisler, S. & Tykwinski, R. R. (2003). J. Org. Chem. 68, 1339–1347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSiemsen, P., Livingston, R. C. & Diederich, F. (2000). Angew. Chem. Int. Ed. 39, 2632–2657.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSwager, T. M. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 233–256. Weinheim: Wiley-VCH.  Google Scholar
First citationTobe, Y. & Wakabayashi, T. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 387–420. Weinheim: Wiley-VCH.  Google Scholar
First citationWest, K., Wang, C., Batsanov, A. S. & Bryce, M. R. (2008). Org. Biomol. Chem. 6, 1934–1937.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, Q., Carroll, P. J. & Swager, T. M. (1994). J. Org. Chem. 59, 1294–1301.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o839-o840
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds