organic compounds
1,4-Bis[4-(tert-butyldiphenylsilyl)buta-1,3-diynyl]benzene
aInstitute of Chemistry, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland, and bInstitute of Physics, University of Neuchâtel, rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
*Correspondence e-mail: reinhard.neier@unine.ch
The title centrosymmetric molecule, C46H42Si2, is composed of a central benzene ring with buta-1,3-diynyl chains at positions 1 and 4. These chains are terminated by tert-butyldiphenylsilyl groups, hence the molecule is dumbbell in shape. The molecules are connected via C—H⋯π interactions in the structure, so forming an undulating two-dimensional network in the bc plane. There is also a weak π–π interaction involving centrosymmetrically related phenyl rings with a centroid–centroid distance of 3.8359 (11) Å.
Related literature
For polyynes and acetylenic arrays, see: Ginsburg et al. (1995); Siemsen et al. (2000); Brandsma (1988). For uses and other properties of conjugated carbon–carbon triple bonds, see: Swager (2005); Tobe & Wakabayashi (2005); Höger (2005); Zhou et al. (1994); Maruyama & Kawabata (1990); Lee et al. (2000). For information on the `one-pot' tandem synthesis – Corey–Fuchs reaction/Negishi coupling, see: Corey & Fuchs (1972); Desai & McKelvie (1962); King et al. (1977). For the of the trimethylsilyl analogue, see: Shi Shun et al. (2003). For the synthesis and of related compounds, see: Chalifoux et al. (2009); Kim (2009); West et al. (2008). For a description of the Cambridge Structural Database, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: X-AREA (Stoe & Cie, 2009); cell X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S160053681000351X/fb2180sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681000351X/fb2180Isup2.hkl
The synthesis of the title compound was carried out under a nitrogen atmosphere. To a solution of tert-butyl(4,4-dibromobut-3-en-1-ynyl)diphenylsilane (2.64 mmol in 5.0 ml of dry tetrahydrofuran) was added N-butyl lithium (3.63 ml of 1.6 M in hexane; 5.81 mmol) at 193 K. The mixture was stirred at 193 K to 233 K for 2 h. Anhydrous ZnCl2 (5.28 mmol dissolved in 5.0 ml of tetrahydrofuran) was then added and the mixture was stirred at 233 K to 293 K for 1 h. Subsequently 1,4-diiodobenzene (0.88 mmol dissolved in 5 ml of dimethylformamide) and Pd(dppf)Cl2 [dppf = 1,1'-bis(diphenylphosphino)ferrocene] (0.17 mmol dissolved in 5 ml of CH2Cl2) were added and the mixture stirred at 353 K for 24 h. The reaction mixture was then filtered over Celite (a diatomaceous earth, which is a naturally occurring, soft, siliceous sedimentray rock, used for filtration purposes) and concentrated. The crude product was purified by
(silica gel, petroleum ether:CH2Cl2 (9:1)). Colourless rod-like crystals (average size 0.8 × 0.4 × 0.3 mm) of the title compound were grown by slow evaporation of a concentrated solution in hexane at 277 K.1H NMR, 400 MHz (CDCl3) δ 7.80 (m, 8H, Ha,a'), 7.51 (s, 4H, H2,3,5,6), 7.46-7.38 (m, 12H, Hb,b',c), 1.14 (s, 18H, C(CH3)3)) ; 13C NMR, 100 MHz (CDCl3) δ 135.7 (Ca,a'), 132.9 (C2,3,5,6), 132.5 (Car-Si), 129.9 (Cc), 128.0 (Cb,b'), 122.5 (C1,4), (91.3, 80.0, 77.3) (C12,13,14, 42,43,44), 76.34 (C11,41), 27.2 (C(CH3)3), 19.1 (C(CH3)3); HRMS (ESI, +): [M+Na]+ = 673.27201. The numbering scheme for the interpretation of the NMR spectra is given in Fig. 3.
The H-atoms could all be located in difference electron-density maps. In the final cycles of
they were included in calculated positions and treated as riding atoms: C—H = 0.95 Å for H-aryl and 0.98 Å for methyl H-atoms, with Uiso(H) = k × Ueq(parent C-atom), where k = 1.2 for aryl and k = 1.5 for methyl H-atoms.Data collection: X-AREA (Stoe & Cie, 2009); cell
X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C46H42Si2 | F(000) = 692 |
Mr = 650.98 | Dx = 1.125 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 13367 reflections |
a = 8.535 (1) Å | θ = 2.0–29.6° |
b = 17.2060 (14) Å | µ = 0.12 mm−1 |
c = 13.4923 (14) Å | T = 173 K |
β = 104.064 (9)° | Block, colourless |
V = 1922.0 (3) Å3 | 0.45 × 0.38 × 0.30 mm |
Z = 2 |
Stoe IPDS-2 diffractometer | 4403 independent reflections |
Radiation source: fine-focus sealed tube | 3260 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.098 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.0° |
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) | h = −11→11 |
Tmin = 0.919, Tmax = 1.184 | k = −22→22 |
19707 measured reflections | l = −16→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.96 | w = 1/[σ2(Fo2) + (0.0586P)2] where P = (Fo2 + 2Fc2)/3 |
4403 reflections | (Δ/σ)max = 0.001 |
220 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
81 constraints |
C46H42Si2 | V = 1922.0 (3) Å3 |
Mr = 650.98 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.535 (1) Å | µ = 0.12 mm−1 |
b = 17.2060 (14) Å | T = 173 K |
c = 13.4923 (14) Å | 0.45 × 0.38 × 0.30 mm |
β = 104.064 (9)° |
Stoe IPDS-2 diffractometer | 4403 independent reflections |
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) | 3260 reflections with I > 2σ(I) |
Tmin = 0.919, Tmax = 1.184 | Rint = 0.098 |
19707 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.104 | H-atom parameters constrained |
S = 0.96 | Δρmax = 0.35 e Å−3 |
4403 reflections | Δρmin = −0.29 e Å−3 |
220 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.21188 (5) | 0.33985 (2) | 0.45574 (3) | 0.0274 (1) | |
C1 | 0.17432 (18) | 0.37157 (8) | 0.57829 (12) | 0.0319 (4) | |
C2 | 0.15087 (18) | 0.39564 (8) | 0.65764 (11) | 0.0304 (4) | |
C3 | 0.12243 (18) | 0.42333 (8) | 0.74707 (11) | 0.0313 (4) | |
C4 | 0.09221 (18) | 0.44715 (8) | 0.82412 (11) | 0.0312 (4) | |
C5 | 0.04697 (17) | 0.47453 (8) | 0.91335 (11) | 0.0284 (4) | |
C6 | −0.09906 (19) | 0.51441 (9) | 0.90339 (11) | 0.0330 (4) | |
C7 | 0.14561 (19) | 0.46019 (9) | 1.01075 (11) | 0.0331 (5) | |
C8 | 0.35951 (17) | 0.25716 (8) | 0.48565 (11) | 0.0305 (4) | |
C9 | 0.4176 (2) | 0.21781 (10) | 0.41082 (14) | 0.0442 (5) | |
C10 | 0.5271 (2) | 0.15713 (11) | 0.43600 (17) | 0.0545 (6) | |
C11 | 0.5821 (2) | 0.13405 (11) | 0.53583 (19) | 0.0556 (7) | |
C12 | 0.5256 (2) | 0.17083 (11) | 0.61040 (16) | 0.0559 (7) | |
C13 | 0.4161 (2) | 0.23146 (10) | 0.58596 (13) | 0.0397 (5) | |
C14 | 0.29838 (17) | 0.42645 (8) | 0.40325 (11) | 0.0304 (4) | |
C15 | 0.2355 (2) | 0.50019 (9) | 0.41244 (14) | 0.0423 (5) | |
C16 | 0.2954 (2) | 0.56598 (10) | 0.37522 (15) | 0.0478 (6) | |
C17 | 0.4212 (2) | 0.55952 (10) | 0.32833 (14) | 0.0458 (6) | |
C18 | 0.4861 (2) | 0.48762 (11) | 0.31796 (16) | 0.0504 (6) | |
C19 | 0.4256 (2) | 0.42169 (10) | 0.35525 (14) | 0.0420 (5) | |
C20 | 0.00954 (18) | 0.30897 (9) | 0.37155 (13) | 0.0346 (4) | |
C21 | −0.0513 (2) | 0.23744 (11) | 0.41817 (17) | 0.0535 (7) | |
C22 | 0.0254 (2) | 0.28984 (12) | 0.26356 (14) | 0.0521 (6) | |
C23 | −0.1143 (2) | 0.37500 (11) | 0.36436 (16) | 0.0518 (6) | |
H6 | −0.16650 | 0.52410 | 0.83740 | 0.0400* | |
H7 | 0.24460 | 0.43300 | 1.01790 | 0.0400* | |
H9 | 0.38100 | 0.23300 | 0.34130 | 0.0530* | |
H10 | 0.56440 | 0.13140 | 0.38380 | 0.0650* | |
H11 | 0.65830 | 0.09300 | 0.55310 | 0.0670* | |
H12 | 0.56190 | 0.15460 | 0.67950 | 0.0670* | |
H13 | 0.37870 | 0.25610 | 0.63890 | 0.0480* | |
H15 | 0.14930 | 0.50540 | 0.44510 | 0.0510* | |
H16 | 0.24970 | 0.61550 | 0.38200 | 0.0570* | |
H17 | 0.46320 | 0.60460 | 0.30320 | 0.0550* | |
H18 | 0.57240 | 0.48300 | 0.28520 | 0.0610* | |
H19 | 0.47180 | 0.37240 | 0.34790 | 0.0500* | |
H21A | −0.06650 | 0.25060 | 0.48590 | 0.0800* | |
H21B | 0.02800 | 0.19540 | 0.42450 | 0.0800* | |
H21C | −0.15440 | 0.22050 | 0.37400 | 0.0800* | |
H22A | 0.06540 | 0.33560 | 0.23410 | 0.0780* | |
H22B | −0.08040 | 0.27500 | 0.22090 | 0.0780* | |
H22C | 0.10140 | 0.24670 | 0.26660 | 0.0780* | |
H23A | −0.12390 | 0.38880 | 0.43310 | 0.0780* | |
H23B | −0.21950 | 0.35780 | 0.32320 | 0.0780* | |
H23C | −0.07830 | 0.42050 | 0.33220 | 0.0780* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0368 (2) | 0.0266 (2) | 0.0211 (2) | 0.0044 (2) | 0.0119 (2) | −0.0017 (2) |
C1 | 0.0410 (8) | 0.0295 (7) | 0.0284 (8) | 0.0031 (6) | 0.0144 (6) | −0.0001 (6) |
C2 | 0.0400 (8) | 0.0268 (7) | 0.0270 (8) | 0.0025 (6) | 0.0131 (6) | 0.0007 (5) |
C3 | 0.0434 (8) | 0.0276 (7) | 0.0251 (7) | 0.0022 (6) | 0.0128 (6) | 0.0007 (5) |
C4 | 0.0443 (8) | 0.0256 (7) | 0.0258 (8) | 0.0017 (6) | 0.0126 (6) | 0.0002 (5) |
C5 | 0.0414 (8) | 0.0238 (6) | 0.0222 (7) | −0.0018 (5) | 0.0123 (6) | −0.0034 (5) |
C6 | 0.0428 (8) | 0.0344 (8) | 0.0205 (7) | 0.0048 (6) | 0.0053 (6) | −0.0006 (5) |
C7 | 0.0385 (8) | 0.0343 (8) | 0.0274 (8) | 0.0069 (6) | 0.0099 (6) | −0.0016 (6) |
C8 | 0.0347 (7) | 0.0297 (7) | 0.0286 (8) | 0.0012 (6) | 0.0106 (6) | −0.0017 (6) |
C9 | 0.0543 (10) | 0.0447 (9) | 0.0381 (9) | 0.0140 (8) | 0.0200 (8) | −0.0009 (7) |
C10 | 0.0552 (10) | 0.0494 (10) | 0.0658 (13) | 0.0164 (9) | 0.0279 (10) | −0.0062 (9) |
C11 | 0.0427 (9) | 0.0473 (10) | 0.0738 (15) | 0.0183 (8) | 0.0083 (9) | 0.0025 (9) |
C12 | 0.0556 (11) | 0.0562 (12) | 0.0482 (11) | 0.0151 (9) | −0.0023 (9) | 0.0086 (9) |
C13 | 0.0449 (8) | 0.0413 (9) | 0.0309 (8) | 0.0075 (7) | 0.0052 (7) | 0.0000 (7) |
C14 | 0.0377 (8) | 0.0326 (7) | 0.0206 (7) | 0.0008 (6) | 0.0065 (6) | −0.0013 (5) |
C15 | 0.0587 (10) | 0.0329 (8) | 0.0408 (10) | 0.0019 (7) | 0.0230 (8) | −0.0018 (7) |
C16 | 0.0661 (11) | 0.0312 (8) | 0.0468 (11) | −0.0019 (8) | 0.0151 (9) | −0.0006 (7) |
C17 | 0.0515 (10) | 0.0422 (9) | 0.0400 (10) | −0.0132 (8) | 0.0040 (8) | 0.0058 (7) |
C18 | 0.0444 (9) | 0.0535 (11) | 0.0583 (12) | −0.0030 (8) | 0.0219 (9) | 0.0091 (9) |
C19 | 0.0415 (8) | 0.0396 (9) | 0.0494 (11) | 0.0023 (7) | 0.0195 (8) | 0.0043 (7) |
C20 | 0.0388 (8) | 0.0296 (7) | 0.0348 (8) | 0.0038 (6) | 0.0079 (6) | −0.0041 (6) |
C21 | 0.0524 (10) | 0.0420 (10) | 0.0671 (14) | −0.0065 (8) | 0.0165 (10) | 0.0016 (9) |
C22 | 0.0584 (11) | 0.0587 (11) | 0.0357 (10) | −0.0017 (9) | 0.0049 (8) | −0.0165 (8) |
C23 | 0.0429 (9) | 0.0461 (10) | 0.0598 (13) | 0.0130 (8) | −0.0001 (9) | −0.0124 (9) |
Si1—C1 | 1.8418 (16) | C20—C22 | 1.532 (2) |
Si1—C8 | 1.8782 (15) | C20—C23 | 1.539 (2) |
Si1—C14 | 1.8764 (15) | C6—H6 | 0.9500 |
Si1—C20 | 1.8978 (17) | C7—H7 | 0.9500 |
C1—C2 | 1.209 (2) | C9—H9 | 0.9500 |
C2—C3 | 1.373 (2) | C10—H10 | 0.9500 |
C3—C4 | 1.202 (2) | C11—H11 | 0.9500 |
C4—C5 | 1.431 (2) | C12—H12 | 0.9500 |
C5—C6 | 1.400 (2) | C13—H13 | 0.9500 |
C5—C7 | 1.400 (2) | C15—H15 | 0.9500 |
C6—C7i | 1.384 (2) | C16—H16 | 0.9500 |
C8—C9 | 1.402 (2) | C17—H17 | 0.9500 |
C8—C13 | 1.394 (2) | C18—H18 | 0.9500 |
C9—C10 | 1.387 (3) | C19—H19 | 0.9500 |
C10—C11 | 1.373 (3) | C21—H21A | 0.9800 |
C11—C12 | 1.372 (3) | C21—H21B | 0.9800 |
C12—C13 | 1.386 (3) | C21—H21C | 0.9800 |
C14—C15 | 1.395 (2) | C22—H22A | 0.9800 |
C14—C19 | 1.395 (2) | C22—H22B | 0.9800 |
C15—C16 | 1.386 (2) | C22—H22C | 0.9800 |
C16—C17 | 1.377 (3) | C23—H23A | 0.9800 |
C17—C18 | 1.376 (3) | C23—H23B | 0.9800 |
C18—C19 | 1.390 (3) | C23—H23C | 0.9800 |
C20—C21 | 1.529 (3) | ||
C1—Si1—C8 | 106.60 (7) | C6i—C7—H7 | 120.00 |
C1—Si1—C14 | 105.89 (6) | C8—C9—H9 | 119.00 |
C1—Si1—C20 | 106.78 (7) | C10—C9—H9 | 119.00 |
C8—Si1—C14 | 112.19 (7) | C9—C10—H10 | 120.00 |
C8—Si1—C20 | 112.45 (7) | C11—C10—H10 | 120.00 |
C14—Si1—C20 | 112.38 (7) | C10—C11—H11 | 120.00 |
Si1—C1—C2 | 177.19 (13) | C12—C11—H11 | 120.00 |
C1—C2—C3 | 179.29 (17) | C11—C12—H12 | 120.00 |
C2—C3—C4 | 177.85 (17) | C13—C12—H12 | 120.00 |
C3—C4—C5 | 176.80 (17) | C8—C13—H13 | 119.00 |
C4—C5—C6 | 119.77 (13) | C12—C13—H13 | 119.00 |
C4—C5—C7 | 120.55 (14) | C14—C15—H15 | 119.00 |
C6—C5—C7 | 119.65 (14) | C16—C15—H15 | 119.00 |
C5—C6—C7i | 120.29 (14) | C15—C16—H16 | 120.00 |
C5—C7—C6i | 120.06 (15) | C17—C16—H16 | 120.00 |
Si1—C8—C9 | 123.17 (12) | C16—C17—H17 | 120.00 |
Si1—C8—C13 | 120.33 (12) | C18—C17—H17 | 120.00 |
C9—C8—C13 | 116.50 (14) | C17—C18—H18 | 120.00 |
C8—C9—C10 | 121.47 (17) | C19—C18—H18 | 120.00 |
C9—C10—C11 | 120.49 (18) | C14—C19—H19 | 119.00 |
C10—C11—C12 | 119.27 (18) | C18—C19—H19 | 119.00 |
C11—C12—C13 | 120.65 (19) | C20—C21—H21A | 109.00 |
C8—C13—C12 | 121.63 (16) | C20—C21—H21B | 109.00 |
Si1—C14—C15 | 119.58 (12) | C20—C21—H21C | 110.00 |
Si1—C14—C19 | 123.40 (11) | H21A—C21—H21B | 110.00 |
C15—C14—C19 | 117.02 (14) | H21A—C21—H21C | 109.00 |
C14—C15—C16 | 121.81 (16) | H21B—C21—H21C | 109.00 |
C15—C16—C17 | 119.88 (16) | C20—C22—H22A | 109.00 |
C16—C17—C18 | 119.82 (16) | C20—C22—H22B | 109.00 |
C17—C18—C19 | 120.17 (17) | C20—C22—H22C | 109.00 |
C14—C19—C18 | 121.29 (16) | H22A—C22—H22B | 109.00 |
Si1—C20—C21 | 109.25 (12) | H22A—C22—H22C | 109.00 |
Si1—C20—C22 | 110.59 (11) | H22B—C22—H22C | 109.00 |
Si1—C20—C23 | 110.02 (11) | C20—C23—H23A | 109.00 |
C21—C20—C22 | 109.62 (15) | C20—C23—H23B | 109.00 |
C21—C20—C23 | 108.87 (14) | C20—C23—H23C | 109.00 |
C22—C20—C23 | 108.48 (15) | H23A—C23—H23B | 109.00 |
C5—C6—H6 | 120.00 | H23A—C23—H23C | 109.00 |
C7i—C6—H6 | 120.00 | H23B—C23—H23C | 109.00 |
C5—C7—H7 | 120.00 | ||
C1—Si1—C8—C9 | −179.84 (13) | C4—C5—C6—C7i | 178.71 (14) |
C1—Si1—C8—C13 | 0.69 (15) | C7—C5—C6—C7i | 0.2 (2) |
C14—Si1—C8—C9 | −64.36 (15) | C4—C5—C7—C6i | −178.70 (14) |
C14—Si1—C8—C13 | 116.16 (13) | C6—C5—C7—C6i | −0.2 (2) |
C20—Si1—C8—C9 | 63.47 (15) | C5—C6—C7i—C5i | −0.2 (2) |
C20—Si1—C8—C13 | −116.00 (13) | Si1—C8—C9—C10 | 179.77 (13) |
C1—Si1—C14—C15 | −40.17 (15) | C13—C8—C9—C10 | −0.7 (2) |
C1—Si1—C14—C19 | 139.24 (14) | Si1—C8—C13—C12 | −179.70 (13) |
C8—Si1—C14—C15 | −156.07 (13) | C9—C8—C13—C12 | 0.8 (2) |
C8—Si1—C14—C19 | 23.34 (16) | C8—C9—C10—C11 | −0.2 (3) |
C20—Si1—C14—C15 | 76.05 (14) | C9—C10—C11—C12 | 1.1 (3) |
C20—Si1—C14—C19 | −104.54 (14) | C10—C11—C12—C13 | −1.0 (3) |
C1—Si1—C20—C21 | −65.38 (13) | C11—C12—C13—C8 | 0.1 (3) |
C1—Si1—C20—C22 | 173.89 (12) | Si1—C14—C15—C16 | 179.82 (14) |
C1—Si1—C20—C23 | 54.08 (13) | C19—C14—C15—C16 | 0.4 (3) |
C8—Si1—C20—C21 | 51.20 (13) | Si1—C14—C19—C18 | −179.71 (14) |
C8—Si1—C20—C22 | −69.54 (13) | C15—C14—C19—C18 | −0.3 (3) |
C8—Si1—C20—C23 | 170.66 (11) | C14—C15—C16—C17 | −0.5 (3) |
C14—Si1—C20—C21 | 178.93 (11) | C15—C16—C17—C18 | 0.5 (3) |
C14—Si1—C20—C22 | 58.20 (13) | C16—C17—C18—C19 | −0.4 (3) |
C14—Si1—C20—C23 | −61.61 (14) | C17—C18—C19—C14 | 0.3 (3) |
Symmetry code: (i) −x, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C46H42Si2 |
Mr | 650.98 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 8.535 (1), 17.2060 (14), 13.4923 (14) |
β (°) | 104.064 (9) |
V (Å3) | 1922.0 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.45 × 0.38 × 0.30 |
Data collection | |
Diffractometer | Stoe IPDS2 diffractometer |
Absorption correction | Multi-scan (MULscanABS in PLATON; Spek, 2009) |
Tmin, Tmax | 0.919, 1.184 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19707, 4403, 3260 |
Rint | 0.098 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.104, 0.96 |
No. of reflections | 4403 |
No. of parameters | 220 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.29 |
Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 and Cg2 are the centroids of the C8–C13 and C14–C19 rings, respectively. |
D | H | Centroid | C—H | H···Cg | D···Cg | D—H···Cg |
C6 | H6 | Cg2i | 0.95 | 2.85 | 3.7703 (17) | 164 |
C7 | H7 | Cg1ii | 0.95 | 2.95 | 3.8516 (18) | 160 |
Symmetry codes (i) = -x, -y+1, -z+1; (ii) x, -y+1/2, z+1/2. |
Acknowledgements
HSE is grateful to the XRD Application LAB, Microsystems Technology Division, Swiss Center for Electronics and Microtechnology, Neuchâtel, for access to the X-ray diffraction equipment.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Brandsma, L. (1988). Preparative Acetylenic Chemistry. Amsterdam: Elsevier. Google Scholar
Chalifoux, W. A., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. (2009). Angew. Chem. Int. Ed. 48, 7915–7919. Web of Science CSD CrossRef CAS Google Scholar
Corey, E. J. & Fuchs, P. L. (1972). Tetrahedron Lett. 36, 3769–3772. CrossRef Google Scholar
Desai, N. B. & McKelvie, N. (1962). J. Am. Chem. Soc. 84, 1745–1747. CrossRef Google Scholar
Ginsburg, E. J., Gorman, C. B. & Grubbs, R. H. (1995). Modern Acetylene Chemistry, edited by P. J. Stang & F. Diederich, pp. 535–383. Weinheim: Wiley-VCH. Google Scholar
Höger, S. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 427–449. Weinheim: Wiley-VCH. Google Scholar
Kim, S. (2009). Angew. Chem. Int. Ed. 48, 7740–7743. Web of Science CrossRef CAS Google Scholar
King, A. O., Okukado, N. & Negishi, E. I. (1977). J. Chem. Soc. Chem. Commun. pp. 683–684. CrossRef Web of Science Google Scholar
Lee, L.-H., Lynch, V. & Lagow, R. J. (2000). J. Chem. Soc. Perkin Trans. 1, pp. 2805–2809. Web of Science CSD CrossRef Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Maruyama, K. & Kawabata, S. (1990). Bull. Chem. Soc. Jpn, 63, 170–175. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi Shun, A. L. K., Chernick, E. T., Eisler, S. & Tykwinski, R. R. (2003). J. Org. Chem. 68, 1339–1347. Web of Science CSD CrossRef PubMed CAS Google Scholar
Siemsen, P., Livingston, R. C. & Diederich, F. (2000). Angew. Chem. Int. Ed. 39, 2632–2657. CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany. Google Scholar
Swager, T. M. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 233–256. Weinheim: Wiley-VCH. Google Scholar
Tobe, Y. & Wakabayashi, T. (2005). Acetylene Chemistry: Chemistry, Biology, and Material Science, edited by F. Diederich, P. J. Stang & R. R. Tykwinski, pp. 387–420. Weinheim: Wiley-VCH. Google Scholar
West, K., Wang, C., Batsanov, A. S. & Bryce, M. R. (2008). Org. Biomol. Chem. 6, 1934–1937. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhou, Q., Carroll, P. J. & Swager, T. M. (1994). J. Org. Chem. 59, 1294–1301. CSD CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The unique properties of polyynes and acetylenic arrays continue to be of great interest (Ginsburg et al., 1995; Siemsen et al., 2000; Brandsma, 1988). Compounds containing conjugated carbon-carbon triple bonds are important building blocks because they can function as carbon-rich scaffolds when incorporated into organic materials (Swager, 2005; Tobe & Wakabayashi, 2005; Höger, 2005; Zhou et al., 1994). Consequently, research into the synthesis of well-defined polyynes continues to expand. The efficiency of the energy and electron transfer processes in polyyne-bridged porphyrin systems (Maruyama & Kawabata, 1990) and bis(benzocrown ether)s (Lee et al., 2000) have been examined for their potential use as molecular wires and chemosensors.
The title compound was designed as a spacer-unit in linked materials for the creation of structured, discotic mesophases. It was synthesized from tert-Butyl(4,4-dibromobut-3-en-1-ynyl)diphenylsilane using a "one-pot" tandem synthesis, consisting of a Corey-Fuchs reaction (Corey & Fuchs, 1972; Desai & McKelvie, 1962) and a Negishi coupling reaction (King et al., 1977). The synthesis and crystal structure of the trimethylsilyl analogue has been described by (Shi Shun et al., 2003), and for some other related compounds by Chalifoux et al., 2009; Kim, 2009; West et al. (2008).
The title molecule is shown in Fig. 1. The bond lengths are normal (Allen et al., 1987) and the geometrical parameters are similar to those in the centrosymmetric trimethylsilyl analogue mentioned above (Shi Shun et al., 2003). The title molecule consists of a central benzene ring to which are attached buta-1,3-diynyl chains in positions 1 and 4. These chains are terminated with tert-butyldiphenylsilyl groups. The molecule is essentially linear and shaped like a dumbbell. The centers of the benzene rings are situated on crystallographic centers of symmetry, therefore the molecule has symmetry 1.
In the crystal of the title compound symmetry related molecules are connected via C—H···π interactions, involving the H-atoms of the central aromatic ring and the silyl phenyl rings, giving rise to the formation of an undulating two-dimensional network in the bc plane (Tab. 1 and Fig. 2). Centrosymmetrically related phenyl rings (C14 - C19), are involved in a weak π–π interaction with a centroid-to-centroid distance [Cg1···Cg1i, symmetry code: (i) = 1-x, 1-y, 1-z] of 3.836 (1) Å.