organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(20S)-20-Acetamido-18-chloro-5α-pregnan-3β-yl acetate

aDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: parvez@ucalgary.ca

(Received 6 February 2010; accepted 8 March 2010; online 27 March 2010)

In the title compound, C25H40ClNO3, prepared by the thermolysis of (20S)-O,N-diacetyl-20-amino-N-chloro-3β-hydr­oxy-5α-pregnane, the three six-membered rings adopt chair conformations while the five-membered ring is in an envelope conformation. The ester group attached to ring A is in an equatorial position. All the rings are trans-fused. Intra­molecular C—H⋯O and C—H⋯Cl inter­actions occur. The crystal structure is stabilized by inter­molecular N—H⋯O and C—H⋯O inter­actions close contacts occur.

Related literature

For background literature on the functionalization of the 18-methyl group of steroids, see: Pellissier & Santelli (2001[Pellissier, H. & Santelli, M. (2001). Org. Prep. Proc. Intl, 33, 455-476.]). For the thermolysis of N-chloro­amides to achieve remote-site functionalizations, see: Edwards et al. (1971[Edwards, O. E., Paton, J. M., Benn, M. H., Mitchell, R. E., Watanatada, C. & Vohra, K. N. (1971). Can. J. Chem. 49, 1648-1658.]); Benn & Vohra, (1976[Benn, M. H. & Vohra, K. N. (1976). Can. J. Chem. 54, 136-140.]); Vohra (1973[Vohra, K. N. (1973). N-Haloamides and their Applications in Natural Product Synthesis. PhD thesis, University of Calgary, Calgary, Alberta, Canada.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the preparation of (20S)-20-acetamido-3β-acet­oxy-5α-pregnane, see: Rej et al. (1976[Rej, N. R., Ghosh, P. C. & Banerji, J. (1976). Phytochemistry, 15, 1173-1175.]).

[Scheme 1]

Experimental

Crystal data
  • C25H40ClNO3

  • Mr = 438.03

  • Monoclinic, P 21

  • a = 7.6604 (4) Å

  • b = 9.7796 (4) Å

  • c = 16.8301 (8) Å

  • β = 96.398 (2)°

  • V = 1252.98 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 173 K

  • 0.28 × 0.12 × 0.04 mm

Data collection
  • Nonius diffractometer with Bruker APEXII CCD detector

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.952, Tmax = 0.993

  • 9843 measured reflections

  • 5254 independent reflections

  • 4999 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.154

  • S = 1.13

  • 5254 reflections

  • 275 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.74 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2026 Friedel pairs

  • Flack parameter: 0.04 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.03 2.893 (4) 165
C23—H23C⋯O3ii 0.98 2.54 3.487 (6) 163
C12—H12B⋯Cl1 0.99 2.62 3.076 (3) 108
C20—H20⋯Cl1 1.00 2.67 3.349 (3) 125
C20—H20⋯O1 1.00 2.42 2.812 (4) 103
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+1]; (ii) x+1, y, z+1.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As an addition to the methods for the functionalisation of the 18-methyl group of the steroid system (Pellissier & Santelli, 2001) we utilized the thermolysis of an N-chloroamide: a procedure based on the known preference for a six-membered transition state in the abstraction of a hydrogen atom by a thermally generated N-centred amidyl radical (Edwards et al., 1971). In this paper, we report the preparation, crystal structure and absolute configuration of the title compound prepared by the thermolysis of N-chloro-O, N-diacetyl-20S-amino-3β-hydroxy-5α-pregnane.

The title molecule is presented in Fig. 1. The molecule contains three six-membered rings A, B and C and a five-membered ring D (Fig. 2). All the rings are trans-fused. The rings A—C adopt chair conformations. The puckering parameters (Cremer & Pople, 1975) for the rings A to C are: Q = 0.581 (4), 0.579 (3), 0.581 (3) Å, θ = 1.6 (4), 3.5 (3), 0.0 (3)° and ϕ = 259 (23), 333 (7), 182 (15) °, respectively. The ring D adopts an envelope conformation with C13 being 0.703 (5) Å out of the mean-plane formed by the remaining ring atoms. The ester group attached to the ring A is in equatorial position. The bond lengths and angles are as expected (Allen et al., 1987). There are intermolecular N—H···O and C—H···O hydrogen bonds. In addition, short intramolecular interactions involving Cl1 and O1 are also present in the structure; details have been provided in Tab. 1 and Fig. 3.

Related literature top

For background literature on the functionalization of the 18-methyl group of steroids, see: Pellissier & Santelli (2001). For the thermolysis of N-chloroamides to achieve remote-site functionalizations, see: Edwards et al. (1971); Benn & Vohra, (1976); Vohra (1973). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975). For the preparation of (20S)-20-acetamido-3β-acetoxy-5α-pregnane, see: Rej et al. (1976).

Experimental top

A solution of (20S)-20-acetamido-3β-acetoxy-5α-pregnane (Rej et al., 1976) (500 mg) in CHCl3 was treated overnight with excess of tert-butyl hypochlorite, and the solvent and excess reagent were removed under reduced pressure (Rotovap, bath 313 K). The residual N-chloroamide was dissolved in aqueous 1,4-dioxane (1:4 v/v, 50 ml) containing dibenzoyl peroxide (20 mg) and calcium carbonate (2.5 g). The solution was boiled under reflux until a test for the N-chloro compound (moist starch/KI paper) was negative (ca. 2.5 h). The reaction mixture was cooled to room temperature, filtered, and the filter cake washed with CHCl3. The filtrate and washings were evaporated under reduced pressure (Rotovap, bath 323 K) and the residue subjected to preparative thin layer chromatography (Merck silica gel 60 PF254, 2 mm × 20 cm × 1 m), with CHCl3—MeOH (9:1 v/v) as eluent, and iodine for detection of the components. Elution of a band Rf 0.60 afforded (20S)-20-acetamido-3β-acetoxy-18-chloro-5α-pregnane (186 mg, 37%) which crystallized from ethanol-CHCl3 (ca. 7:1 v/v) in the form of colorless plates of average size 0.25 × 0.15 × 0.04 mm, m.p. 504-505 K (Leitz, uncorr.).

Refinement top

An absolute structure was established using anomalous scattering effects; 2026 Friedel pairs were measured. Though the H-atoms were observable in the difference electron density maps, they were included at geometrically idealized positions with N—H = 0.88 Å and C—H distances = 0.98, 0.99 and 1.00 Å for methyl, methylene and methine type H-atoms, respectively. The H-atoms were assigned Uiso = 1.2Ueq of the atoms to which they were bonded. The final difference map was free of chemically significant features.

1H-NMR (400 MHz, CDCl3 ref. res. H δH 7.25 ppm) δH 5.30 (1H, br d, J = 9.1 Hz), 4.63 (1H, m) 3.60 (1H, d, J =11.9 Hz), 3.49 (1H, d, J = 11.9 Hz), 1.99 (3H, s), 1.91 (3H, s), 1.23 (3H, d, J = 6.3 Hz) and 0.78 (3H, s); 13C-NMR (100 MHz, CDCl3, ref 77.0 ppm) δC 170.7 s, 168.7 s, 73.5 d, 57.5 d, 57.0 d, 54.0 d, 45.9 s, 44.6 d, 45.5 t, 36.6 t, 35.7 d, 35.4 s, 35.0 s, 33.8 t, 31.7 t, 28.3 t, 27.3 t, 26.2 t, 23.4 q, 23.3 t, 22.2 q, 21.4 q, 20.7 t, 12.2 q; LRCIMS (NH3) m/z 438 (100) and 440 (30) (M+1 35Cl and 37Cl resp.).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the displacement ellipsoids plotted at 50% probability level (Farrugia, 1997).
[Figure 2] Fig. 2. Lettering of the rings A—D of the title molecule.
[Figure 3] Fig. 3. Unit cell packing showing hydrogen bonding interactions by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.
(20S)-20-Acetamido-18-chloro-5α-pregnan-3β-yl acetate top
Crystal data top
C25H40ClNO3F(000) = 476
Mr = 438.03Dx = 1.161 Mg m3
Monoclinic, P21Melting point = 504–505 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 7.6604 (4) ÅCell parameters from 2542 reflections
b = 9.7796 (4) Åθ = 1.0–27.5°
c = 16.8301 (8) ŵ = 0.18 mm1
β = 96.398 (2)°T = 173 K
V = 1252.98 (10) Å3Plate, colorless
Z = 20.28 × 0.12 × 0.04 mm
Data collection top
Nonius
diffractometer with Bruker APEXII CCD detector
5254 independent reflections
Radiation source: fine-focus sealed tube4999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 99
Tmin = 0.952, Tmax = 0.993k = 1211
9843 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.6304P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.002
5254 reflectionsΔρmax = 0.74 e Å3
275 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 2026 Friedel pairs
144 constraintsAbsolute structure parameter: 0.04 (9)
Primary atom site location: structure-invariant direct methods
Crystal data top
C25H40ClNO3V = 1252.98 (10) Å3
Mr = 438.03Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6604 (4) ŵ = 0.18 mm1
b = 9.7796 (4) ÅT = 173 K
c = 16.8301 (8) Å0.28 × 0.12 × 0.04 mm
β = 96.398 (2)°
Data collection top
Nonius
diffractometer with Bruker APEXII CCD detector
5254 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
4999 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.993Rint = 0.035
9843 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.154Δρmax = 0.74 e Å3
S = 1.13Δρmin = 0.25 e Å3
5254 reflectionsAbsolute structure: Flack (1983), 2026 Friedel pairs
275 parametersAbsolute structure parameter: 0.04 (9)
1 restraint
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3 ref. res. H δH 7.25 ppm) δH 5.30 (1H, br d, J = 9.1 Hz), 4.63 (1H, m) 3.60 (1H, d, J =11.9 Hz), 3.49 (1H, d, J = 11.9 Hz), 1.99 (3H, s), 1.91 (3H, s), 1.23 (3H, d, J = 6.3 Hz) and 0.78 (3H, s); 13C-NMR (100 MHz, CDCl3, ref 77.0 ppm) δC 170.7 s, 168.7 s, 73.5 d, 57.5 d, 57.0 d, 54.0 d, 45.9 s, 44.6 d, 45.5 t, 36.6 t, 35.7 d, 35.4 s, 35.0 s, 33.8 t, 31.7 t, 28.3 t, 27.3 t, 26.2 t, 23.4 q, 23.3 t, 22.2 q, 21.4 q, 20.7 t, 12.2 q; LRCIMS (NH3) m/z 438 (100) and 440 (30) (M+1 35Cl and 37Cl resp.).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The following three reflections in the low angle range were deemed to be obstructed by the beam stop and were omitted: 1 1 0, -1 -1 1, 1 0 1

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.18745 (9)0.31045 (8)0.26306 (5)0.03388 (19)
O10.9823 (4)0.2298 (2)0.50569 (17)0.0451 (7)
O20.5711 (3)0.1751 (3)0.28266 (16)0.0413 (6)
O30.3432 (5)0.0304 (4)0.3034 (2)0.0787 (12)
N10.9983 (4)0.0176 (3)0.45452 (16)0.0289 (6)
H10.98440.07030.46290.035*
C10.8523 (4)0.1056 (3)0.0897 (2)0.0306 (7)
H1A0.97930.12240.07490.037*
H1B0.83110.00650.08400.037*
C20.8040 (5)0.1465 (4)0.1774 (2)0.0344 (8)
H2A0.83540.24340.18500.041*
H2B0.87080.08970.21220.041*
C30.6078 (5)0.1265 (4)0.2005 (2)0.0352 (8)
H30.57920.02690.19850.042*
C40.4980 (4)0.2047 (4)0.1458 (2)0.0338 (7)
H4A0.37180.18540.16100.041*
H4B0.51700.30410.15150.041*
C50.5500 (4)0.1618 (3)0.0587 (2)0.0295 (7)
H50.52910.06100.05620.035*
C60.4329 (4)0.2282 (4)0.0015 (2)0.0355 (8)
H6A0.45160.32840.00090.043*
H6B0.30810.21060.02080.043*
C70.4737 (4)0.1720 (4)0.0828 (2)0.0315 (7)
H7A0.44230.07380.08300.038*
H7B0.40090.22030.11890.038*
C80.6672 (4)0.1886 (3)0.11419 (19)0.0246 (6)
H80.69440.28830.12000.030*
C90.7875 (4)0.1252 (3)0.0557 (2)0.0260 (6)
H90.75790.02560.05210.031*
C100.7475 (4)0.1843 (3)0.0313 (2)0.0268 (6)
C110.9805 (4)0.1340 (3)0.0888 (2)0.0255 (6)
H11A1.01560.23130.09390.031*
H11B1.05280.09010.05080.031*
C121.0170 (4)0.0640 (3)0.17103 (19)0.0250 (6)
H12A0.98980.03470.16550.030*
H12B1.14310.07340.19080.030*
C130.9056 (4)0.1278 (3)0.23165 (19)0.0233 (6)
C140.7098 (4)0.1199 (3)0.1952 (2)0.0276 (6)
H140.68410.02060.18610.033*
C150.6082 (4)0.1624 (4)0.2641 (2)0.0336 (8)
H15A0.48950.12110.25840.040*
H15B0.59670.26310.26650.040*
C160.7211 (4)0.1070 (4)0.3397 (2)0.0365 (8)
H16A0.74660.18110.37930.044*
H16B0.65770.03300.36460.044*
C170.8935 (4)0.0516 (3)0.3123 (2)0.0281 (7)
H170.87460.04740.29940.034*
C180.9533 (4)0.2805 (3)0.2470 (2)0.0271 (7)
H18A0.89940.31230.29450.032*
H18B0.90270.33530.20060.032*
C190.7999 (4)0.3366 (3)0.0322 (2)0.0318 (7)
H19A0.74750.38520.01030.038*
H19B0.75730.37670.08410.038*
H19C0.92810.34470.02320.038*
C201.0498 (4)0.0609 (3)0.3773 (2)0.0297 (7)
H201.08770.15870.38210.036*
C211.2082 (5)0.0250 (4)0.3594 (2)0.0396 (9)
H21A1.25170.00860.31040.047*
H21B1.17260.12080.35230.047*
H21C1.30140.01750.40410.047*
C220.9714 (5)0.1050 (4)0.5129 (2)0.0334 (7)
C230.9265 (6)0.0419 (5)0.5896 (2)0.0460 (10)
H23A0.88990.05320.57980.055*
H23B0.83060.09340.60940.055*
H23C1.03000.04430.62950.055*
C240.4371 (6)0.1165 (5)0.3278 (3)0.0534 (11)
C250.4187 (7)0.1767 (7)0.4111 (3)0.0714 (16)
H25A0.41390.10280.45060.086*
H25B0.51980.23560.41720.086*
H25C0.31050.23080.41950.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0272 (3)0.0328 (4)0.0424 (4)0.0044 (3)0.0075 (3)0.0014 (4)
O10.0725 (19)0.0211 (12)0.0414 (15)0.0050 (12)0.0058 (13)0.0005 (11)
O20.0416 (14)0.0481 (15)0.0322 (14)0.0072 (12)0.0041 (11)0.0025 (12)
O30.078 (2)0.076 (3)0.075 (3)0.034 (2)0.025 (2)0.016 (2)
N10.0400 (15)0.0204 (13)0.0274 (15)0.0024 (11)0.0087 (12)0.0028 (11)
C10.0325 (16)0.0300 (17)0.0295 (17)0.0045 (13)0.0041 (13)0.0004 (13)
C20.0395 (18)0.0337 (19)0.0302 (18)0.0012 (14)0.0052 (14)0.0020 (14)
C30.0412 (18)0.0342 (18)0.0291 (18)0.0052 (15)0.0005 (14)0.0009 (14)
C40.0278 (15)0.0346 (18)0.0377 (19)0.0024 (13)0.0025 (13)0.0016 (15)
C50.0278 (15)0.0253 (16)0.0349 (18)0.0028 (12)0.0007 (13)0.0012 (13)
C60.0275 (16)0.040 (2)0.038 (2)0.0012 (14)0.0013 (14)0.0005 (15)
C70.0210 (14)0.0382 (18)0.0357 (18)0.0002 (13)0.0045 (12)0.0027 (15)
C80.0215 (13)0.0237 (15)0.0290 (16)0.0013 (11)0.0042 (11)0.0004 (13)
C90.0260 (14)0.0209 (14)0.0314 (17)0.0007 (11)0.0043 (12)0.0009 (12)
C100.0272 (15)0.0202 (14)0.0335 (17)0.0005 (12)0.0059 (12)0.0011 (13)
C110.0216 (13)0.0236 (15)0.0325 (17)0.0049 (11)0.0085 (12)0.0000 (12)
C120.0265 (14)0.0217 (14)0.0278 (16)0.0046 (11)0.0081 (12)0.0012 (12)
C130.0217 (13)0.0215 (14)0.0278 (16)0.0025 (11)0.0083 (11)0.0014 (12)
C140.0279 (15)0.0248 (15)0.0303 (17)0.0015 (12)0.0049 (12)0.0007 (13)
C150.0240 (15)0.040 (2)0.038 (2)0.0010 (13)0.0108 (13)0.0056 (16)
C160.0274 (16)0.048 (2)0.0365 (19)0.0020 (14)0.0144 (14)0.0036 (16)
C170.0293 (15)0.0286 (16)0.0278 (16)0.0011 (12)0.0091 (12)0.0021 (13)
C180.0215 (13)0.0248 (17)0.0355 (17)0.0004 (11)0.0059 (12)0.0022 (12)
C190.0335 (15)0.0235 (17)0.0384 (19)0.0033 (12)0.0034 (13)0.0011 (13)
C200.0329 (16)0.0265 (16)0.0310 (18)0.0011 (13)0.0097 (13)0.0036 (13)
C210.0321 (17)0.052 (2)0.036 (2)0.0106 (16)0.0084 (15)0.0066 (17)
C220.0409 (19)0.0315 (18)0.0278 (18)0.0038 (14)0.0036 (14)0.0037 (14)
C230.062 (3)0.046 (2)0.032 (2)0.006 (2)0.0153 (18)0.0034 (17)
C240.053 (2)0.061 (3)0.042 (2)0.008 (2)0.0127 (19)0.005 (2)
C250.067 (3)0.099 (4)0.043 (3)0.011 (3)0.016 (2)0.009 (3)
Geometric parameters (Å, º) top
Cl1—C181.808 (3)C11—H11A0.9900
O1—C221.230 (4)C11—H11B0.9900
O2—C241.336 (5)C12—C131.534 (4)
O2—C31.459 (4)C12—H12A0.9900
O3—C241.208 (6)C12—H12B0.9900
N1—C221.335 (5)C13—C181.552 (4)
N1—C201.462 (4)C13—C141.558 (4)
N1—H10.8800C13—C171.560 (4)
C1—C21.534 (5)C14—C151.525 (5)
C1—C101.542 (4)C14—H141.0000
C1—H1A0.9900C15—C161.554 (5)
C1—H1B0.9900C15—H15A0.9900
C2—C31.522 (5)C15—H15B0.9900
C2—H2A0.9900C16—C171.544 (4)
C2—H2B0.9900C16—H16A0.9900
C3—C41.522 (5)C16—H16B0.9900
C3—H31.0000C17—C201.532 (5)
C4—C51.533 (5)C17—H171.0000
C4—H4A0.9900C18—H18A0.9900
C4—H4B0.9900C18—H18B0.9900
C5—C61.531 (5)C19—H19A0.9800
C5—C101.547 (4)C19—H19B0.9800
C5—H51.0000C19—H19C0.9800
C6—C71.521 (5)C20—C211.533 (5)
C6—H6A0.9900C20—H201.0000
C6—H6B0.9900C21—H21A0.9800
C7—C81.526 (4)C21—H21B0.9800
C7—H7A0.9900C21—H21C0.9800
C7—H7B0.9900C22—C231.505 (5)
C8—C141.521 (4)C23—H23A0.9800
C8—C91.550 (4)C23—H23B0.9800
C8—H81.0000C23—H23C0.9800
C9—C111.524 (4)C24—C251.513 (7)
C9—C101.573 (5)C25—H25A0.9800
C9—H91.0000C25—H25B0.9800
C10—C191.543 (4)C25—H25C0.9800
C11—C121.541 (4)
C24—O2—C3117.0 (3)C11—C12—H12B109.4
C22—N1—C20123.2 (3)H12A—C12—H12B108.0
C22—N1—H1118.4C12—C13—C18111.4 (2)
C20—N1—H1118.4C12—C13—C14107.5 (3)
C2—C1—C10113.3 (3)C18—C13—C14108.2 (2)
C2—C1—H1A108.9C12—C13—C17118.4 (3)
C10—C1—H1A108.9C18—C13—C17110.5 (3)
C2—C1—H1B108.9C14—C13—C1799.9 (2)
C10—C1—H1B108.9C8—C14—C15119.0 (3)
H1A—C1—H1B107.7C8—C14—C13115.6 (3)
C3—C2—C1109.8 (3)C15—C14—C13103.7 (3)
C3—C2—H2A109.7C8—C14—H14105.8
C1—C2—H2A109.7C15—C14—H14105.8
C3—C2—H2B109.7C13—C14—H14105.8
C1—C2—H2B109.7C14—C15—C16104.1 (3)
H2A—C2—H2B108.2C14—C15—H15A110.9
O2—C3—C4110.4 (3)C16—C15—H15A110.9
O2—C3—C2106.3 (3)C14—C15—H15B110.9
C4—C3—C2112.2 (3)C16—C15—H15B110.9
O2—C3—H3109.3H15A—C15—H15B109.0
C4—C3—H3109.3C17—C16—C15107.1 (3)
C2—C3—H3109.3C17—C16—H16A110.3
C3—C4—C5109.8 (3)C15—C16—H16A110.3
C3—C4—H4A109.7C17—C16—H16B110.3
C5—C4—H4A109.7C15—C16—H16B110.3
C3—C4—H4B109.7H16A—C16—H16B108.5
C5—C4—H4B109.7C20—C17—C16113.1 (3)
H4A—C4—H4B108.2C20—C17—C13118.4 (3)
C6—C5—C4112.1 (3)C16—C17—C13103.2 (3)
C6—C5—C10112.0 (3)C20—C17—H17107.2
C4—C5—C10112.8 (3)C16—C17—H17107.2
C6—C5—H5106.5C13—C17—H17107.2
C4—C5—H5106.5C13—C18—Cl1113.1 (2)
C10—C5—H5106.5C13—C18—H18A109.0
C7—C6—C5111.0 (3)Cl1—C18—H18A109.0
C7—C6—H6A109.4C13—C18—H18B109.0
C5—C6—H6A109.4Cl1—C18—H18B109.0
C7—C6—H6B109.4H18A—C18—H18B107.8
C5—C6—H6B109.4C10—C19—H19A109.5
H6A—C6—H6B108.0C10—C19—H19B109.5
C6—C7—C8112.1 (3)H19A—C19—H19B109.5
C6—C7—H7A109.2C10—C19—H19C109.5
C8—C7—H7A109.2H19A—C19—H19C109.5
C6—C7—H7B109.2H19B—C19—H19C109.5
C8—C7—H7B109.2N1—C20—C17110.5 (3)
H7A—C7—H7B107.9N1—C20—C21108.3 (3)
C14—C8—C7111.5 (3)C17—C20—C21113.5 (3)
C14—C8—C9108.0 (2)N1—C20—H20108.1
C7—C8—C9111.1 (3)C17—C20—H20108.1
C14—C8—H8108.7C21—C20—H20108.1
C7—C8—H8108.7C20—C21—H21A109.5
C9—C8—H8108.7C20—C21—H21B109.5
C11—C9—C8111.5 (3)H21A—C21—H21B109.5
C11—C9—C10113.6 (3)C20—C21—H21C109.5
C8—C9—C10112.1 (2)H21A—C21—H21C109.5
C11—C9—H9106.4H21B—C21—H21C109.5
C8—C9—H9106.4O1—C22—N1123.0 (3)
C10—C9—H9106.4O1—C22—C23121.0 (3)
C1—C10—C19108.7 (3)N1—C22—C23115.9 (3)
C1—C10—C5107.5 (3)C22—C23—H23A109.5
C19—C10—C5112.4 (3)C22—C23—H23B109.5
C1—C10—C9110.4 (3)H23A—C23—H23B109.5
C19—C10—C9109.9 (3)C22—C23—H23C109.5
C5—C10—C9107.9 (2)H23A—C23—H23C109.5
C9—C11—C12112.0 (2)H23B—C23—H23C109.5
C9—C11—H11A109.2O3—C24—O2123.7 (4)
C12—C11—H11A109.2O3—C24—C25126.1 (4)
C9—C11—H11B109.2O2—C24—C25110.2 (4)
C12—C11—H11B109.2C24—C25—H25A109.5
H11A—C11—H11B107.9C24—C25—H25B109.5
C13—C12—C11110.9 (2)H25A—C25—H25B109.5
C13—C12—H12A109.4C24—C25—H25C109.5
C11—C12—H12A109.4H25A—C25—H25C109.5
C13—C12—H12B109.4H25B—C25—H25C109.5
C10—C1—C2—C356.6 (4)C11—C12—C13—C1455.1 (3)
C24—O2—C3—C487.3 (4)C11—C12—C13—C17167.1 (3)
C24—O2—C3—C2150.8 (4)C7—C8—C14—C1557.0 (4)
C1—C2—C3—O2176.6 (3)C9—C8—C14—C15179.4 (3)
C1—C2—C3—C455.9 (4)C7—C8—C14—C13178.5 (3)
O2—C3—C4—C5174.9 (3)C9—C8—C14—C1356.2 (3)
C2—C3—C4—C556.5 (4)C12—C13—C14—C857.2 (3)
C3—C4—C5—C6175.1 (3)C18—C13—C14—C863.2 (3)
C3—C4—C5—C1057.4 (4)C17—C13—C14—C8178.7 (3)
C4—C5—C6—C7173.7 (3)C12—C13—C14—C15170.8 (3)
C10—C5—C6—C758.5 (4)C18—C13—C14—C1568.9 (3)
C5—C6—C7—C855.8 (4)C17—C13—C14—C1546.6 (3)
C6—C7—C8—C14174.6 (3)C8—C14—C15—C16163.5 (3)
C6—C7—C8—C954.0 (4)C13—C14—C15—C1633.4 (3)
C14—C8—C9—C1154.2 (3)C14—C15—C16—C177.1 (4)
C7—C8—C9—C11176.8 (3)C15—C16—C17—C20150.9 (3)
C14—C8—C9—C10177.2 (2)C15—C16—C17—C1321.7 (4)
C7—C8—C9—C1054.6 (3)C12—C13—C17—C2076.9 (4)
C2—C1—C10—C1966.1 (4)C18—C13—C17—C2053.2 (4)
C2—C1—C10—C555.9 (4)C14—C13—C17—C20167.0 (3)
C2—C1—C10—C9173.3 (3)C12—C13—C17—C16157.3 (3)
C6—C5—C10—C1176.3 (3)C18—C13—C17—C1672.6 (3)
C4—C5—C10—C156.1 (3)C14—C13—C17—C1641.2 (3)
C6—C5—C10—C1964.0 (4)C12—C13—C18—Cl146.1 (3)
C4—C5—C10—C1963.5 (4)C14—C13—C18—Cl1164.0 (2)
C6—C5—C10—C957.3 (3)C17—C13—C18—Cl187.6 (3)
C4—C5—C10—C9175.2 (3)C22—N1—C20—C17104.7 (4)
C11—C9—C10—C159.9 (3)C22—N1—C20—C21130.3 (3)
C8—C9—C10—C1172.7 (3)C16—C17—C20—N143.4 (4)
C11—C9—C10—C1960.1 (3)C13—C17—C20—N1164.2 (3)
C8—C9—C10—C1967.4 (3)C16—C17—C20—C21165.3 (3)
C11—C9—C10—C5177.0 (3)C13—C17—C20—C2173.9 (4)
C8—C9—C10—C555.5 (3)C20—N1—C22—O12.3 (6)
C8—C9—C11—C1257.1 (3)C20—N1—C22—C23177.5 (3)
C10—C9—C11—C12175.1 (2)C3—O2—C24—O32.7 (7)
C9—C11—C12—C1358.1 (3)C3—O2—C24—C25179.1 (4)
C11—C12—C13—C1863.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.032.893 (4)165
C23—H23C···O3ii0.982.543.487 (6)163
C12—H12B···Cl10.992.623.076 (3)108
C20—H20···Cl11.002.673.349 (3)125
C20—H20···O11.002.422.812 (4)103
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H40ClNO3
Mr438.03
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.6604 (4), 9.7796 (4), 16.8301 (8)
β (°) 96.398 (2)
V3)1252.98 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.28 × 0.12 × 0.04
Data collection
DiffractometerNonius
diffractometer with Bruker APEXII CCD detector
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.952, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
9843, 5254, 4999
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.154, 1.13
No. of reflections5254
No. of parameters275
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.74, 0.25
Absolute structureFlack (1983), 2026 Friedel pairs
Absolute structure parameter0.04 (9)

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.882.032.893 (4)165.3
C23—H23C···O3ii0.982.543.487 (6)162.8
C12—H12B···Cl10.992.623.076 (3)108.0
C20—H20···Cl11.002.673.349 (3)125.1
C20—H20···O11.002.422.812 (4)102.8
Symmetry codes: (i) x+2, y1/2, z+1; (ii) x+1, y, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBenn, M. H. & Vohra, K. N. (1976). Can. J. Chem. 54, 136–140.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEdwards, O. E., Paton, J. M., Benn, M. H., Mitchell, R. E., Watanatada, C. & Vohra, K. N. (1971). Can. J. Chem. 49, 1648–1658.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPellissier, H. & Santelli, M. (2001). Org. Prep. Proc. Intl, 33, 455–476.  CrossRef CAS Google Scholar
First citationRej, N. R., Ghosh, P. C. & Banerji, J. (1976). Phytochemistry, 15, 1173–1175.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVohra, K. N. (1973). N-Haloamides and their Applications in Natural Product Synthesis. PhD thesis, University of Calgary, Calgary, Alberta, Canada.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds