metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[bis­­(2,2′-bi­pyridine)manganese(II)]-μ4-3,3′-sulfanediyldipropionato] bis­­(perchlorate)]

aSuzhou Vocational University, Suzhou 215104, People's Republic of China
*Correspondence e-mail: szhliyong@yahoo.cn

(Received 8 October 2009; accepted 3 March 2010; online 6 March 2010)

The title compound, [Mn2(C6H8O4S)(C10H8N2)4](ClO4)2, which was crystallized from an aqueous solution, features two MnII atoms in the asymmetric unit, each being coordinated by four N-atom donors from 2,2′-bipyridine ligands and two O atoms of two different 3,3′-sulfanediyldipropionate (L) ligands, with the O atoms in cis positions. The two carboxyl­ate groups of each L ligand, which adopt a syn-anti coordination mode, combine with four MnII atoms, yielding one-dimensional chains extending along [010].

Related literature

For the structures and potential applications of metal-organic coordination polymers, see: Gardner et al. (1995[Gardner, G. B., Venkataraman, D., Moore, J. S. & Lee, S. (1995). Nature (London), 374, 792-795.]); Seo et al. (2000[Seo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982-986.]). Many ligands, including rigid carboxyl­ate arms, have been used in the design of metal-organic materials with desired topologies, see: Cao et al. (2002[Cao, R., Sun, D. F., Wang, Y.-L., Hong, M.-C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087-2094.]); Xu et al. (2005[Xu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L., Zhou, Y.-F. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 651-655.]). Relatively fewer complexes have been reported derived from flexible carboxyl­ate arms, see: Cao et al. (2004[Cao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). Cryst. Eng. Commun. 6, 315-317.]); Yong et al. (2004[Yong, G.-P., Wang, Z.-Y. & Cui, Y. (2004). Eur. J. Inorg. Chem. 21, 4317-4323.]). For the corresponding zinc(II) and cadmium(II) complexes, see: Yang et al. (2008[Yang, P.-P., Li, B., Wang, Y.-H., Gu, W. & Liu, X. (2008). Z. Anorg. Allg. Chem. 634, 1221-1224.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C6H8O4S)(C10H8N2)4](ClO4)2

  • Mr = 1109.70

  • Triclinic, [P \overline 1]

  • a = 12.031 (2) Å

  • b = 13.550 (2) Å

  • c = 15.653 (3) Å

  • α = 102.611 (2)°

  • β = 93.213 (3)°

  • γ = 93.556 (3)°

  • V = 2479.2 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.73 mm−1

  • T = 294 K

  • 0.22 × 0.16 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.841, Tmax = 0.988

  • 12678 measured reflections

  • 8690 independent reflections

  • 5935 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.116

  • S = 1.02

  • 8690 reflections

  • 640 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O2i 2.121 (2)
Mn1—O1 2.124 (2)
Mn1—N1 2.234 (3)
Mn1—N4 2.236 (3)
Mn1—N3 2.254 (3)
Mn1—N2 2.293 (3)
Mn2—O4ii 2.110 (2)
Mn2—O3 2.112 (2)
Mn2—N8 2.255 (3)
Mn2—N6 2.263 (3)
Mn2—N5 2.298 (3)
Mn2—N7 2.301 (3)
Symmetry codes: (i) -x, -y, -z; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and local programs.

Supporting information


Comment top

In recent years, a great deal of effort has been devoted to metal-organic coordination polymers owning to their structures and potential applications. (Gardner et al., 1995; Seo et al., 2000;) Many ligands including rigid carboxylate arms have been used in the design of metal-organic materials with desired topologies (Cao et al., 2002; Xu et al., 2005). Compared to rigid carboxylate arms, relative fewer complexes have been reported derived from flexible carboxylate arms (Cao et al., 2004; Yong et al., 2004). We know that the formation of crystal structure is sensitive to the flexibility of carboxylate arms, and such flexibility may increase the probability of making tube-like or cage-like structure. Herein, in the course of ongoing studies on the exploration on carboxylate ligand with flexible carboxylate arms, we choose a multi-carboxylate ligand, namely 3,3'-thiodipropionic acid, which can act not only as chelating ligand, but also as bridging ligand, to assemble new coordination polymers. In this contribution, in the hope of obtaining a supramolecular complex, we used 3,3'-thiodipropionic acid reacting with manganese salts as well as 2,2'-bipyridine ligands and synthesized a new one-dimensional complex. Here, we report the preperation and X-ray characterization of the complex, namely (Mn2L(bpy)4).(ClO4)2.

The molecular structure of the complex is depicted in Figure 1. In the complex, the local coordination of the manganese atom are defined by four nitrogen donors from bpy ligands with Mn···N distance from 2.236 (2) to 2.293 (2)Å and by two oxygen atoms of different L ligands with Mn···O distance from 2.124 (2) to 2.121 (6) Å, yielding a distorted octahedral geometry. Two carboxylic groups of each L ligand, which adopt syn-anti coordination mode, combine with four manganese(II) atoms to form a one-dimensional chain (shown in Figure 2). The distance of two manganese(II) atom bridged by L ligand is 4.7693 Å. Figure 3 shows the molecular packing diagram of the complex viewed in the ac plane. In the complex, two carboxylic groups and the sulfur atom of each L ligand adopt syn-anti conformation to debase the steric hindrance.

Related literature top

For the structures and potential applications of metal-organic coordination polymers, see: Gardner et al. (1995); Seo et al. (2000). Many ligands, including rigid carboxylate arms, have been used in the design of metal-organic materials with desired topologies, see: Cao et al. (2002); Xu et al. (2005). Relatively fewer complexes have been reported derived from flexible carboxylate arms, see: Cao et al. (2004); Yong et al. (2004). For the corresponding zinc(II) and cadmium(II) complexes, see: Yang et al. (2008).

Experimental top

A solution of Mn(ClO4)2.(H2O)6 (0.365 g, 1 mmol) was slowly added to a mixture of L ligand (0.180 g, 1 mmol) and NaOH (0.040 g, 1 mmol) in water (10 ml) with stirring under heating. Then a solution of bpy (0.198 g, 1 mmol) in ethanol (5 ml) was dropped into the mixture. The resulting solution was continued with stirring for another 2 h under heating and filtered when cooled to room temperature. The yellow crystals suitable for X-ray crystallographic analysis were obtained after a week. The product was washed with cold water and air-dried. Analysis found: C 49.65, H 3.49, N 9.91%; C46H40Cl2Mn2N8O12S requires: C 49.74, H 3.60, N 10.09%.

Refinement top

Crystals of the title complex are triclinic, space group P-1. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were visible in difference maps and were subsequently treated as riding atoms with distances restraints of C—H = 0.97 (CH2) or 0.93Å (CH).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-labelling scheme. For the sake of clarity, hydrogen atoms have been omitted.
[Figure 2] Fig. 2. The one-dimensional infinate chain in the compound: for the sake of clarity, hydrogen atoms and ClO4 anions have been omitted.
catena-Poly[[[bis[bis(2,2'-bipyridine)manganese(II)]-µ4-3,3'- sulfanediyldipropionato] bis(perchlorate)] top
Crystal data top
[Mn2(C6H8O4S)(C10H8N2)4](ClO4)2Z = 2
Mr = 1109.70F(000) = 1136
Triclinic, P1Dx = 1.487 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.031 (2) ÅCell parameters from 4396 reflections
b = 13.550 (2) Åθ = 2.5–25.9°
c = 15.653 (3) ŵ = 0.73 mm1
α = 102.611 (2)°T = 294 K
β = 93.213 (3)°Block, yellow
γ = 93.556 (3)°0.22 × 0.16 × 0.10 mm
V = 2479.2 (7) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
8690 independent reflections
Radiation source: fine-focus sealed tube5935 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 814
Tmin = 0.841, Tmax = 0.988k = 1614
12678 measured reflectionsl = 1718
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0476P)2 + 1.3954P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.53 e Å3
8690 reflectionsΔρmin = 0.37 e Å3
640 parameters
Crystal data top
[Mn2(C6H8O4S)(C10H8N2)4](ClO4)2γ = 93.556 (3)°
Mr = 1109.70V = 2479.2 (7) Å3
Triclinic, P1Z = 2
a = 12.031 (2) ÅMo Kα radiation
b = 13.550 (2) ŵ = 0.73 mm1
c = 15.653 (3) ÅT = 294 K
α = 102.611 (2)°0.22 × 0.16 × 0.10 mm
β = 93.213 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
8690 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5935 reflections with I > 2σ(I)
Tmin = 0.841, Tmax = 0.988Rint = 0.021
12678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.53 e Å3
8690 reflectionsΔρmin = 0.37 e Å3
640 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00691 (4)0.18036 (4)0.04401 (3)0.04195 (14)
Mn20.44247 (4)0.13551 (4)0.60030 (3)0.04089 (14)
S10.01371 (9)0.00873 (11)0.36605 (7)0.0797 (4)
O10.09407 (19)0.05450 (17)0.06451 (15)0.0516 (6)
O20.0797 (2)0.10541 (18)0.07046 (15)0.0576 (6)
O30.3690 (2)0.00206 (17)0.51458 (15)0.0538 (6)
O40.3952 (2)0.08857 (19)0.38353 (16)0.0603 (7)
N10.1243 (2)0.2224 (2)0.04545 (17)0.0447 (7)
N20.0733 (2)0.3260 (2)0.00598 (18)0.0482 (7)
N30.0269 (2)0.2710 (2)0.17757 (17)0.0470 (7)
N40.1538 (2)0.1728 (2)0.13582 (18)0.0494 (7)
N50.2905 (2)0.2255 (2)0.58200 (19)0.0537 (8)
N60.4855 (2)0.2419 (2)0.51181 (17)0.0474 (7)
N70.4777 (2)0.2644 (2)0.72353 (17)0.0462 (7)
N80.3891 (2)0.0761 (2)0.71663 (18)0.0495 (7)
C10.2205 (3)0.1664 (3)0.0711 (2)0.0548 (9)
C20.2844 (3)0.1696 (3)0.1456 (3)0.0624 (10)
C30.2485 (4)0.2349 (3)0.1955 (3)0.0672 (11)
C40.1508 (3)0.2953 (3)0.1695 (2)0.0579 (10)
C50.0893 (3)0.2875 (2)0.0941 (2)0.0437 (8)
C60.0169 (3)0.3484 (2)0.0628 (2)0.0455 (8)
C70.0578 (4)0.4254 (3)0.1006 (3)0.0668 (11)
C80.1570 (4)0.4800 (3)0.0660 (3)0.0820 (14)
C90.2121 (4)0.4584 (3)0.0051 (3)0.0768 (13)
C100.1686 (3)0.3801 (3)0.0388 (3)0.0626 (10)
C110.1235 (3)0.3113 (3)0.1952 (2)0.0567 (9)
C120.1491 (4)0.3540 (3)0.2788 (3)0.0703 (11)
C130.0740 (4)0.3528 (3)0.3471 (3)0.0794 (13)
C140.0255 (4)0.3107 (3)0.3300 (2)0.0700 (12)
C150.0481 (3)0.2711 (2)0.2442 (2)0.0485 (8)
C160.1523 (3)0.2232 (3)0.2196 (2)0.0502 (9)
C170.2448 (4)0.2287 (4)0.2772 (3)0.0803 (13)
C180.3369 (4)0.1801 (4)0.2501 (3)0.0860 (14)
C190.3375 (3)0.1271 (3)0.1658 (3)0.0691 (11)
C200.2449 (3)0.1260 (3)0.1106 (3)0.0602 (10)
C210.0823 (3)0.0139 (3)0.1054 (2)0.0412 (8)
C220.0775 (3)0.0126 (3)0.2050 (2)0.0553 (9)
C230.0177 (3)0.0257 (3)0.2481 (2)0.0691 (11)
C240.1392 (4)0.0405 (4)0.4038 (3)0.0852 (14)
C250.2439 (4)0.0136 (3)0.3925 (3)0.0745 (12)
C260.3433 (3)0.0280 (3)0.4341 (2)0.0498 (9)
C270.1953 (3)0.2153 (3)0.6200 (3)0.0751 (12)
C280.1122 (4)0.2822 (4)0.6202 (4)0.0940 (16)
C290.1298 (5)0.3605 (4)0.5792 (4)0.0967 (17)
C300.2265 (4)0.3717 (3)0.5399 (3)0.0782 (13)
C310.3061 (3)0.3027 (3)0.5413 (2)0.0525 (9)
C320.4114 (3)0.3080 (2)0.4981 (2)0.0490 (9)
C330.4348 (4)0.3754 (3)0.4449 (3)0.0692 (12)
C340.5352 (5)0.3734 (4)0.4064 (3)0.0834 (14)
C350.6093 (4)0.3076 (4)0.4220 (3)0.0805 (13)
C360.5824 (4)0.2432 (3)0.4752 (2)0.0620 (10)
C370.5167 (3)0.3587 (3)0.7230 (2)0.0566 (10)
C380.5160 (4)0.4381 (3)0.7933 (3)0.0721 (12)
C390.4740 (5)0.4204 (3)0.8676 (3)0.0883 (15)
C400.4348 (4)0.3239 (3)0.8707 (2)0.0753 (13)
C410.4382 (3)0.2461 (3)0.7976 (2)0.0489 (8)
C420.4041 (3)0.1390 (3)0.7961 (2)0.0469 (8)
C430.3942 (3)0.1036 (3)0.8722 (2)0.0603 (10)
C440.3718 (3)0.0017 (3)0.8659 (3)0.0687 (11)
C450.3576 (3)0.0629 (3)0.7856 (3)0.0675 (11)
C460.3654 (3)0.0226 (3)0.7124 (3)0.0628 (10)
Cl10.55665 (8)0.29282 (7)0.09891 (6)0.0576 (2)
Cl20.81938 (9)0.43090 (8)0.63234 (7)0.0635 (3)
O50.4477 (2)0.3230 (2)0.08365 (18)0.0736 (8)
O60.5608 (3)0.1882 (2)0.0577 (2)0.0859 (9)
O70.6353 (3)0.3516 (2)0.0625 (2)0.0992 (11)
O80.5816 (3)0.3050 (3)0.19051 (19)0.0975 (10)
O90.7915 (4)0.3273 (3)0.6220 (3)0.1298 (16)
O100.8648 (3)0.4539 (3)0.5569 (2)0.0994 (11)
O110.9012 (3)0.4606 (3)0.7031 (2)0.1141 (13)
O120.7260 (4)0.4848 (4)0.6470 (3)0.1559 (19)
H10.24550.12290.03660.066*
H20.35040.12860.16170.075*
H30.28970.23840.24670.081*
H40.12640.34100.20220.069*
H70.01890.44010.14870.080*
H80.18590.53130.09130.098*
H90.27770.49590.03030.092*
H100.20720.36410.08660.075*
H110.17570.31050.14890.068*
H120.21650.38320.28870.084*
H130.08990.38020.40460.095*
H140.07740.30880.37580.084*
H170.24430.26560.33470.096*
H180.39890.18320.28910.103*
H190.39890.09260.14620.083*
H200.24540.09080.05250.072*
H22A0.07380.08580.22490.066*
H22B0.14620.01460.22380.066*
H23A0.08700.00250.23120.083*
H23B0.01500.09890.22890.083*
H24A0.13540.03970.46570.102*
H24B0.14040.11070.37290.102*
H25A0.24170.08500.41920.089*
H25B0.25280.00720.33040.089*
H270.18410.16150.64740.090*
H280.04660.27380.64740.113*
H290.07550.40630.57810.116*
H300.23890.42530.51240.094*
H330.38350.42120.43530.083*
H340.55180.41730.37000.100*
H350.67770.30590.39690.097*
H360.63410.19840.48630.074*
H370.54560.37080.67200.068*
H380.54370.50290.79050.086*
H390.47170.47340.91640.106*
H400.40620.31110.92150.090*
H430.40270.14830.92690.072*
H440.36640.02330.91640.082*
H450.34300.13220.78030.081*
H460.35360.06620.65740.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0505 (3)0.0440 (3)0.0341 (3)0.0046 (2)0.0015 (2)0.0154 (2)
Mn20.0471 (3)0.0407 (3)0.0359 (3)0.0090 (2)0.0018 (2)0.0095 (2)
S10.0524 (6)0.1455 (11)0.0467 (6)0.0309 (7)0.0036 (5)0.0284 (6)
O10.0569 (15)0.0507 (14)0.0521 (14)0.0007 (11)0.0048 (12)0.0256 (11)
O20.0825 (18)0.0493 (15)0.0449 (14)0.0089 (13)0.0167 (13)0.0149 (11)
O30.0597 (16)0.0482 (14)0.0497 (15)0.0045 (12)0.0011 (12)0.0039 (11)
O40.0553 (15)0.0653 (16)0.0523 (15)0.0215 (13)0.0083 (13)0.0054 (13)
N10.0469 (17)0.0489 (16)0.0429 (15)0.0033 (13)0.0004 (13)0.0213 (13)
N20.0480 (17)0.0450 (16)0.0534 (17)0.0030 (13)0.0016 (14)0.0181 (13)
N30.0536 (18)0.0454 (16)0.0424 (16)0.0039 (14)0.0022 (14)0.0110 (13)
N40.0513 (18)0.0564 (18)0.0421 (16)0.0086 (14)0.0009 (14)0.0143 (14)
N50.0507 (19)0.0496 (18)0.0605 (19)0.0115 (14)0.0005 (15)0.0104 (15)
N60.0583 (19)0.0474 (17)0.0388 (15)0.0097 (14)0.0016 (14)0.0132 (13)
N70.0552 (18)0.0423 (16)0.0392 (15)0.0055 (14)0.0002 (13)0.0056 (12)
N80.0599 (19)0.0438 (17)0.0477 (17)0.0105 (14)0.0107 (14)0.0133 (13)
C10.047 (2)0.062 (2)0.059 (2)0.0033 (18)0.0004 (18)0.0237 (18)
C20.042 (2)0.071 (3)0.074 (3)0.0016 (19)0.014 (2)0.021 (2)
C30.068 (3)0.080 (3)0.058 (2)0.018 (2)0.013 (2)0.026 (2)
C40.065 (3)0.061 (2)0.055 (2)0.009 (2)0.005 (2)0.0289 (19)
C50.050 (2)0.0434 (19)0.0409 (18)0.0112 (16)0.0050 (16)0.0137 (15)
C60.054 (2)0.0404 (19)0.0476 (19)0.0088 (16)0.0075 (17)0.0189 (15)
C70.072 (3)0.066 (3)0.074 (3)0.001 (2)0.004 (2)0.043 (2)
C80.081 (3)0.066 (3)0.111 (4)0.010 (2)0.012 (3)0.049 (3)
C90.064 (3)0.060 (3)0.104 (4)0.017 (2)0.001 (3)0.021 (2)
C100.061 (3)0.058 (2)0.069 (3)0.004 (2)0.009 (2)0.020 (2)
C110.060 (2)0.057 (2)0.055 (2)0.0036 (19)0.0045 (19)0.0151 (18)
C120.073 (3)0.069 (3)0.067 (3)0.006 (2)0.022 (2)0.008 (2)
C130.094 (4)0.084 (3)0.051 (3)0.002 (3)0.019 (3)0.007 (2)
C140.083 (3)0.080 (3)0.039 (2)0.005 (2)0.004 (2)0.0007 (19)
C150.058 (2)0.0433 (19)0.0418 (19)0.0076 (17)0.0034 (17)0.0088 (15)
C160.054 (2)0.050 (2)0.045 (2)0.0064 (17)0.0103 (17)0.0141 (16)
C170.070 (3)0.099 (3)0.059 (3)0.003 (3)0.024 (2)0.003 (2)
C180.058 (3)0.108 (4)0.085 (3)0.002 (3)0.029 (3)0.016 (3)
C190.043 (2)0.079 (3)0.088 (3)0.006 (2)0.002 (2)0.026 (2)
C200.057 (2)0.072 (3)0.056 (2)0.012 (2)0.004 (2)0.0209 (19)
C210.0364 (18)0.048 (2)0.0421 (18)0.0022 (15)0.0001 (15)0.0174 (16)
C220.063 (2)0.059 (2)0.045 (2)0.0128 (19)0.0052 (18)0.0156 (17)
C230.065 (3)0.094 (3)0.051 (2)0.028 (2)0.003 (2)0.018 (2)
C240.059 (3)0.118 (4)0.089 (3)0.002 (3)0.010 (2)0.049 (3)
C250.069 (3)0.068 (3)0.083 (3)0.017 (2)0.014 (2)0.012 (2)
C260.043 (2)0.045 (2)0.058 (2)0.0043 (16)0.0125 (18)0.0069 (17)
C270.055 (3)0.078 (3)0.093 (3)0.013 (2)0.011 (2)0.019 (2)
C280.052 (3)0.110 (4)0.120 (4)0.026 (3)0.016 (3)0.016 (3)
C290.075 (4)0.084 (4)0.127 (5)0.042 (3)0.011 (3)0.010 (3)
C300.079 (3)0.067 (3)0.086 (3)0.028 (2)0.019 (3)0.012 (2)
C310.063 (2)0.041 (2)0.049 (2)0.0140 (17)0.0169 (18)0.0025 (16)
C320.069 (2)0.0375 (18)0.0372 (18)0.0042 (17)0.0123 (18)0.0048 (14)
C330.097 (3)0.054 (2)0.058 (2)0.002 (2)0.022 (2)0.0227 (19)
C340.120 (4)0.071 (3)0.064 (3)0.018 (3)0.006 (3)0.031 (2)
C350.096 (4)0.078 (3)0.074 (3)0.002 (3)0.027 (3)0.028 (2)
C360.071 (3)0.062 (2)0.055 (2)0.007 (2)0.013 (2)0.0138 (19)
C370.073 (3)0.050 (2)0.045 (2)0.0017 (19)0.0005 (19)0.0091 (17)
C380.107 (4)0.047 (2)0.055 (2)0.003 (2)0.005 (2)0.0029 (19)
C390.140 (5)0.059 (3)0.055 (3)0.007 (3)0.001 (3)0.009 (2)
C400.117 (4)0.069 (3)0.039 (2)0.016 (3)0.014 (2)0.0070 (19)
C410.055 (2)0.055 (2)0.0376 (19)0.0147 (17)0.0028 (16)0.0105 (16)
C420.046 (2)0.055 (2)0.0430 (19)0.0115 (16)0.0055 (16)0.0165 (16)
C430.064 (3)0.076 (3)0.048 (2)0.009 (2)0.0099 (19)0.0256 (19)
C440.066 (3)0.087 (3)0.068 (3)0.018 (2)0.015 (2)0.045 (3)
C450.071 (3)0.057 (2)0.086 (3)0.011 (2)0.022 (2)0.036 (2)
C460.079 (3)0.050 (2)0.062 (2)0.009 (2)0.015 (2)0.0160 (19)
Cl10.0618 (6)0.0534 (5)0.0590 (6)0.0018 (5)0.0008 (5)0.0174 (4)
Cl20.0642 (6)0.0714 (7)0.0664 (6)0.0117 (5)0.0027 (5)0.0385 (5)
O50.0632 (18)0.083 (2)0.0770 (19)0.0122 (15)0.0012 (15)0.0215 (15)
O60.118 (3)0.0532 (17)0.087 (2)0.0144 (17)0.0171 (19)0.0122 (15)
O70.084 (2)0.085 (2)0.139 (3)0.0133 (18)0.023 (2)0.050 (2)
O80.114 (3)0.117 (3)0.0557 (18)0.012 (2)0.0214 (18)0.0119 (17)
O90.187 (4)0.077 (2)0.127 (3)0.024 (2)0.044 (3)0.050 (2)
O100.122 (3)0.123 (3)0.0678 (19)0.013 (2)0.0204 (19)0.0482 (19)
O110.132 (3)0.131 (3)0.086 (2)0.034 (2)0.036 (2)0.062 (2)
O120.118 (3)0.193 (5)0.207 (5)0.093 (3)0.073 (3)0.117 (4)
Geometric parameters (Å, º) top
Mn1—O2i2.121 (2)C31—C321.475 (5)
Mn1—O12.124 (2)C32—C331.391 (5)
Mn1—N12.234 (3)C33—C341.378 (6)
Mn1—N42.236 (3)C34—C351.349 (6)
Mn1—N32.254 (3)C35—C361.369 (5)
Mn1—N22.293 (3)C37—C381.362 (5)
Mn2—O4ii2.110 (2)C38—C391.356 (6)
Mn2—O32.112 (2)C39—C401.373 (6)
Mn2—N82.255 (3)C40—C411.380 (5)
Mn2—N62.263 (3)C41—C421.479 (5)
Mn2—N52.298 (3)C42—C431.387 (5)
Mn2—N72.301 (3)C43—C441.370 (5)
S1—C231.807 (4)C44—C451.360 (6)
S1—C241.808 (4)C45—C461.378 (5)
O1—C211.246 (4)Cl1—O81.420 (3)
O2—C211.245 (4)Cl1—O51.420 (3)
O2—Mn1i2.121 (2)Cl1—O71.421 (3)
O3—C261.251 (4)Cl1—O61.428 (3)
O4—C261.235 (4)Cl2—O121.381 (4)
O4—Mn2ii2.110 (2)Cl2—O91.395 (3)
N1—C11.336 (4)Cl2—O111.411 (3)
N1—C51.348 (4)Cl2—O101.415 (3)
N2—C101.335 (4)C1—H10.9300
N2—C61.341 (4)C2—H20.9300
N3—C111.332 (4)C3—H30.9300
N3—C151.340 (4)C4—H40.9300
N4—C201.336 (4)C7—H70.9300
N4—C161.342 (4)C8—H80.9300
N5—C271.333 (5)C9—H90.9300
N5—C311.347 (4)C10—H100.9300
N6—C361.328 (5)C11—H110.9300
N6—C321.344 (4)C12—H120.9300
N7—C371.336 (4)C13—H130.9300
N7—C411.344 (4)C14—H140.9300
N8—C461.335 (4)C17—H170.9300
N8—C421.341 (4)C18—H180.9300
C1—C21.370 (5)C19—H190.9300
C2—C31.368 (5)C20—H200.9300
C3—C41.379 (5)C22—H22A0.9700
C4—C51.384 (4)C22—H22B0.9700
C5—C61.475 (5)C23—H23A0.9700
C6—C71.385 (5)C23—H23B0.9700
C7—C81.381 (6)C24—H24A0.9700
C8—C91.359 (6)C24—H24B0.9700
C9—C101.373 (5)C25—H25A0.9700
C11—C121.370 (5)C25—H25B0.9700
C12—C131.365 (6)C27—H270.9300
C13—C141.372 (6)C28—H280.9300
C14—C151.381 (5)C29—H290.9300
C15—C161.479 (5)C30—H300.9300
C16—C171.380 (5)C33—H330.9300
C17—C181.365 (6)C34—H340.9300
C18—C191.358 (6)C35—H350.9300
C19—C201.368 (5)C36—H360.9300
C21—C221.519 (4)C37—H370.9300
C22—C231.475 (5)C38—H380.9300
C24—C251.456 (6)C39—H390.9300
C25—C261.526 (5)C40—H400.9300
C27—C281.390 (6)C43—H430.9300
C28—C291.368 (7)C44—H440.9300
C29—C301.361 (7)C45—H450.9300
C30—C311.382 (5)C46—H460.9300
O2i—Mn1—O197.97 (9)N7—C37—C38123.3 (4)
O2i—Mn1—N187.09 (10)C39—C38—C37118.3 (4)
O1—Mn1—N193.10 (9)C38—C39—C40119.9 (4)
O2i—Mn1—N495.09 (10)C39—C40—C41119.4 (4)
O1—Mn1—N498.77 (9)N7—C41—C40120.6 (3)
N1—Mn1—N4167.49 (10)N7—C41—C42116.0 (3)
O2i—Mn1—N3166.07 (11)C40—C41—C42123.4 (3)
O1—Mn1—N390.46 (10)N8—C42—C43121.4 (3)
N1—Mn1—N3103.58 (10)N8—C42—C41116.2 (3)
N4—Mn1—N372.57 (10)C43—C42—C41122.3 (3)
O2i—Mn1—N284.63 (10)C44—C43—C42119.0 (4)
O1—Mn1—N2165.16 (9)C45—C44—C43120.0 (4)
N1—Mn1—N272.37 (10)C44—C45—C46118.1 (4)
N4—Mn1—N295.54 (10)N8—C46—C45123.2 (4)
N3—Mn1—N290.06 (10)O8—Cl1—O5109.5 (2)
O4ii—Mn2—O398.49 (9)O8—Cl1—O7110.9 (2)
O4ii—Mn2—N891.21 (10)O5—Cl1—O7109.49 (19)
O3—Mn2—N890.14 (10)O8—Cl1—O6108.53 (19)
O4ii—Mn2—N696.47 (11)O5—Cl1—O6109.31 (19)
O3—Mn2—N6104.81 (10)O7—Cl1—O6109.0 (2)
N8—Mn2—N6161.91 (10)O12—Cl2—O9110.6 (3)
O4ii—Mn2—N5165.22 (11)O12—Cl2—O11111.5 (3)
O3—Mn2—N592.96 (10)O9—Cl2—O11107.7 (2)
N8—Mn2—N598.12 (11)O12—Cl2—O10106.9 (2)
N6—Mn2—N571.43 (11)O9—Cl2—O10112.1 (2)
O4ii—Mn2—N790.41 (10)O11—Cl2—O10108.0 (2)
O3—Mn2—N7160.35 (10)N1—C1—H1118.2
N8—Mn2—N772.09 (10)C2—C1—H1118.2
N6—Mn2—N791.45 (10)C3—C2—H2120.9
N5—Mn2—N781.66 (10)C1—C2—H2120.9
C23—S1—C24102.7 (2)C2—C3—H3120.2
C21—O1—Mn1135.9 (2)C4—C3—H3120.2
C21—O2—Mn1i131.8 (2)C3—C4—H4120.3
C26—O3—Mn2137.2 (2)C5—C4—H4120.3
C26—O4—Mn2ii130.1 (2)C8—C7—H7120.3
C1—N1—C5118.4 (3)C6—C7—H7120.3
C1—N1—Mn1122.8 (2)C9—C8—H8120.2
C5—N1—Mn1115.7 (2)C7—C8—H8120.2
C10—N2—C6119.2 (3)C8—C9—H9120.8
C10—N2—Mn1125.3 (2)C10—C9—H9120.8
C6—N2—Mn1114.9 (2)N2—C10—H10118.6
C11—N3—C15118.8 (3)C9—C10—H10118.6
C11—N3—Mn1123.2 (2)N3—C11—H11118.6
C15—N3—Mn1117.3 (2)C12—C11—H11118.6
C20—N4—C16118.6 (3)C13—C12—H12120.6
C20—N4—Mn1123.6 (2)C11—C12—H12120.6
C16—N4—Mn1117.7 (2)C12—C13—H13120.5
C27—N5—C31118.7 (3)C14—C13—H13120.5
C27—N5—Mn2123.7 (3)C13—C14—H14120.2
C31—N5—Mn2116.7 (2)C15—C14—H14120.2
C36—N6—C32119.0 (3)C18—C17—H17119.9
C36—N6—Mn2122.4 (2)C16—C17—H17119.9
C32—N6—Mn2118.6 (2)C19—C18—H18120.2
C37—N7—C41118.6 (3)C17—C18—H18120.2
C37—N7—Mn2124.6 (2)C18—C19—H19121.0
C41—N7—Mn2115.8 (2)C20—C19—H19121.0
C46—N8—C42118.2 (3)N4—C20—H20118.3
C46—N8—Mn2122.5 (2)C19—C20—H20118.3
C42—N8—Mn2117.8 (2)C23—C22—H22A108.6
N1—C1—C2123.5 (3)C21—C22—H22A108.6
C3—C2—C1118.2 (4)C23—C22—H22B108.6
C2—C3—C4119.6 (3)C21—C22—H22B108.6
C3—C4—C5119.4 (3)H22A—C22—H22B107.6
N1—C5—C4121.0 (3)C22—C23—H23A109.5
N1—C5—C6116.4 (3)S1—C23—H23A109.5
C4—C5—C6122.6 (3)C22—C23—H23B109.5
N2—C6—C7120.6 (3)S1—C23—H23B109.5
N2—C6—C5116.3 (3)H23A—C23—H23B108.1
C7—C6—C5123.1 (3)C25—C24—H24A108.3
C8—C7—C6119.3 (4)S1—C24—H24A108.3
C9—C8—C7119.6 (4)C25—C24—H24B108.3
C8—C9—C10118.5 (4)S1—C24—H24B108.3
N2—C10—C9122.7 (4)H24A—C24—H24B107.4
N3—C11—C12122.7 (4)C24—C25—H25A109.4
C13—C12—C11118.8 (4)C26—C25—H25A109.4
C12—C13—C14119.1 (4)C24—C25—H25B109.4
C13—C14—C15119.6 (4)C26—C25—H25B109.4
N3—C15—C14121.0 (4)H25A—C25—H25B108.0
N3—C15—C16115.7 (3)N5—C27—H27118.8
C14—C15—C16123.4 (3)C28—C27—H27118.8
N4—C16—C17120.1 (4)C29—C28—H28121.0
N4—C16—C15116.1 (3)C27—C28—H28121.0
C17—C16—C15123.7 (3)C30—C29—H29119.9
C18—C17—C16120.2 (4)C28—C29—H29119.9
C19—C18—C17119.7 (4)C29—C30—H30120.3
C18—C19—C20118.0 (4)C31—C30—H30120.3
N4—C20—C19123.4 (4)C34—C33—H33120.5
O2—C21—O1124.7 (3)C32—C33—H33120.5
O2—C21—C22116.0 (3)C35—C34—H34120.2
O1—C21—C22119.2 (3)C33—C34—H34120.2
C23—C22—C21114.5 (3)C34—C35—H35120.5
C22—C23—S1110.6 (3)C36—C35—H35120.5
C25—C24—S1115.8 (3)N6—C36—H36118.6
C24—C25—C26111.4 (4)C35—C36—H36118.6
O4—C26—O3124.4 (3)N7—C37—H37118.4
O4—C26—C25116.0 (3)C38—C37—H37118.4
O3—C26—C25119.6 (3)C39—C38—H38120.9
N5—C27—C28122.4 (4)C37—C38—H38120.9
C29—C28—C27118.1 (5)C38—C39—H39120.1
C30—C29—C28120.1 (4)C40—C39—H39120.1
C29—C30—C31119.4 (5)C39—C40—H40120.3
N5—C31—C30121.2 (4)C41—C40—H40120.3
N5—C31—C32116.2 (3)C44—C43—H43120.5
C30—C31—C32122.5 (4)C42—C43—H43120.5
N6—C32—C33120.5 (4)C45—C44—H44120.0
N6—C32—C31116.0 (3)C43—C44—H44120.0
C33—C32—C31123.5 (4)C44—C45—H45120.9
C34—C33—C32119.0 (4)C46—C45—H45121.0
C35—C34—C33119.7 (4)N8—C46—H46118.4
C34—C35—C36119.0 (5)C45—C46—H46118.4
N6—C36—C35122.8 (4)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C6H8O4S)(C10H8N2)4](ClO4)2
Mr1109.70
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)12.031 (2), 13.550 (2), 15.653 (3)
α, β, γ (°)102.611 (2), 93.213 (3), 93.556 (3)
V3)2479.2 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.22 × 0.16 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.841, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12678, 8690, 5935
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.116, 1.02
No. of reflections8690
No. of parameters640
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.37

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Selected bond lengths (Å) top
Mn1—O2i2.121 (2)Mn2—O4ii2.110 (2)
Mn1—O12.124 (2)Mn2—O32.112 (2)
Mn1—N12.234 (3)Mn2—N82.255 (3)
Mn1—N42.236 (3)Mn2—N62.263 (3)
Mn1—N32.254 (3)Mn2—N52.298 (3)
Mn1—N22.293 (3)Mn2—N72.301 (3)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

The author thanks the Natural Science Foundation of Jiangsu for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, R., Sun, D. F., Wang, Y.-L., Hong, M.-C., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). Cryst. Eng. Commun. 6, 315–317.  CrossRef CAS Google Scholar
First citationGardner, G. B., Venkataraman, D., Moore, J. S. & Lee, S. (1995). Nature (London), 374, 792–795.  CSD CrossRef CAS Web of Science Google Scholar
First citationSeo, J. S., Whang, D., Lee, H., Jun, S. I., Oh, J., Jeon, Y. J. & Kim, K. (2000). Nature (London), 404, 982–986.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, Y.-Q., Yuan, D.-Q., Wu, B.-L., Jiang, F.-L., Zhou, Y.-F. & Hong, M.-C. (2005). Inorg. Chem. Commun. 8, 651–655.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, P.-P., Li, B., Wang, Y.-H., Gu, W. & Liu, X. (2008). Z. Anorg. Allg. Chem. 634, 1221–1224.  Web of Science CSD CrossRef CAS Google Scholar
First citationYong, G.-P., Wang, Z.-Y. & Cui, Y. (2004). Eur. J. Inorg. Chem. 21, 4317–4323.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds