organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Benzoyl-4-chloro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 February 2010; accepted 1 March 2010; online 6 March 2010)

The asymmetric unit of the title compound, C13H10ClNO3S, contains two independent mol­ecules. The mol­ecules have C—S—N—C torsion angles of −70.0 (2) and 61.3 (2)° for mol­ecules 1 and 2, respectively. The dihedral angles between the sulfonyl benzene rings and the –SO2—NH—C—O segments are 72.0 (1) and 77.3 (1)° for mol­ecules 1 and 2, respectively, and the dihedral angles between the sulfonyl and the benzoyl benzene rings are 62.8 (1) and 78.6 (1)°, respectively. In the crystal, mol­ecules 1 and 2 are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers.

Related literature

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]; 2010[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.]); Suchetan et al. (2009[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO3S

  • Mr = 295.73

  • Triclinic, [P \overline 1]

  • a = 9.138 (1) Å

  • b = 12.026 (2) Å

  • c = 12.512 (2) Å

  • α = 91.15 (1)°

  • β = 93.53 (1)°

  • γ = 107.40 (2)°

  • V = 1308.5 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.12 mm−1

  • T = 299 K

  • 0.50 × 0.40 × 0.40 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.] Tmin = 0.233, Tmax = 0.290

  • 9165 measured reflections

  • 4655 independent reflections

  • 3966 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 120 min intensity decay: 2.0%

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.125

  • S = 1.05

  • 4655 reflections

  • 350 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.84 (2) 2.16 (2) 2.967 (3) 161 (3)
N2—H2N⋯O4ii 0.83 (2) 2.15 (2) 2.962 (3) 164 (3)
Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As a part of studying the effect of ring and the side chain substituents on the crystal structures of N-aromatic sulfonamides (Gowda et al., 2009; 2010; Suchetan et al., 2009), the structure of N-(benzoyl)4-chlorobenzenesulfonamide (I) has been determined. The asymmetric unit of the structure contains two independent molecules (Fig.1). The conformations of the N—H bonds in the C—SO2—NH—C(O) segments are anti to the C=O bonds, similar to those observed in N-(benzoyl)benzenesulfonamide (II) (Gowda et al., 2009), N-(benzoyl)2-chlorobenzenesulfonamide (III) (Gowda et al., 2010) and N-(4-chlorobenzoyl)benzenesulfonamide (IV)(Suchetan et al., 2009).

The molecules are twisted at the S atoms with the torsional angles of -70.0 (2)° and 61.3 (2)° in the two independent molecules. The dihedral angles between the sulfonyl benzene rings and the —SO2—NH—C—O segments are 72.0 (1)° (molecule 1) and 77.3 (1)° (molecule 2), compared to the values of 86.5 (1) in (II), 87.3 (1)° in (III) and 75.7 (1)° in (IV). Furthermore, the dihedral angles between the benzene rings are 62.8 (1)° (molecule 1) and 78.6 (1)° (molecule 2), compared to the values of 80.3 (1) in (II), 73.3 (1)° in (III) and 68.6 (1)° in (IV). The packing of molecules linked by N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For background to our study of the effect of ring and side-chain substituents on the crystal structures of N-aromatic sulfonamides and for similar structures, see: Gowda et al. (2009; 2010); Suchetan et al. (2009).

Experimental top

The title compound was prepared by refluxing a mixture of benzoic acid, 4-chlorobenzenesulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid, N-(benzoyl)4-chlorobenzenesulfonamide obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried compound was recrystallized to the constant melting point.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown from a slow evaporation of its toluene solution at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-Benzoyl-4-chlorobenzenesulfonamide top
Crystal data top
C13H10ClNO3SZ = 4
Mr = 295.73F(000) = 608
Triclinic, P1Dx = 1.501 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 9.138 (1) ÅCell parameters from 25 reflections
b = 12.026 (2) Åθ = 6.3–20.7°
c = 12.512 (2) ŵ = 4.12 mm1
α = 91.15 (1)°T = 299 K
β = 93.53 (1)°Prism, colourless
γ = 107.40 (2)°0.50 × 0.40 × 0.40 mm
V = 1308.5 (3) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
3966 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 67.0°, θmin = 3.5°
ω/2θ scansh = 1010
Absorption correction: ψ scan
North et al., 1968
k = 1414
Tmin = 0.233, Tmax = 0.290l = 1414
9165 measured reflections3 standard reflections every 120 min
4655 independent reflections intensity decay: 2.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.515P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4655 reflectionsΔρmax = 0.34 e Å3
350 parametersΔρmin = 0.34 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (5)
Crystal data top
C13H10ClNO3Sγ = 107.40 (2)°
Mr = 295.73V = 1308.5 (3) Å3
Triclinic, P1Z = 4
a = 9.138 (1) ÅCu Kα radiation
b = 12.026 (2) ŵ = 4.12 mm1
c = 12.512 (2) ÅT = 299 K
α = 91.15 (1)°0.50 × 0.40 × 0.40 mm
β = 93.53 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3966 reflections with I > 2σ(I)
Absorption correction: ψ scan
North et al., 1968
Rint = 0.044
Tmin = 0.233, Tmax = 0.2903 standard reflections every 120 min
9165 measured reflections intensity decay: 2.0%
4655 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0442 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
4655 reflectionsΔρmin = 0.34 e Å3
350 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.13114 (11)0.65487 (7)0.19920 (7)0.0951 (3)
S10.12434 (7)0.19435 (5)0.03688 (6)0.0571 (2)
O10.02885 (19)0.11806 (14)0.03785 (19)0.0766 (6)
O20.1928 (2)0.22241 (16)0.13596 (16)0.0727 (5)
O30.45459 (19)0.26268 (14)0.02647 (17)0.0689 (5)
N10.2241 (2)0.12840 (16)0.03850 (19)0.0566 (5)
H1N0.172 (3)0.0617 (17)0.054 (2)0.068*
C10.1337 (2)0.32370 (18)0.0343 (2)0.0515 (5)
C20.0252 (3)0.3229 (2)0.1058 (2)0.0633 (7)
H20.04810.25320.11960.076*
C30.0251 (3)0.4250 (2)0.1567 (2)0.0696 (7)
H30.04840.42550.20470.084*
C40.1352 (3)0.5262 (2)0.1355 (2)0.0625 (6)
C50.2456 (3)0.5282 (2)0.0662 (2)0.0629 (7)
H50.32000.59800.05430.075*
C60.2461 (3)0.42605 (19)0.0140 (2)0.0574 (6)
H60.32020.42590.03370.069*
C70.3829 (2)0.16862 (19)0.0569 (2)0.0520 (5)
C80.4541 (2)0.09067 (19)0.11647 (19)0.0491 (5)
C90.6099 (3)0.1097 (2)0.1104 (2)0.0653 (7)
H90.66620.17040.07080.078*
C100.6821 (3)0.0392 (3)0.1626 (3)0.0761 (8)
H100.78670.05160.15700.091*
C110.6022 (3)0.0483 (2)0.2222 (3)0.0710 (7)
H110.65230.09520.25770.085*
C120.4478 (3)0.0677 (3)0.2304 (3)0.0768 (8)
H120.39320.12720.27190.092*
C130.3737 (3)0.0014 (2)0.1767 (2)0.0667 (7)
H130.26850.01250.18130.080*
Cl20.09586 (10)1.12238 (7)0.31722 (8)0.0928 (3)
S20.15335 (8)0.68980 (5)0.55894 (6)0.0660 (2)
O40.0012 (2)0.61359 (16)0.5643 (2)0.0871 (7)
O50.2464 (3)0.72946 (19)0.65492 (17)0.0895 (7)
O60.4541 (2)0.75873 (16)0.47147 (19)0.0794 (6)
N20.2341 (3)0.61526 (18)0.48162 (19)0.0623 (5)
H2N0.171 (3)0.5535 (19)0.456 (2)0.075*
C140.1436 (3)0.81131 (19)0.4870 (2)0.0544 (6)
C150.0225 (3)0.7997 (2)0.4114 (2)0.0640 (7)
H150.04960.72720.39630.077*
C160.0090 (3)0.8952 (2)0.3589 (2)0.0675 (7)
H160.07140.88810.30730.081*
C170.1157 (3)1.0018 (2)0.3832 (2)0.0605 (6)
C180.2376 (3)1.0149 (2)0.4571 (2)0.0645 (7)
H180.30971.08760.47130.077*
C190.2515 (3)0.9182 (2)0.5102 (2)0.0602 (6)
H190.33280.92530.56100.072*
C200.3804 (3)0.6593 (2)0.4480 (2)0.0595 (6)
C210.4389 (3)0.5793 (2)0.3827 (2)0.0550 (6)
C220.3646 (3)0.4623 (2)0.3640 (3)0.0712 (7)
H220.27120.42850.39320.085*
C230.4278 (4)0.3951 (3)0.3022 (3)0.0816 (9)
H230.37600.31630.28960.098*
C240.5657 (3)0.4427 (3)0.2590 (3)0.0744 (8)
H240.60750.39660.21730.089*
C250.6410 (4)0.5582 (3)0.2777 (3)0.0829 (9)
H250.73530.59110.24930.100*
C260.5780 (3)0.6261 (2)0.3385 (3)0.0782 (8)
H260.62990.70510.35020.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1252 (7)0.0788 (5)0.0934 (6)0.0542 (5)0.0124 (5)0.0192 (4)
S10.0512 (3)0.0391 (3)0.0765 (4)0.0097 (2)0.0101 (3)0.0026 (2)
O10.0526 (9)0.0425 (8)0.1251 (18)0.0060 (7)0.0250 (10)0.0046 (9)
O20.0922 (13)0.0609 (10)0.0653 (12)0.0257 (9)0.0039 (10)0.0025 (9)
O30.0507 (9)0.0505 (9)0.0989 (15)0.0043 (7)0.0056 (9)0.0139 (9)
N10.0419 (9)0.0415 (9)0.0829 (15)0.0082 (8)0.0021 (9)0.0104 (9)
C10.0470 (11)0.0416 (11)0.0643 (15)0.0114 (9)0.0012 (10)0.0077 (10)
C20.0514 (13)0.0562 (14)0.0809 (19)0.0114 (10)0.0121 (12)0.0204 (12)
C30.0690 (16)0.0765 (17)0.0723 (18)0.0323 (14)0.0171 (14)0.0148 (14)
C40.0729 (16)0.0553 (13)0.0631 (16)0.0277 (12)0.0078 (13)0.0007 (11)
C50.0656 (15)0.0402 (12)0.0769 (18)0.0068 (10)0.0027 (13)0.0069 (11)
C60.0552 (13)0.0447 (12)0.0689 (16)0.0082 (10)0.0109 (12)0.0075 (11)
C70.0431 (11)0.0459 (12)0.0637 (15)0.0089 (9)0.0024 (10)0.0040 (10)
C80.0419 (11)0.0478 (11)0.0555 (14)0.0112 (9)0.0009 (9)0.0070 (9)
C90.0425 (12)0.0564 (14)0.092 (2)0.0087 (10)0.0021 (12)0.0037 (13)
C100.0430 (12)0.0755 (17)0.110 (3)0.0201 (12)0.0022 (14)0.0012 (16)
C110.0653 (16)0.0690 (16)0.082 (2)0.0296 (13)0.0142 (14)0.0009 (14)
C120.0683 (17)0.0810 (18)0.082 (2)0.0226 (14)0.0032 (15)0.0251 (15)
C130.0474 (12)0.0766 (17)0.0776 (19)0.0194 (12)0.0079 (12)0.0196 (14)
Cl20.1041 (6)0.0891 (5)0.1031 (7)0.0515 (5)0.0222 (5)0.0280 (4)
S20.0791 (4)0.0521 (3)0.0653 (4)0.0152 (3)0.0167 (3)0.0026 (3)
O40.0882 (14)0.0571 (10)0.1117 (17)0.0069 (10)0.0492 (13)0.0039 (10)
O50.1332 (19)0.0795 (13)0.0582 (12)0.0377 (13)0.0030 (12)0.0003 (10)
O60.0592 (10)0.0560 (10)0.1145 (17)0.0062 (8)0.0011 (11)0.0095 (10)
N20.0630 (12)0.0497 (11)0.0712 (15)0.0112 (9)0.0106 (11)0.0010 (10)
C140.0524 (12)0.0488 (12)0.0573 (14)0.0079 (10)0.0075 (10)0.0066 (10)
C150.0537 (13)0.0574 (14)0.0719 (18)0.0057 (11)0.0020 (12)0.0157 (12)
C160.0584 (14)0.0792 (18)0.0644 (17)0.0228 (13)0.0065 (12)0.0102 (13)
C170.0597 (14)0.0617 (14)0.0651 (16)0.0240 (11)0.0123 (12)0.0038 (12)
C180.0587 (14)0.0476 (13)0.0794 (18)0.0046 (10)0.0034 (13)0.0032 (12)
C190.0509 (12)0.0560 (13)0.0666 (16)0.0079 (10)0.0058 (11)0.0064 (11)
C200.0540 (13)0.0533 (13)0.0672 (16)0.0113 (11)0.0038 (12)0.0062 (11)
C210.0512 (12)0.0522 (12)0.0601 (15)0.0141 (10)0.0022 (11)0.0103 (10)
C220.0571 (14)0.0602 (15)0.094 (2)0.0124 (12)0.0125 (14)0.0022 (14)
C230.0749 (18)0.0602 (16)0.107 (3)0.0148 (14)0.0140 (17)0.0050 (15)
C240.0730 (17)0.0806 (19)0.075 (2)0.0314 (15)0.0052 (15)0.0013 (15)
C250.0692 (17)0.082 (2)0.096 (2)0.0165 (15)0.0253 (17)0.0109 (17)
C260.0694 (17)0.0589 (15)0.100 (2)0.0066 (13)0.0172 (16)0.0088 (15)
Geometric parameters (Å, º) top
Cl1—C41.737 (3)Cl2—C171.734 (3)
S1—O21.424 (2)S2—O51.415 (2)
S1—O11.4251 (18)S2—O41.425 (2)
S1—N11.645 (2)S2—N21.653 (2)
S1—C11.753 (2)S2—C141.753 (3)
O3—C71.208 (3)O6—C201.204 (3)
N1—C71.388 (3)N2—C201.378 (3)
N1—H1N0.836 (17)N2—H2N0.834 (17)
C1—C21.374 (4)C14—C191.379 (3)
C1—C61.387 (3)C14—C151.383 (4)
C2—C31.373 (4)C15—C161.368 (4)
C2—H20.9300C15—H150.9300
C3—C41.370 (4)C16—C171.373 (4)
C3—H30.9300C16—H160.9300
C4—C51.365 (4)C17—C181.372 (4)
C5—C61.382 (3)C18—C191.386 (4)
C5—H50.9300C18—H180.9300
C6—H60.9300C19—H190.9300
C7—C81.480 (3)C20—C211.486 (4)
C8—C131.375 (3)C21—C221.375 (4)
C8—C91.380 (3)C21—C261.381 (4)
C9—C101.372 (4)C22—C231.376 (4)
C9—H90.9300C22—H220.9300
C10—C111.355 (4)C23—C241.368 (4)
C10—H100.9300C23—H230.9300
C11—C121.370 (4)C24—C251.361 (4)
C11—H110.9300C24—H240.9300
C12—C131.379 (4)C25—C261.375 (4)
C12—H120.9300C25—H250.9300
C13—H130.9300C26—H260.9300
O2—S1—O1119.10 (13)O5—S2—O4119.32 (15)
O2—S1—N1110.02 (12)O5—S2—N2110.30 (14)
O1—S1—N1103.39 (10)O4—S2—N2103.33 (12)
O2—S1—C1109.16 (11)O5—S2—C14108.61 (12)
O1—S1—C1108.42 (12)O4—S2—C14108.37 (13)
N1—S1—C1105.90 (11)N2—S2—C14106.11 (12)
C7—N1—S1123.68 (17)C20—N2—S2123.63 (18)
C7—N1—H1N122.9 (19)C20—N2—H2N123 (2)
S1—N1—H1N112.3 (19)S2—N2—H2N112 (2)
C2—C1—C6121.1 (2)C19—C14—C15120.8 (2)
C2—C1—S1119.31 (18)C19—C14—S2119.9 (2)
C6—C1—S1119.5 (2)C15—C14—S2119.27 (18)
C3—C2—C1119.9 (2)C16—C15—C14119.8 (2)
C3—C2—H2120.1C16—C15—H15120.1
C1—C2—H2120.1C14—C15—H15120.1
C4—C3—C2118.9 (3)C15—C16—C17119.2 (2)
C4—C3—H3120.6C15—C16—H16120.4
C2—C3—H3120.6C17—C16—H16120.4
C5—C4—C3122.0 (3)C18—C17—C16121.9 (2)
C5—C4—Cl1119.9 (2)C18—C17—Cl2119.4 (2)
C3—C4—Cl1118.1 (2)C16—C17—Cl2118.7 (2)
C4—C5—C6119.6 (2)C17—C18—C19118.9 (2)
C4—C5—H5120.2C17—C18—H18120.5
C6—C5—H5120.2C19—C18—H18120.5
C5—C6—C1118.5 (2)C14—C19—C18119.3 (2)
C5—C6—H6120.7C14—C19—H19120.3
C1—C6—H6120.7C18—C19—H19120.3
O3—C7—N1120.4 (2)O6—C20—N2119.9 (3)
O3—C7—C8123.8 (2)O6—C20—C21123.1 (2)
N1—C7—C8115.85 (19)N2—C20—C21117.0 (2)
C13—C8—C9118.9 (2)C22—C21—C26118.1 (3)
C13—C8—C7123.6 (2)C22—C21—C20124.5 (2)
C9—C8—C7117.5 (2)C26—C21—C20117.4 (2)
C10—C9—C8120.2 (3)C21—C22—C23120.3 (3)
C10—C9—H9119.9C21—C22—H22119.8
C8—C9—H9119.9C23—C22—H22119.8
C11—C10—C9120.6 (2)C24—C23—C22120.9 (3)
C11—C10—H10119.7C24—C23—H23119.5
C9—C10—H10119.7C22—C23—H23119.5
C10—C11—C12120.1 (3)C25—C24—C23119.3 (3)
C10—C11—H11119.9C25—C24—H24120.4
C12—C11—H11119.9C23—C24—H24120.4
C11—C12—C13119.8 (3)C24—C25—C26120.1 (3)
C11—C12—H12120.1C24—C25—H25119.9
C13—C12—H12120.1C26—C25—H25119.9
C8—C13—C12120.4 (2)C25—C26—C21121.2 (3)
C8—C13—H13119.8C25—C26—H26119.4
C12—C13—H13119.8C21—C26—H26119.4
O2—S1—N1—C747.9 (2)O5—S2—N2—C2056.1 (3)
O1—S1—N1—C7176.1 (2)O4—S2—N2—C20175.3 (2)
C1—S1—N1—C770.0 (2)C14—S2—N2—C2061.3 (2)
O2—S1—C1—C2152.8 (2)O5—S2—C14—C1918.5 (3)
O1—S1—C1—C221.6 (2)O4—S2—C14—C19149.5 (2)
N1—S1—C1—C288.8 (2)N2—S2—C14—C19100.1 (2)
O2—S1—C1—C624.3 (2)O5—S2—C14—C15158.2 (2)
O1—S1—C1—C6155.5 (2)O4—S2—C14—C1527.2 (2)
N1—S1—C1—C694.1 (2)N2—S2—C14—C1583.3 (2)
C6—C1—C2—C31.4 (4)C19—C14—C15—C160.1 (4)
S1—C1—C2—C3175.7 (2)S2—C14—C15—C16176.5 (2)
C1—C2—C3—C40.6 (4)C14—C15—C16—C170.7 (4)
C2—C3—C4—C50.6 (4)C15—C16—C17—C181.5 (4)
C2—C3—C4—Cl1179.0 (2)C15—C16—C17—Cl2179.2 (2)
C3—C4—C5—C61.1 (4)C16—C17—C18—C191.3 (4)
Cl1—C4—C5—C6178.5 (2)Cl2—C17—C18—C19179.3 (2)
C4—C5—C6—C10.3 (4)C15—C14—C19—C180.2 (4)
C2—C1—C6—C50.9 (4)S2—C14—C19—C18176.4 (2)
S1—C1—C6—C5176.14 (19)C17—C18—C19—C140.5 (4)
S1—N1—C7—O37.9 (4)S2—N2—C20—O63.1 (4)
S1—N1—C7—C8173.19 (17)S2—N2—C20—C21177.37 (18)
O3—C7—C8—C13160.9 (3)O6—C20—C21—C22172.9 (3)
N1—C7—C8—C1318.0 (4)N2—C20—C21—C227.6 (4)
O3—C7—C8—C919.1 (4)O6—C20—C21—C266.7 (4)
N1—C7—C8—C9162.0 (2)N2—C20—C21—C26172.9 (2)
C13—C8—C9—C100.9 (4)C26—C21—C22—C230.5 (4)
C7—C8—C9—C10179.0 (3)C20—C21—C22—C23179.9 (3)
C8—C9—C10—C111.3 (5)C21—C22—C23—C240.6 (5)
C9—C10—C11—C120.5 (5)C22—C23—C24—C250.0 (5)
C10—C11—C12—C130.7 (5)C23—C24—C25—C260.6 (5)
C9—C8—C13—C120.2 (4)C24—C25—C26—C210.7 (5)
C7—C8—C13—C12179.8 (3)C22—C21—C26—C250.1 (5)
C11—C12—C13—C81.0 (5)C20—C21—C26—C25179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.84 (2)2.16 (2)2.967 (3)161 (3)
N2—H2N···O4ii0.83 (2)2.15 (2)2.962 (3)164 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC13H10ClNO3S
Mr295.73
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)9.138 (1), 12.026 (2), 12.512 (2)
α, β, γ (°)91.15 (1), 93.53 (1), 107.40 (2)
V3)1308.5 (3)
Z4
Radiation typeCu Kα
µ (mm1)4.12
Crystal size (mm)0.50 × 0.40 × 0.40
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
North et al., 1968
Tmin, Tmax0.233, 0.290
No. of measured, independent and
observed [I > 2σ(I)] reflections
9165, 4655, 3966
Rint0.044
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.05
No. of reflections4655
No. of parameters350
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.34

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.836 (17)2.164 (19)2.967 (3)161 (3)
N2—H2N···O4ii0.834 (17)2.150 (19)2.962 (3)164 (3)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

PAS thanks the Council of Scientific and Industrial Research (CSIR), Government of India, New Delhi, for the award of a research fellowship.

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o794.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2009). Acta Cryst. E65, o3156.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds