organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o904-o905

2,2′-{1,1′-[2,2′-Oxalylbis(hydrazin-2-yl-1-yl­­idene)]di­ethyl­­idyne}dipyridinium bis­­(perchlorate) dihydrate

aDepartment of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 14, 11000 Belgrade, Serbia, bFaculty of Chemistry, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia, and cDepartamento de Química Inorgánica y Analìtica, E.S.C.E.T., Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain
*Correspondence e-mail: goran@chem.bg.ac.rs

(Received 24 February 2010; accepted 18 March 2010; online 24 March 2010)

The title salt, C16H18N6O22+·2ClO4·2H2O, was obtained unintentionally as a major product in the reaction of Zn(ClO4)2·6H2O with the N′,N2-bis­[(1E)-1-(2-pyrid­yl)ethyl­idene]ethanedihydrazide (H2L) ligand. The (H4L)2+ cation lies across a centre of inversion. The pyridiniumimine fragments of (H4L)2+ adopt syn orientations. Intra­molecular N—H⋯N and N—H⋯O hydrogen bonds lead to the formation of S(5) motifs. In the crystal, neighbouring cations are connected by ππ inter­actions between pyridinium units with a centroid–centroid distance of 3.600 (1) Å. Moreover, the crystal components are assembled into two-dimensional layers via N—H⋯O and O—H⋯O hydrogen bonds, with no direct hydrogen-bonding inter­actions between cations.

Related literature

For the use of N′,N2-bis­[(1E)-1-(2-pyrid­yl)ethyl­idene]ethane­dihydrazide in reactions with metal ions, see: Anđelković et al. (2005[Anđelković, K., Sladić, D., Bacchi, A., Pelizzi, G., Filipović, N. & Rajković, M. (2005). Transition Met. Chem. 30, 243-250.]); Kelly et al. (2005[Kelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807-821.]); Sen et al. (2006[Sen, S., Choudhury, C. R., Talukder, P., Mitra, S., Westerhausen, M., Kneifel, A. N., Desplanches, C., Daro, N. & Sutter, J.-P. (2006). Polyhedron, 25, 1271-1278.]). For hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Jeffrey et al. (1985[Jeffrey, G. A., Małuszyńska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336-348.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18N6O22+·2ClO4·2H2O

  • Mr = 561.3

  • Monoclinic, P 21 /c

  • a = 7.0166 (3) Å

  • b = 15.6855 (5) Å

  • c = 10.1152 (4) Å

  • β = 90.240 (3)°

  • V = 1113.26 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 130 K

  • 0.4 × 0.3 × 0.2 mm

Data collection
  • Oxford Diffraction XcaliburS CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.875, Tmax = 0.929

  • 12596 measured reflections

  • 3402 independent reflections

  • 2504 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 0.98

  • 3402 reflections

  • 173 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.84 (2) 1.86 (2) 2.690 (2) 168 (2)
N1—H1N⋯N2 0.84 (2) 2.32 (2) 2.632 (2) 102 (2)
N3—H3N⋯O5 0.84 (2) 2.36 (2) 3.011 (2) 134 (2)
N3—H3N⋯O1i 0.84 (2) 2.36 (2) 2.686 (2) 104 (2)
O6—H6A⋯O1 0.82 (2) 2.08 (2) 2.889 (2) 173 (2)
O6—H6B⋯O3ii 0.84 (2) 1.98 (2) 2.809 (2) 171 (2)
Symmetry codes: (i) -x+1, -y, -z; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

N',N'2-Bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide (H2L) is usually used for the preparation of metal complexes (Anđelković et al. 2005; Kelly et al. 2005; Sen et al., 2006). However, only two complexes, polynuclear complex of Cu(II) and mononuclear complex of Ni(II), with ligand H2L have been obtained and characterized so far (Sen et al., 2006). These complexes have been prepared by direct reaction of M(AcO)2 [M = Cu(II) and Ni(II)] with H2L in 2-propanol/H2O (Sen et al., 2006). However, in the reactions of H2L with Cu(NO3)2.3H2O or Cu(ClO4)2.6H2O in MeOH/H2O, hydrolysis at the hydrazide moiety occurred affording the formation of the binuclear Cu(II) complex with 2-acetylpyridine hydrazone in which oxalate ion serves as a bridge between two metal centers (Kelly et al., 2005). Similarly, hydrolysis of H2L took place in the reaction with Fe(ClO4)3.6H2O in water, with simultaneous reduction of Fe(III) to Fe(II) by oxalic fragment affording formation of mononuclear Fe(II) complex with 2-acetylpyridine hydrazone (Anđelković et al., 2005). The cited studies show that direct synthetic reactions of metal ions with the ligand H2L may be very intricate and often lead to accidental products. The title salt, (I), was obtained unintentionally as a major product in direct reaction of Zn(ClO4)2.6H2O with the ligand N',N'2-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide (H2L). The cation (H4L)2+ lies at the center of inversion at 1/2, 0, 0. The numbering scheme of (I) is given in Fig. 1. The C8—O1 bond distance of 1.214 (2) Å is consistent with the carbon–oxygen double bonding. The N3—C8 [1.352 (2) Å] and N2—C6 [1.289 (2) Å] bond distances indicate single and double CN bonding, respectively . The cation deviates from planarity. The distance between the mean plane defined by C1-C6,C8,N1-N3 atoms and that defined by respective symmetry related atoms is 0.223 Å. The structure of (I) is stabilized by intramolecular and intermolecular hydrogen bonds and their geometrical details are listed in Table 1. The s-trans conformation of the cation is stabilized by N–H···O hydrogen bonds (Fig. 1, Table 1). The torsion angle O1—C8—C8a—O1a [atoms labeled with the suffix "a" are at symmetry position 1–x, –y, –z] is 180°. The syn orientations of the pyridiniumimine fragments are stabilized by the N—H···N intramolecular hydrogen bonds. The torsion angle N1—C1—C6—N2 is 3.3 (2)°. The intramolecular hydrogen bonds (N–H···O and N—H···N) lead to formation of S(5) motifs (Fig. 1.) (Bernstein et al., 1995). In the crystal structure all residues participate in the intermolecular hydrogen bonding (Fig. 2.). Solvent water molecule acts as a double donor [to O1 and O3 at –x, y – 1/2, –z + 1/2] and a single acceptor. The pyridinium and hydrazone nitrogens serve as double hydrogen bond donors with one component intra and the other intermolecular. As suggested by Jeffrey et al., 1985, this type of H-bond is called three-center. Perchlorate groups and water molecules mediate in joining together the cation molecules (Fig. 2.). Each cation is H-bonded to two perchlorate groups and two water molecules. The oxygen atoms (O3 and O5) from perchlorate group serve as H-bond acceptors. The O5 accepts hydrogen from hydrazone nitrogen and O3 from water molecule. The other hydrogen from water molecule is being donated to carbonyl oxygen (O1) of cation molecule. This system of H-bond interactions spreads in two-dimensions parallel to (1 0 2). The heteroaromatic rings of the neighbouring cations are involved in ππ interactions (Fig. 3). The aromatic rings are found to be parallel-displaced. Namely, the distance between the centers of gravity of aromatic rings (C1—C5,N1) and (C1b—C5b,N1b) [atoms labeled with the suffix "b" are at symmetry position –x, –y, 1–z] is 3.600 (1) Å with the center of gravity displaced distance of 1.502 Å. Cation molecules connected by ππ interactions between pyridinium units extend in a stairs-like manner along [101].

Related literature top

For the use of N',N'2-bis[(1E)-1-(2-pyridyl)ethylidene]ethanedihydrazide in reactions with metal ions, see: Anđelković et al. (2005); Kelly et al. (2005); Sen et al. (2006). For hydrogen bonds, see: Bernstein et al. (1995); Jeffrey et al. (1985).

Experimental top

Zn(ClO4)2.6H2O (0.32 g, 0.85 mmol) and H2L (0.27 g, 0.85 mmol) were suspended in MeOH (30 cm3). To the light yellow suspension 4–5 drops of HClO4 were added and the resulting yellow solution was refluxed for 1 h at 338 K. Upon cooling to room temperature and filtration, a light yellow microcrystalline product was obtained. Yield: 56%; mp. 511–513 K; molar conductivity (DMF, 1.10 –3 mol dm–3) λM = 160 Ω–1cm2 mol–1. Solubility: insoluble in water and ethanol, soluble in acetonitrile and dimethylsulfoxide. The molar conductivity of a DMF solution of the ligand salt (1.10 –3 mol dm–3) was measured at room temperature on a Jenway-4009 digital conductivity meter.

Refinement top

The H atoms connected to C atoms were positioned geometrically (C—H = 0.95 - 0.98 Å) and treated as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C). H atoms at nitrogen were found in electron-density difference maps and refined freely. In order to adjust distances of hydrogen atoms of water molecule DFIX instruction was used with the target value of 0.84 (2) Å (O6—H). The crystal was pseudomerohedrally twinned with the twin law (1 0 0 0 -1 0 0 0 -1) in the reciprocal space. The refinement gave with the 6 % content of the minor component.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The numbering scheme in the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular hydrogen bonds(N—H···O and N—H···N) are shown with dashed lines. Atoms labeled with the suffix "a" are at the symmetry position 1-x, -y, -z.
[Figure 2] Fig. 2. Packing diagram of the title compound showing 2D assembly parallel to (1 0 2) generated by hydrogen bonding. Hydrogen atoms, except those involved in hydrogen bonding, are omitted for clarity.
[Figure 3] Fig. 3. Packing diagram of the title compound showing 1D assembly parallel to [–1 0 1] generated by stacking interactions of the pyridinium fragments. View along b-axis.
2,2'-{1,1'-[2,2'-Oxalylbis(hydrazin-2-yl-1-ylidene)]diethylidyne}dipyridinium bis(perchlorate) dihydrate top
Crystal data top
C16H18N6O22+·2ClO4·2H2OF(000) = 580
Mr = 561.3Dx = 1.674 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4422 reflections
a = 7.0166 (3) Åθ = 2.9–32.2°
b = 15.6855 (5) ŵ = 0.37 mm1
c = 10.1152 (4) ÅT = 130 K
β = 90.240 (3)°Plate, colourless
V = 1113.26 (7) Å30.4 × 0.3 × 0.2 mm
Z = 2
Data collection top
Oxford Diffraction XcaliburS CCD
diffractometer
3402 independent reflections
Graphite monochromator2504 reflections with I > 2σ(I)
Detector resolution: 16.356 pixels mm-1Rint = 0.037
ω scans and ϕ scansθmax = 30.5°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 910
Tmin = 0.875, Tmax = 0.929k = 2220
12596 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0575P)2]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.69 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
C16H18N6O22+·2ClO4·2H2OV = 1113.26 (7) Å3
Mr = 561.3Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.0166 (3) ŵ = 0.37 mm1
b = 15.6855 (5) ÅT = 130 K
c = 10.1152 (4) Å0.4 × 0.3 × 0.2 mm
β = 90.240 (3)°
Data collection top
Oxford Diffraction XcaliburS CCD
diffractometer
3402 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2504 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.929Rint = 0.037
12596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.69 e Å3
3402 reflectionsΔρmin = 0.48 e Å3
173 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06740 (7)0.17109 (3)0.03091 (5)0.02258 (12)
O10.5097 (2)0.08816 (8)0.10597 (12)0.0239 (3)
O20.0958 (2)0.23504 (9)0.06811 (15)0.0357 (4)
O30.2032 (3)0.18404 (10)0.13518 (17)0.0553 (6)
O40.0935 (2)0.08764 (8)0.02205 (14)0.0331 (3)
O50.1188 (3)0.17823 (11)0.0853 (3)0.0705 (7)
O60.3496 (2)0.14953 (9)0.35088 (15)0.0285 (3)
N10.2466 (2)0.01871 (9)0.50693 (15)0.0167 (3)
N20.3686 (2)0.03179 (9)0.27403 (15)0.0190 (2)
N30.4253 (2)0.05006 (10)0.14877 (14)0.0190 (2)
C10.2678 (2)0.06619 (11)0.48485 (17)0.0168 (3)
C20.2139 (3)0.12184 (11)0.58310 (18)0.0206 (4)
H20.22780.18150.57050.025*
C30.1395 (3)0.09094 (12)0.70044 (18)0.0226 (4)
H30.10080.12950.76750.027*
C40.1214 (2)0.00423 (12)0.72004 (18)0.0214 (4)
H40.07140.01760.80040.026*
C50.1775 (2)0.05004 (11)0.62031 (17)0.0193 (4)
H50.16720.110.6320.023*
C60.3414 (2)0.09391 (11)0.35522 (17)0.0174 (3)
C70.3775 (3)0.18669 (11)0.3335 (2)0.0271 (4)
H7A0.44240.19470.24880.041*
H7B0.45790.20880.40520.041*
H7C0.25590.21740.33230.041*
C80.4826 (2)0.01508 (11)0.07098 (18)0.0188 (3)
H1N0.279 (3)0.0545 (14)0.449 (2)0.026 (4)*
H3N0.401 (3)0.0985 (14)0.118 (2)0.026 (4)*
H6A0.388 (4)0.1348 (17)0.2784 (19)0.049 (6)*
H6B0.295 (4)0.1971 (13)0.351 (3)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0305 (2)0.01659 (19)0.0206 (2)0.00294 (16)0.00279 (17)0.00130 (16)
O10.0335 (7)0.0212 (6)0.0172 (7)0.0020 (5)0.0033 (5)0.0015 (5)
O20.0530 (10)0.0281 (7)0.0262 (8)0.0080 (7)0.0064 (7)0.0114 (6)
O30.1039 (16)0.0265 (8)0.0358 (10)0.0169 (9)0.0408 (10)0.0046 (7)
O40.0494 (9)0.0214 (7)0.0285 (8)0.0010 (6)0.0064 (7)0.0057 (6)
O50.0498 (12)0.0292 (9)0.132 (2)0.0002 (8)0.0469 (13)0.0052 (10)
O60.0401 (8)0.0207 (7)0.0247 (8)0.0045 (6)0.0116 (6)0.0010 (6)
N10.0174 (7)0.0175 (7)0.0153 (7)0.0006 (5)0.0009 (6)0.0004 (5)
N20.0242 (6)0.0206 (5)0.0121 (5)0.0002 (4)0.0031 (4)0.0024 (4)
N30.0242 (6)0.0206 (5)0.0121 (5)0.0002 (4)0.0031 (4)0.0024 (4)
C10.0158 (8)0.0182 (8)0.0163 (8)0.0001 (6)0.0001 (6)0.0010 (6)
C20.0240 (9)0.0183 (8)0.0195 (9)0.0002 (6)0.0019 (7)0.0013 (6)
C30.0258 (9)0.0258 (9)0.0161 (9)0.0000 (7)0.0011 (7)0.0035 (7)
C40.0222 (9)0.0274 (9)0.0145 (8)0.0003 (7)0.0016 (7)0.0035 (7)
C50.0193 (9)0.0207 (8)0.0180 (9)0.0016 (6)0.0011 (7)0.0038 (7)
C60.0170 (8)0.0195 (8)0.0156 (8)0.0005 (6)0.0019 (6)0.0004 (6)
C70.0410 (12)0.0193 (9)0.0209 (10)0.0028 (8)0.0097 (8)0.0014 (7)
C80.0192 (8)0.0219 (8)0.0151 (8)0.0031 (6)0.0012 (6)0.0016 (7)
Geometric parameters (Å, º) top
Cl1—O51.4198 (17)C1—C21.377 (2)
Cl1—O41.4259 (14)C1—C61.477 (2)
Cl1—O21.4309 (14)C2—C31.386 (3)
Cl1—O31.4386 (17)C2—H20.95
O1—C81.214 (2)C3—C41.381 (3)
O6—H6A0.815 (17)C3—H30.95
O6—H6B0.839 (17)C4—C51.379 (3)
N1—C51.340 (2)C4—H40.95
N1—C11.359 (2)C5—H50.95
N1—H1N0.84 (2)C6—C71.493 (2)
N2—C61.289 (2)C7—H7A0.98
N2—N31.360 (2)C7—H7B0.98
N3—C81.352 (2)C7—H7C0.98
N3—H3N0.84 (2)C8—C8i1.532 (4)
O5—Cl1—O4109.55 (10)C4—C3—H3119.9
O5—Cl1—O2109.96 (11)C2—C3—H3119.9
O4—Cl1—O2111.30 (9)C5—C4—C3118.46 (17)
O5—Cl1—O3108.40 (14)C5—C4—H4120.8
O4—Cl1—O3108.69 (10)C3—C4—H4120.8
O2—Cl1—O3108.87 (9)N1—C5—C4120.35 (16)
H6A—O6—H6B114 (3)N1—C5—H5119.8
C5—N1—C1122.70 (15)C4—C5—H5119.8
C5—N1—H1N116.7 (15)N2—C6—C1113.35 (15)
C1—N1—H1N120.6 (15)N2—C6—C7128.13 (17)
C6—N2—N3118.61 (14)C1—C6—C7118.52 (15)
C8—N3—N2118.15 (15)C6—C7—H7A109.5
C8—N3—H3N122.0 (14)C6—C7—H7B109.5
N2—N3—H3N118.4 (15)H7A—C7—H7B109.5
N1—C1—C2118.18 (16)C6—C7—H7C109.5
N1—C1—C6118.26 (15)H7A—C7—H7C109.5
C2—C1—C6123.53 (16)H7B—C7—H7C109.5
C1—C2—C3120.13 (17)O1—C8—N3126.18 (17)
C1—C2—H2119.9O1—C8—C8i122.6 (2)
C3—C2—H2119.9N3—C8—C8i111.16 (18)
C4—C3—C2120.17 (17)
C6—N2—N3—C8169.62 (16)N3—N2—C6—C1176.07 (14)
C5—N1—C1—C20.7 (2)N3—N2—C6—C74.8 (3)
C5—N1—C1—C6178.72 (16)N1—C1—C6—N23.3 (2)
N1—C1—C2—C30.3 (3)C2—C1—C6—N2174.65 (17)
C6—C1—C2—C3177.63 (16)N1—C1—C6—C7175.92 (16)
C1—C2—C3—C40.9 (3)C2—C1—C6—C76.1 (3)
C2—C3—C4—C50.5 (3)N2—N3—C8—O19.0 (3)
C1—N1—C5—C41.1 (3)N2—N3—C8—C8i172.93 (16)
C3—C4—C5—N10.5 (3)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.84 (2)1.86 (2)2.690 (2)168 (2)
N1—H1N···N20.84 (2)2.32 (2)2.632 (2)102 (2)
N3—H3N···O50.84 (2)2.36 (2)3.011 (2)134 (2)
N3—H3N···O1i0.84 (2)2.36 (2)2.686 (2)104 (2)
O6—H6A···O10.82 (2)2.08 (2)2.889 (2)173 (2)
O6—H6A···N20.82 (2)2.62 (3)2.952 (2)106 (2)
O6—H6B···O3ii0.84 (2)1.98 (2)2.809 (2)171 (2)
C2—H2···O50.952.333.206 (2)152
C4—H4···O4iii0.952.503.384 (2)155
C5—H5···O2ii0.952.563.460 (2)157
C7—H7A···N30.982.492.864 (2)103
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H18N6O22+·2ClO4·2H2O
Mr561.3
Crystal system, space groupMonoclinic, P21/c
Temperature (K)130
a, b, c (Å)7.0166 (3), 15.6855 (5), 10.1152 (4)
β (°) 90.240 (3)
V3)1113.26 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.4 × 0.3 × 0.2
Data collection
DiffractometerOxford Diffraction XcaliburS CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.875, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
12596, 3402, 2504
Rint0.037
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 0.98
No. of reflections3402
No. of parameters173
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.48

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.84 (2)1.86 (2)2.690 (2)168 (2)
N1—H1N···N20.84 (2)2.32 (2)2.632 (2)102 (2)
N3—H3N···O50.84 (2)2.36 (2)3.011 (2)134 (2)
N3—H3N···O1i0.84 (2)2.36 (2)2.686 (2)104 (2)
O6—H6A···O10.82 (2)2.08 (2)2.889 (2)173 (2)
O6—H6B···O3ii0.84 (2)1.98 (2)2.809 (2)171 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Ministry of Science and Technological Development of the Republic of Serbia (grant 142026).

References

First citationAnđelković, K., Sladić, D., Bacchi, A., Pelizzi, G., Filipović, N. & Rajković, M. (2005). Transition Met. Chem. 30, 243–250.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A., Małuszyńska, H. & Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336–348.  CrossRef CAS Web of Science Google Scholar
First citationKelly, T. L., Milway, V. A., Grove, H., Niel, V., Abedin, T. S. M., Thompson, L. K., Zhao, L., Harvey, R. G., Miller, D. O., Leech, M., Goeta, A. E. & Howard, J. A. K. (2005). Polyhedron, 24, 807–821.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSen, S., Choudhury, C. R., Talukder, P., Mitra, S., Westerhausen, M., Kneifel, A. N., Desplanches, C., Daro, N. & Sutter, J.-P. (2006). Polyhedron, 25, 1271–1278.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages o904-o905
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds