organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl 2,6-di­hydroxy­benzene-1,4-di­carboxyl­ate

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: dmzhao@zjut.edu.cn

(Received 3 February 2010; accepted 24 March 2010; online 31 March 2010)

The title compound, C10H10O6, was obtained from an esterification reaction of 2,6-dihydroxy­terephthalic acid and methanol. In the mol­ecular structure, all of the C atoms are nearly coplanar. The two hydr­oxy groups have C2 symmetry. Intra­molecular O—H⋯O hydrogen bonds are observed. In the crystal, weak O—H⋯O inter­actions link the mol­ecules.

Related literature

For general background to terephthalate derivatives, see: Brunner (1928[Brunner, K. (1928). Monatsh. Chem. 50, 216-224.]); Teruhiko et al. (1998[Teruhiko, T., Shozo, T. & Sachio, M. (1998). Tetrahedron Lett. 39, 4347-4350.]). For a related structure, see: Dai et al. (2005[Dai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410-o3411.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O6

  • Mr = 226.18

  • Monoclinic, P 21 /c

  • a = 11.6462 (8) Å

  • b = 7.0925 (3) Å

  • c = 13.5745 (10) Å

  • β = 114.327 (9)°

  • V = 1021.70 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.34 × 0.26 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.865, Tmax = 1.000

  • 4572 measured reflections

  • 2083 independent reflections

  • 1161 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.178

  • S = 1.09

  • 2083 reflections

  • 149 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.84 2.567 (3) 147
O4—H4⋯O1 0.82 1.89 2.593 (3) 144
O4—H4⋯O3i 0.82 2.58 3.099 (3) 123
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound as one of terephthalate derivatives, is an important pharmacological and material intermediate (Brunner, 1928; Teruhiko et al., 1998). There is almost no report about crystal structure. As part of our ongoing studies, we now describe the synthesis and the crystal structure of the title compound. In this paper, the crystal structure of it was determined (Fig. 1). The molecule contains benzene ring, dihydroxygroup and dimethyl group. All of atoms except the hydrogen atoms are nearly coplanar. The terminal dimethyl group are centrosymmetric. The dihydroxy group are axisymmetric. In the crystal structure, intramolecular O—H···O hydrogen bonds are observed.

Related literature top

For general background to terephthalate derivatives, see: Brunner (1928); Teruhiko et al. (1998). For a related structure, see: Dai et al. (2005).

Experimental top

2,6-dihydroxyterephthalic acid (15 mmol) was dissolved in methanol (45 ml), thionyl dichloride (3 ml) was slowly added to the methanol solution afterward, and the mixture was stired at reflux temperature for 72 hours (monitored by TLC). Then the solvent was distilled under vacuum, and the residue was poured into water (50 ml). The pH of the solution was adjusted with sodium bicarbonate to pH = 7.0. The resulting white solid was filtered off, washed with water. The obtained solid was dissolved in methanol. Single crystals were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were placed in calculated position with C—H=0.96 (1) Å(sp3), C—H=0.93 Å(aromatic). All H atoms included in the final cycles of refinement as riding mode, with Uiso(H)=1.2Ueq of the carrier atoms.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the structure of the title compound, with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecule packing of the title compound showing O—H···O interactions.
Dimethyl 2,6-dihydroxybenzene-1,4-dicarboxylate top
Crystal data top
C10H10O6F(000) = 472
Mr = 226.18Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1855 reflections
a = 11.6462 (8) Åθ = 2.9–29.2°
b = 7.0925 (3) ŵ = 0.12 mm1
c = 13.5745 (10) ÅT = 293 K
β = 114.327 (9)°Block, white
V = 1021.70 (11) Å30.34 × 0.26 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
2083 independent reflections
Radiation source: fine-focus sealed tube1161 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.0395 pixels mm-1θmax = 26.4°, θmin = 3.3°
ω scansh = 1410
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 88
Tmin = 0.865, Tmax = 1.000l = 1615
4572 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0906P)2 + 0.0929P]
where P = (Fo2 + 2Fc2)/3
2083 reflections(Δ/σ)max = 0.002
149 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H10O6V = 1021.70 (11) Å3
Mr = 226.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6462 (8) ŵ = 0.12 mm1
b = 7.0925 (3) ÅT = 293 K
c = 13.5745 (10) Å0.34 × 0.26 × 0.20 mm
β = 114.327 (9)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
2083 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1161 reflections with I > 2σ(I)
Tmin = 0.865, Tmax = 1.000Rint = 0.023
4572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
2083 reflectionsΔρmin = 0.21 e Å3
149 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.10292 (17)0.3212 (3)0.65789 (15)0.0531 (6)
O21.16658 (17)0.0296 (3)0.71430 (17)0.0594 (6)
O31.00830 (17)0.2437 (3)0.65185 (18)0.0588 (6)
H31.07600.19140.68600.088*
O40.8686 (2)0.3940 (3)0.5366 (2)0.0694 (7)
H40.94190.42180.57470.104*
O50.48877 (19)0.0097 (4)0.36441 (19)0.0809 (8)
O60.55844 (19)0.2972 (3)0.42310 (17)0.0622 (6)
C11.2310 (3)0.3910 (5)0.7143 (3)0.0605 (9)
H1A1.27120.39570.66520.091*
H1C1.27730.30820.77330.091*
H1B1.22900.51520.74170.091*
C21.0826 (2)0.1371 (4)0.6627 (2)0.0418 (6)
C30.9508 (2)0.0794 (3)0.6008 (2)0.0370 (6)
C40.9197 (2)0.1122 (3)0.5979 (2)0.0393 (6)
C50.7983 (2)0.1768 (4)0.5401 (2)0.0395 (6)
H50.77980.30440.53970.047*
C60.7048 (2)0.0498 (4)0.4829 (2)0.0391 (6)
C70.7314 (2)0.1397 (4)0.4830 (2)0.0449 (7)
H70.66750.22370.44380.054*
C80.8531 (2)0.2059 (3)0.5412 (2)0.0430 (7)
C90.5725 (3)0.1122 (4)0.4170 (2)0.0476 (7)
C100.4355 (3)0.3758 (5)0.3582 (3)0.0769 (11)
H10A0.41050.34020.28400.115*
H10B0.37520.32860.38350.115*
H10C0.43920.51080.36410.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (11)0.0493 (12)0.0635 (13)0.0079 (9)0.0067 (10)0.0032 (10)
O20.0326 (10)0.0563 (12)0.0718 (14)0.0062 (9)0.0039 (10)0.0043 (11)
O30.0360 (11)0.0445 (11)0.0775 (14)0.0103 (9)0.0048 (10)0.0115 (11)
O40.0480 (13)0.0347 (11)0.0953 (18)0.0029 (9)0.0010 (12)0.0016 (11)
O50.0340 (11)0.0803 (17)0.0952 (19)0.0052 (12)0.0068 (12)0.0146 (14)
O60.0367 (11)0.0582 (14)0.0749 (15)0.0086 (10)0.0062 (10)0.0071 (11)
C10.0382 (16)0.070 (2)0.0634 (19)0.0148 (15)0.0108 (15)0.0065 (17)
C20.0343 (14)0.0434 (16)0.0428 (15)0.0023 (12)0.0111 (12)0.0003 (13)
C30.0298 (13)0.0377 (14)0.0389 (14)0.0039 (11)0.0094 (11)0.0029 (11)
C40.0333 (14)0.0376 (15)0.0430 (15)0.0079 (11)0.0116 (12)0.0029 (12)
C50.0341 (15)0.0331 (13)0.0464 (15)0.0031 (11)0.0116 (13)0.0024 (12)
C60.0312 (14)0.0421 (15)0.0390 (14)0.0021 (11)0.0096 (12)0.0025 (11)
C70.0298 (14)0.0459 (17)0.0460 (16)0.0130 (12)0.0026 (12)0.0021 (13)
C80.0366 (15)0.0346 (15)0.0498 (16)0.0029 (11)0.0097 (13)0.0027 (12)
C90.0322 (15)0.0552 (19)0.0487 (17)0.0008 (14)0.0098 (13)0.0040 (14)
C100.0425 (19)0.090 (3)0.084 (2)0.0231 (18)0.0110 (18)0.024 (2)
Geometric parameters (Å, º) top
O1—C21.334 (3)C2—C31.472 (4)
O1—C11.454 (3)C3—C41.403 (3)
O2—C21.210 (3)C3—C81.413 (3)
O3—C41.360 (3)C4—C51.382 (3)
O3—H30.8200C5—C61.379 (3)
O4—C81.351 (3)C5—H50.9300
O4—H40.8200C6—C71.379 (4)
O5—C91.190 (3)C6—C91.495 (4)
O6—C91.329 (3)C7—C81.389 (4)
O6—C101.449 (3)C7—H70.9300
C1—H1A0.9600C10—H10A0.9600
C1—H1C0.9600C10—H10B0.9600
C1—H1B0.9600C10—H10C0.9600
C2—O1—C1118.1 (2)C6—C5—H5120.4
C4—O3—H3109.5C4—C5—H5120.4
C8—O4—H4109.5C7—C6—C5120.8 (2)
C9—O6—C10117.3 (3)C7—C6—C9117.7 (2)
O1—C1—H1A109.5C5—C6—C9121.6 (2)
O1—C1—H1C109.5C6—C7—C8120.4 (2)
H1A—C1—H1C109.5C6—C7—H7119.8
O1—C1—H1B109.5C8—C7—H7119.8
H1A—C1—H1B109.5O4—C8—C7115.6 (2)
H1C—C1—H1B109.5O4—C8—C3124.2 (2)
O2—C2—O1121.8 (2)C7—C8—C3120.3 (2)
O2—C2—C3124.1 (2)O5—C9—O6123.3 (3)
O1—C2—C3114.1 (2)O5—C9—C6124.5 (3)
C4—C3—C8117.4 (2)O6—C9—C6112.2 (2)
C4—C3—C2118.8 (2)O6—C10—H10A109.5
C8—C3—C2123.8 (2)O6—C10—H10B109.5
O3—C4—C5116.8 (2)H10A—C10—H10B109.5
O3—C4—C3121.3 (2)O6—C10—H10C109.5
C5—C4—C3121.9 (2)H10A—C10—H10C109.5
C6—C5—C4119.3 (2)H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.842.567 (3)147
O4—H4···O10.821.892.593 (3)144
O4—H4···O3i0.822.583.099 (3)123
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H10O6
Mr226.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.6462 (8), 7.0925 (3), 13.5745 (10)
β (°) 114.327 (9)
V3)1021.70 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.34 × 0.26 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.865, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4572, 2083, 1161
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.178, 1.09
No. of reflections2083
No. of parameters149
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.842.567 (3)147.0
O4—H4···O10.821.892.593 (3)143.8
O4—H4···O3i0.822.583.099 (3)122.5
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

This work was supported by the Key Science and Technology Research Program of Jiangsu Province (BE 2006077) and the Academic Foundation of Zhejiang University of Technology (No. 20090101).

References

First citationBrunner, K. (1928). Monatsh. Chem. 50, 216–224.  CrossRef CAS Google Scholar
First citationDai, Y.-M., Shen, H.-Y. & Huang, J.-F. (2005). Acta Cryst. E61, o3410–o3411.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeruhiko, T., Shozo, T. & Sachio, M. (1998). Tetrahedron Lett. 39, 4347–4350.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds