metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m413-m414

catena-Poly[[[tri­aqua­sulfatozinc(II)]-μ-3,3′-bis­­(3-pyrid­yl)-1,1′-(m-phenyl­ene)diurea] methanol solvate monohydrate]

aDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S C Mullick Road, Jadavpur, Kolkata 700 032, India
*Correspondence e-mail: parthod123@rediffmail.com;_ocpd@iacs.res.in

(Received 18 January 2010; accepted 11 March 2010; online 17 March 2010)

In the title coordination polymer, {[Zn(SO4)(C18H16N6O2)(H2O)3]·CH3OH·H2O}n, the Zn2+ ion adopts a slightly distorted cis-ZnN2O4 octa­hedral geometry arising from three coordinated water mol­ecules, one sulfate ion and two bridging 3,3′-bis­(3-pyrid­yl)-1,1′-(m-phenyl­ene)diurea (bpmpbu) ligands. The dihedral angles between the central benzene ring and two terminal pyridine rings of the bpmbpu mol­ecule are 10.58 (17) and 34.63 (16)°. In the crystal, the ligands bridge the ZnII ions, thus generating a one-dimensional zigzag coordination polymer propagating in [010]. The crystal structure features extensive N—H⋯O and O—H⋯O hydrogen-bonding inter­actions.

Related literature

For our previous work on related compounds, see: Adarsh et al. (2008[Adarsh, N. N., Krishna Kumar, D. & Dastidar, P. (2008). CrystEngComm, 10, 1565-1573], 2009[Adarsh, N. N., Krishna Kumar, D. & Dastidar, P. (2009). Cryst. Growth Des. 9, 2979-2983.]),

[Scheme 1]

Experimental

Crystal data
  • [Zn(SO4)(C18H16N6O2)(H2O)3]·CH4O·H2O

  • Mr = 613.90

  • Monoclinic, P 21

  • a = 6.4831 (7) Å

  • b = 19.265 (2) Å

  • c = 9.7062 (11) Å

  • β = 98.848 (2)°

  • V = 1197.8 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 100 K

  • 0.28 × 0.22 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.732, Tmax = 0.871

  • 5989 measured reflections

  • 3968 independent reflections

  • 3823 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.068

  • S = 1.02

  • 3968 reflections

  • 369 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1782 Friedel pairs

  • Flack parameter: 0.049 (10)

Table 1
Selected bond lengths (Å)

Zn1—N1 2.116 (3)
Zn1—N23i 2.126 (3)
Zn1—O33 2.062 (2)
Zn1—O31 2.149 (3)
Zn1—O32 2.158 (3)
Zn1—O27 2.217 (2)
Symmetry code: (i) [-x, y+{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O29ii 0.86 2.14 2.954 (4) 157
N10—H10⋯O29ii 0.86 2.25 3.044 (4) 154
N17—H17⋯O28iii 0.86 2.05 2.875 (4) 160
N20—H20⋯O30iii 0.86 2.08 2.922 (4) 164
O35—H35⋯O34 0.82 2.09 2.893 (4) 168
O32—H32A⋯O27iv 0.85 (4) 2.09 (4) 2.942 (3) 179 (4)
O31—H31A⋯O9iv 0.81 (4) 2.09 (4) 2.899 (4) 173 (4)
O33—H33A⋯O29iv 0.85 (4) 1.87 (4) 2.714 (4) 170 (4)
O34—H34A⋯O9 0.90 (5) 2.08 (5) 2.861 (4) 146 (4)
O32—H32B⋯O19v 0.73 (4) 2.08 (4) 2.774 (3) 158 (5)
O31—H31B⋯O34 0.79 (4) 2.11 (4) 2.887 (4) 168 (4)
O33—H33B⋯O28 0.82 (4) 1.84 (4) 2.633 (3) 162 (4)
O34—H34B⋯O30 0.98 (5) 1.90 (5) 2.748 (4) 144 (4)
Symmetry codes: (ii) x, y, z+1; (iii) x-1, y, z+1; (iv) x+1, y, z; (v) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of functional coordination polymers (CPs) and metal-organic frameworks (MOF) (Adarsh et al., 2008, 2009), we now report a coordination polymer derived from a newly synthesized bis-pyridyl-bis-urea ligand N,N'-bis(3-pyridyl)meta-phenylene-bis-urea (BPMPBU). Suitable single crystals of [{Zn(H2O)3(SO4)(µ-BPMPBU)}.H2O.MeOH], (I), were obtained by layering an methanolic solution of BPMPBU over aqueous solution of ZnSO4 in 1:2 metal–ligand ratio (see experimental). It was crystallized in the monoclinic non centrosymmetric space group P21. In the asymmetric unit, the metal center Zn(II) is found to be hexacoordinated; while euqatorial positions are occupied by pyridyl N atoms of the ligand and water molecules, the apical positions are coordinated by O atoms of water and sulfate. The ORTEP diagram of 1 with 50% probability is given in Fig. 1. The metal center Zn(II) displayed a distorted octahedral geometry [N—Zn—N = 94.72?(12)°; O—Zn—N = 87.4)(12)-93.83 (10)°; O—Zn—O = 87.01 (11)-91.12 (12)°]. In the crystal structure, the ligand BPMPBU which displayed syn-syn-syn conformation (scheme 1) coordinated to the adjacent Zn(II) metal centres via pyridyl N atoms leading to the formation of a 1D zigzag polymeric chain (Fig. 2). The polymeric chains are further packed in parallel fashion sustained by N–H···O hydrogen bonding interactions involving sulfate and the urea moieties [N···O = 2.875 (4)–3.044 (4) Å; N–H···O =154–164°]. Both the lattice included water and MeOH are occupied within the interstitial space of the chains and are involved in O—H···O hydrogen bonding interactions [O···O = 2.633 (3)–2.942 (3) Å; O–H···O] (Fig. 3).

Related literature top

For our previous work on related compounds, see: Adarsh et al. (2008, 2009),

Experimental top

3-Aminopyridine (1 g, 10.6 mmol) and triethylamine (3 ml) were stirred under nitrogen in 150 ml of anhydrous dichloromethane in ice cold condition for 20 min. To this stirring solution, triphosgene (1.57 g, 5.3 mmol) was added and kept stirring for another 20 min at 0°C and to the resultant solution, meta-phenylenediamine (574 mg, 5.3 mmol) in 10 ml of dichloromethane was added dropwise. White precipitate was obtained after 24 hour of stirring at room temperature. The precipitate was filtered, air dried, treated with 5% NaHCO3 solution and washed with distilled water. Pale yellow coloured microcrystalline material of the BPMPBU ligand was obtained (880 mg, 55% yield) after recrystallization from H2O/MeOH (1 : 2 v/v) (880 mg, 55% yield) . mp 265-267°C Anal. data calc. for C18H16N6O2: C, 62.06; H, 4.63; N, 24.12. Found: C, 61.86, H, 4.24, N, 24.32. 1H NMR (300 MHz, DMSO-d6): δ = 7.09-7.12 (2H, d, J = 9 Hz, Ar—H); 7.23-7.18 (1H, t, J = 9, 9 Hz, Ar—H); 7.34-7.30 (2H, dd, J = 6, 9 Hz, Py—H); 7.70 (1H, s, Ar—H); 7.96-7.93 (2H, d, J = 9 Hz, Py—H); 8.20-8.19 (2H, d, J = 3 Hz, Py—H); 8.62 (2H, s, Py—H); 8.78 (2H, s, urea N—H); 8.87 (2H, s, urea N—H). HRMS(ESI) calcd for C18H16N6O2 349.14; found: [M + Na]+ 349.12 F T—IR (KBr, cm-1): 3346 (s, N–H stretch), 3242 (s, O–H stretch), 3059, 3022 (s, aromatic C–H stretch), 2908, 2827 (s, aliphatic C–H stretch), 1710, 1647 (s, urea C=O stretch), 1641 (s, urea N–H bend), 1608, 1595, 1535, 1485, 1425, 1421, 1408, 1327, 1294, 1209, 1186, 1122, 1103, 854, 786, 767, 734, 700, 626, 551.

The title compound was synthesized by layering a methanolic solution of BPMPBU (40 mg, 0.1149 mmol) over an aqueous solution of ZnSO4.7H2O (16.5 mg, 0.0575 mmol). After three days, colourless blocks of (I) were obtained (yield = 20 mg, 57 %). Anal. data calc. for C19H28N6O11SZn: C, 37.17; H, 4.60; N, 13.69, found: C, 37.12, H, 4.28, N, 13.66. F T—IR (KBr, cm-1): 3323 (b, N–H stretch), 3219 (b, O–H stretch), 3090 (b, aromatic C–H stretch), 1693 (s, urea C=O stretch), 1610 (s, urea N–H bend), 1589, 1570, 1552, 1496, 1483, 1431, 1330, 1294, 1217, 1193, 1130, 1089, 1066, 1035, 945, 900, 850, 819, 775, 704.

Refinement top

Whenever possible, the hydrogen atoms were located on a difference Fourier map and refined. In other cases, the hydrogen atoms were geometrically fixed. The positional parameters of hydrogen atoms of the water molecules and methanol molecule were refined with the constraint Uiso(H) = 1.2 or 1.5Ueq(carrier) applied.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Fragment of the structure of (I) with displacement ellipsoids drawn at 50% probability level
[Figure 2] Fig. 2. 1D zig-zag coordination polymer in (I).
[Figure 3] Fig. 3. Parallel packing of 1D zigzag chains in (I) (shown in orange and purple colour) displaying various hydrogen bonding (dotted lines) intearctions (dotted lines).
catena-Poly[[[triaquasulfatozinc(II)]-µ-3,3'-bis(3-pyridyl)- 1,1'-(m-phenylene)diurea] methanol solvate monohydrate] top
Crystal data top
[Zn(SO4)(C18H16N6O2)(H2O)3]·CH4O·H2OF(000) = 636
Mr = 613.90Dx = 1.702 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 144 reflections
a = 6.4831 (7) Åθ = 2.3–26.0°
b = 19.265 (2) ŵ = 1.19 mm1
c = 9.7062 (11) ÅT = 100 K
β = 98.848 (2)°Block, colourless
V = 1197.8 (2) Å30.28 × 0.22 × 0.12 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
3968 independent reflections
Radiation source: fine-focus sealed tube3823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 3 pixels mm-1θmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 76
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
k = 2222
Tmin = 0.732, Tmax = 0.871l = 711
5989 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0188P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3968 reflectionsΔρmax = 0.54 e Å3
369 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 1782 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.049 (10)
Crystal data top
[Zn(SO4)(C18H16N6O2)(H2O)3]·CH4O·H2OV = 1197.8 (2) Å3
Mr = 613.90Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4831 (7) ŵ = 1.19 mm1
b = 19.265 (2) ÅT = 100 K
c = 9.7062 (11) Å0.28 × 0.22 × 0.12 mm
β = 98.848 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3968 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3823 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.871Rint = 0.025
5989 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.068Δρmax = 0.54 e Å3
S = 1.02Δρmin = 0.26 e Å3
3968 reflectionsAbsolute structure: Flack (1983), 1782 Friedel pairs
369 parametersAbsolute structure parameter: 0.049 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.01818 (5)0.83531 (2)0.15530 (4)0.01276 (10)
S10.59561 (13)0.76119 (4)0.03921 (8)0.01383 (19)
N10.9621 (4)0.84335 (19)0.3638 (3)0.0137 (6)
C20.7909 (5)0.81484 (16)0.4027 (3)0.0159 (8)
H20.69670.79160.33650.019*
C30.7500 (5)0.81905 (15)0.5399 (3)0.0133 (8)
C40.8923 (5)0.85448 (16)0.6356 (4)0.0157 (8)
H40.86760.85920.72700.019*
C51.0682 (5)0.88257 (18)0.5975 (4)0.0159 (8)
H51.16530.90560.66220.019*
C61.0987 (5)0.87587 (18)0.4585 (4)0.0164 (8)
H61.21830.89470.43150.020*
N70.5748 (4)0.79042 (15)0.5860 (3)0.0174 (7)
H70.54450.80650.66310.021*
C80.4459 (5)0.73982 (18)0.5225 (4)0.0147 (8)
O90.4570 (4)0.71652 (12)0.4060 (2)0.0177 (5)
N100.3052 (5)0.71747 (15)0.6036 (3)0.0165 (6)
H100.30190.74020.67960.020*
C110.1645 (5)0.66159 (17)0.5776 (3)0.0138 (7)
C120.1858 (6)0.60887 (19)0.4839 (4)0.0185 (8)
H120.29560.60910.43250.022*
C130.0411 (6)0.5561 (2)0.4683 (4)0.0248 (9)
H130.05520.52080.40510.030*
C140.1251 (6)0.55336 (19)0.5430 (4)0.0193 (9)
H140.22320.51790.52820.023*
C150.1405 (5)0.60492 (17)0.6399 (3)0.0145 (7)
C160.0004 (5)0.65929 (17)0.6551 (3)0.0142 (7)
H160.01440.69480.71780.017*
N170.2982 (4)0.60722 (14)0.7258 (3)0.0164 (6)
H170.31350.64640.76560.020*
C180.4296 (5)0.55496 (17)0.7538 (4)0.0144 (8)
O190.4347 (4)0.49686 (12)0.7017 (2)0.0166 (5)
N200.5554 (4)0.57575 (15)0.8485 (3)0.0154 (6)
H200.52700.61560.88670.018*
C210.7245 (6)0.54001 (18)0.8903 (4)0.0144 (7)
C220.7849 (5)0.47290 (18)0.8489 (3)0.0140 (7)
H220.71160.44950.78790.017*
N230.9455 (4)0.44088 (14)0.8943 (3)0.0129 (6)
C241.0544 (5)0.47467 (19)0.9809 (4)0.0181 (8)
H241.16460.45231.01340.022*
C251.0052 (6)0.54219 (19)1.0225 (4)0.0197 (8)
H251.08430.56531.08030.024*
C260.8391 (5)0.57487 (18)0.9779 (4)0.0185 (8)
H260.80390.62001.00630.022*
O270.6905 (4)0.80524 (12)0.0790 (2)0.0142 (5)
O280.7580 (4)0.73351 (12)0.1150 (3)0.0204 (6)
O290.4479 (4)0.80304 (13)0.1355 (2)0.0198 (6)
O300.4820 (4)0.70339 (12)0.0130 (3)0.0231 (6)
O311.0881 (4)0.72757 (13)0.1965 (3)0.0185 (6)
O321.3440 (4)0.86231 (13)0.2068 (3)0.0167 (6)
O331.0745 (4)0.81868 (13)0.0455 (2)0.0175 (6)
O340.7276 (5)0.64800 (13)0.2427 (3)0.0277 (7)
O350.6380 (5)0.50133 (16)0.2090 (3)0.0393 (8)
H350.64480.54370.21520.059*
C360.4550 (7)0.4779 (2)0.2561 (5)0.0385 (11)
H36A0.48660.46550.35290.058*
H36B0.40170.43800.20290.058*
H36C0.35220.51410.24460.058*
H31A1.194 (7)0.722 (2)0.251 (4)0.027*
H31B1.000 (7)0.704 (2)0.220 (4)0.027*
H32A1.445 (6)0.846 (2)0.170 (4)0.026*
H32B1.386 (7)0.898 (2)0.215 (4)0.026*
H33A1.198 (7)0.8143 (19)0.063 (4)0.027*
H33B0.995 (6)0.786 (2)0.063 (4)0.027*
H34A0.691 (7)0.667 (2)0.320 (5)0.043*
H34B0.615 (7)0.648 (2)0.163 (5)0.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01308 (19)0.01284 (18)0.01308 (19)0.00027 (18)0.00425 (13)0.00021 (18)
S10.0139 (4)0.0144 (4)0.0138 (4)0.0007 (3)0.0043 (3)0.0030 (3)
N10.0149 (14)0.0138 (16)0.0132 (14)0.0001 (14)0.0047 (10)0.0015 (14)
C20.0147 (18)0.019 (2)0.0137 (18)0.0010 (14)0.0003 (14)0.0010 (13)
C30.0111 (17)0.014 (2)0.0162 (17)0.0010 (13)0.0056 (13)0.0011 (13)
C40.0222 (19)0.014 (2)0.0119 (17)0.0028 (14)0.0068 (14)0.0002 (13)
C50.0147 (19)0.0166 (18)0.0159 (19)0.0050 (15)0.0007 (14)0.0001 (15)
C60.017 (2)0.0138 (18)0.0197 (19)0.0057 (15)0.0074 (15)0.0018 (15)
N70.0183 (17)0.0237 (17)0.0119 (15)0.0061 (14)0.0076 (12)0.0029 (13)
C80.0115 (18)0.0167 (19)0.0166 (19)0.0038 (14)0.0046 (14)0.0024 (15)
O90.0190 (14)0.0218 (13)0.0133 (13)0.0022 (11)0.0054 (10)0.0024 (11)
N100.0210 (17)0.0184 (16)0.0115 (15)0.0037 (13)0.0073 (12)0.0062 (12)
C110.0122 (18)0.0136 (17)0.0165 (18)0.0018 (14)0.0048 (14)0.0049 (14)
C120.0171 (19)0.020 (2)0.022 (2)0.0037 (16)0.0133 (15)0.0011 (16)
C130.031 (2)0.020 (2)0.027 (2)0.0029 (17)0.0151 (17)0.0104 (16)
C140.022 (2)0.019 (2)0.017 (2)0.0087 (17)0.0053 (16)0.0029 (15)
C150.0135 (18)0.0158 (18)0.0150 (18)0.0028 (15)0.0047 (14)0.0023 (14)
C160.0176 (19)0.0125 (17)0.0134 (18)0.0012 (15)0.0051 (14)0.0008 (14)
N170.0162 (16)0.0114 (15)0.0239 (17)0.0034 (13)0.0102 (13)0.0023 (12)
C180.0135 (18)0.0132 (19)0.0168 (19)0.0010 (15)0.0027 (14)0.0008 (14)
O190.0187 (14)0.0123 (13)0.0197 (13)0.0020 (10)0.0051 (10)0.0012 (10)
N200.0152 (16)0.0118 (15)0.0206 (16)0.0075 (12)0.0069 (12)0.0046 (12)
C210.0097 (17)0.0181 (19)0.0159 (19)0.0002 (14)0.0032 (13)0.0028 (15)
C220.0135 (18)0.0140 (18)0.0159 (18)0.0023 (15)0.0063 (14)0.0017 (15)
N230.0130 (15)0.0109 (14)0.0150 (15)0.0010 (12)0.0026 (12)0.0008 (12)
C240.0160 (19)0.0206 (19)0.0182 (19)0.0010 (16)0.0041 (15)0.0009 (16)
C250.020 (2)0.0181 (19)0.023 (2)0.0019 (16)0.0102 (16)0.0044 (16)
C260.019 (2)0.0146 (18)0.023 (2)0.0004 (16)0.0061 (15)0.0043 (15)
O270.0123 (12)0.0171 (12)0.0134 (12)0.0012 (10)0.0022 (9)0.0033 (10)
O280.0161 (13)0.0223 (13)0.0242 (14)0.0026 (11)0.0076 (10)0.0102 (11)
O290.0218 (14)0.0253 (13)0.0132 (13)0.0031 (11)0.0055 (10)0.0013 (10)
O300.0283 (15)0.0196 (14)0.0234 (15)0.0081 (12)0.0100 (11)0.0030 (11)
O310.0189 (15)0.0168 (14)0.0195 (14)0.0026 (11)0.0018 (11)0.0012 (11)
O320.0122 (13)0.0132 (12)0.0259 (15)0.0036 (10)0.0070 (10)0.0049 (11)
O330.0133 (13)0.0229 (17)0.0177 (13)0.0032 (11)0.0073 (10)0.0038 (10)
O340.0349 (17)0.0226 (15)0.0268 (16)0.0016 (13)0.0088 (13)0.0024 (12)
O350.0384 (19)0.0336 (17)0.050 (2)0.0036 (15)0.0193 (15)0.0041 (15)
C360.031 (3)0.039 (3)0.049 (3)0.003 (2)0.015 (2)0.010 (2)
Geometric parameters (Å, º) top
Zn1—N12.116 (3)C14—H140.9300
Zn1—N23i2.126 (3)C15—C161.383 (5)
Zn1—O332.062 (2)C15—N171.416 (4)
Zn1—O312.149 (3)C16—H160.9300
Zn1—O322.158 (3)N17—C181.373 (4)
Zn1—O272.217 (2)N17—H170.8600
S1—O301.468 (3)C18—O191.227 (4)
S1—O291.471 (2)C18—N201.379 (4)
S1—O281.474 (3)N20—C211.406 (5)
S1—O271.482 (2)N20—H200.8600
N1—C61.331 (4)C21—C261.386 (5)
N1—C21.344 (4)C21—C221.392 (5)
C2—C31.399 (4)C22—N231.342 (4)
C2—H20.9300C22—H220.9300
C3—C41.384 (4)N23—C241.346 (5)
C3—N71.397 (4)N23—Zn1ii2.126 (3)
C4—C51.364 (5)C24—C251.384 (5)
C4—H40.9300C24—H240.9300
C5—C61.399 (5)C25—C261.373 (5)
C5—H50.9300C25—H250.9300
C6—H60.9300C26—H260.9300
N7—C81.367 (4)O31—H31A0.81 (4)
N7—H70.8600O31—H31B0.79 (4)
C8—O91.230 (4)O32—H32A0.85 (4)
C8—O91.230 (4)O32—H32B0.73 (4)
C8—N101.363 (4)O33—H33A0.85 (4)
N10—C111.409 (4)O33—H33B0.82 (4)
N10—H100.8600O34—H34A0.90 (5)
C11—C121.384 (5)O34—H34B0.98 (5)
C11—C161.394 (5)O35—C361.409 (5)
C12—C131.375 (5)O35—H350.8200
C12—H120.9300C36—H36A0.9600
C13—C141.389 (5)C36—H36B0.9600
C13—H130.9300C36—H36C0.9600
C14—C151.382 (5)
O33—Zn1—N1175.25 (12)C12—C13—H13118.6
O33—Zn1—N23i89.98 (10)C14—C13—H13118.6
N1—Zn1—N23i94.71 (12)C15—C14—C13118.1 (3)
O33—Zn1—O3187.88 (10)C15—C14—H14121.0
N1—Zn1—O3187.42 (12)C13—C14—H14121.0
N23i—Zn1—O31177.64 (11)C16—C15—C14120.1 (3)
O33—Zn1—O3286.97 (10)C16—C15—N17116.0 (3)
N1—Zn1—O3293.83 (10)C14—C15—N17123.9 (3)
N23i—Zn1—O3289.81 (10)C15—C16—C11120.8 (3)
O31—Zn1—O3291.08 (10)C15—C16—H16119.6
O33—Zn1—O2786.75 (9)C11—C16—H16119.6
N1—Zn1—O2792.41 (10)C18—N17—C15128.3 (3)
N23i—Zn1—O2790.39 (10)C18—N17—H17115.8
O31—Zn1—O2788.50 (10)C15—N17—H17115.8
O32—Zn1—O27173.72 (9)O19—C18—N17124.4 (3)
O30—S1—O29108.84 (15)O19—C18—N20124.0 (3)
O30—S1—O28109.45 (14)N17—C18—N20111.6 (3)
O29—S1—O28109.04 (15)C18—N20—C21128.1 (3)
O30—S1—O27109.73 (14)C18—N20—H20115.9
O29—S1—O27109.25 (14)C21—N20—H20115.9
O28—S1—O27110.50 (14)C26—C21—C22118.3 (3)
C6—N1—C2119.2 (3)C26—C21—N20117.1 (3)
C6—N1—Zn1120.1 (2)C22—C21—N20124.6 (3)
C2—N1—Zn1120.7 (2)N23—C22—C21122.0 (3)
N1—C2—C3122.0 (3)N23—C22—H22119.0
N1—C2—H2119.0C21—C22—H22119.0
C3—C2—H2119.0C22—N23—C24119.4 (3)
C4—C3—N7118.1 (3)C22—N23—Zn1ii121.4 (2)
C4—C3—C2117.6 (3)C24—N23—Zn1ii119.0 (2)
N7—C3—C2124.3 (3)N23—C24—C25121.1 (3)
C5—C4—C3120.8 (3)N23—C24—H24119.4
C5—C4—H4119.6C25—C24—H24119.4
C3—C4—H4119.6C26—C25—C24119.7 (3)
C4—C5—C6118.2 (3)C26—C25—H25120.1
C4—C5—H5120.9C24—C25—H25120.1
C6—C5—H5120.9C25—C26—C21119.4 (3)
N1—C6—C5122.1 (3)C25—C26—H26120.3
N1—C6—H6118.9C21—C26—H26120.3
C5—C6—H6118.9S1—O27—Zn1132.11 (14)
C8—N7—C3127.4 (3)Zn1—O31—H31A113 (3)
C8—N7—H7116.3Zn1—O31—H31B117 (3)
C3—N7—H7116.3H31A—O31—H31B108 (4)
O9—C8—N10123.7 (3)Zn1—O32—H32A127 (3)
O9—C8—N10123.7 (3)Zn1—O32—H32B126 (3)
O9—C8—N7123.8 (3)H32A—O32—H32B95 (4)
O9—C8—N7123.8 (3)Zn1—O33—H33A121 (2)
N10—C8—N7112.4 (3)Zn1—O33—H33B97 (3)
C8—N10—C11127.6 (3)H33A—O33—H33B118 (4)
C8—N10—H10116.2H34A—O34—H34B113 (4)
C11—N10—H10116.2C36—O35—H35109.5
C12—C11—C16119.5 (3)O35—C36—H36A109.5
C12—C11—N10123.4 (3)O35—C36—H36B109.5
C16—C11—N10117.0 (3)H36A—C36—H36B109.5
C13—C12—C11118.6 (3)O35—C36—H36C109.5
C13—C12—H12120.7H36A—C36—H36C109.5
C11—C12—H12120.7H36B—C36—H36C109.5
C12—C13—C14122.8 (4)
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O29iii0.862.142.954 (4)157
N10—H10···O29iii0.862.253.044 (4)154
N17—H17···O28iv0.862.052.875 (4)160
N20—H20···O30iv0.862.082.922 (4)164
O35—H35···O340.822.092.893 (4)168
O32—H32A···O27v0.85 (4)2.09 (4)2.942 (3)179 (4)
O31—H31A···O9v0.81 (4)2.09 (4)2.899 (4)173 (4)
O33—H33A···O29v0.85 (4)1.87 (4)2.714 (4)170 (4)
O34—H34A···O90.90 (5)2.08 (5)2.861 (4)146 (4)
O32—H32B···O19vi0.73 (4)2.08 (4)2.774 (3)158 (5)
O31—H31B···O340.79 (4)2.11 (4)2.887 (4)168 (4)
O33—H33B···O280.82 (4)1.84 (4)2.633 (3)162 (4)
O34—H34B···O300.98 (5)1.90 (5)2.748 (4)144 (4)
Symmetry codes: (iii) x, y, z+1; (iv) x1, y, z+1; (v) x+1, y, z; (vi) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(SO4)(C18H16N6O2)(H2O)3]·CH4O·H2O
Mr613.90
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)6.4831 (7), 19.265 (2), 9.7062 (11)
β (°) 98.848 (2)
V3)1197.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.28 × 0.22 × 0.12
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.732, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
5989, 3968, 3823
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.068, 1.02
No. of reflections3968
No. of parameters369
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.26
Absolute structureFlack (1983), 1782 Friedel pairs
Absolute structure parameter0.049 (10)

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—N12.116 (3)Zn1—O312.149 (3)
Zn1—N23i2.126 (3)Zn1—O322.158 (3)
Zn1—O332.062 (2)Zn1—O272.217 (2)
Symmetry code: (i) x, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O29ii0.862.142.954 (4)157
N10—H10···O29ii0.862.253.044 (4)154
N17—H17···O28iii0.862.052.875 (4)160
N20—H20···O30iii0.862.082.922 (4)164
O35—H35···O340.822.092.893 (4)168
O32—H32A···O27iv0.85 (4)2.09 (4)2.942 (3)179 (4)
O31—H31A···O9iv0.81 (4)2.09 (4)2.899 (4)173 (4)
O33—H33A···O29iv0.85 (4)1.87 (4)2.714 (4)170 (4)
O34—H34A···O90.90 (5)2.08 (5)2.861 (4)146 (4)
O32—H32B···O19v0.73 (4)2.08 (4)2.774 (3)158 (5)
O31—H31B···O340.79 (4)2.11 (4)2.887 (4)168 (4)
O33—H33B···O280.82 (4)1.84 (4)2.633 (3)162 (4)
O34—H34B···O300.98 (5)1.90 (5)2.748 (4)144 (4)
Symmetry codes: (ii) x, y, z+1; (iii) x1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1/2, z+1.
 

Acknowledgements

We thank the Department of Science & Technology (DST), New Delhi, India, for financial support. NNA thanks the IACS for research fellowships. The data were collected at the DST-funded National Single Crystal Diffractometer Facility at the Department of Inorganic Chemistry, IACS.

References

First citationAdarsh, N. N., Krishna Kumar, D. & Dastidar, P. (2008). CrystEngComm, 10, 1565–1573  Web of Science CSD CrossRef CAS Google Scholar
First citationAdarsh, N. N., Krishna Kumar, D. & Dastidar, P. (2009). Cryst. Growth Des. 9, 2979–2983.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m413-m414
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds