metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m397-m398

catena-Poly[neodymium(III)-bis­­[μ-N-(di­morpholino­phosphor­yl)benzene­sulfonamidato]-sodium(I)-bis­­[μ-N-(di­morpholino­phosphor­yl)benzene­sulfonamidato]]

aNational Taras Shevchenko University, Department of Chemistry, Volodymyrska str. 64, 01033 Kyiv, Ukraine, and bSTC "Institute for Syngle Crystals", 60 Lenina ave., Khar'kov 61001, Ukraine
*Correspondence e-mail: shatrava@univ.kiev.ua

(Received 18 February 2010; accepted 3 March 2010; online 13 March 2010)

The cubic crystal structure of the title compound, [NaNd(C14H21N3O5PS)4]n, is composed of one-dimensional polymeric chains propagating in [100], built up from [Nd(C14H21N3O5PS)4] anions and sodium cations functioning as linkers. In the complex anion, the Nd3+ ion has an eightfold coordination environment formed by the sulfonyl and phosphoryl O atoms of four bidentate chelating N-(dimorpholinophosphor­yl)benzene­sulfonamidate ligands: the resulting NdO8 polyhedron can be described as inter­mediate between dodeca­hedral and square anti­prismatic. The sodium ion adopts an NaO4 tetra­hedral geometry arising from four monodentate benzene­sulfonamidate ligands. The resulting crystal structure is unusual because it contains substantial voids (800 Å3 per unit cell), within which there is no evidence of included solvent.

Related literature

For general background to the use of bidentate ligands in ring closure in coordination compounds, see: Casas et al. (1995[Casas, J. S., Castineiras, A., Haiduc, I., Sanchez, A., Sordo, H. & Vazquez-Lopez, E. M. (1995). Polyhedron, 14, 805-809.]); Amirkhanov et al. (1997[Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331-1336.]); Ly & Woollins (1998[Ly, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451-481.]). For applications of the chelates formed, see: Zazybin et al. (2006[Zazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Molec. Catal. A Chem. 253, 234-238.]); Karande et al. (2003[Karande, A. P., Mallik, G. K., Panakkal, J. P., Kamath, H. S., Bhargava, V. K. & Mathur, J. N. (2003). J. Radioanal. Nucl. Chem. 256, 185-189.]); Morgalyuk et al. (2005[Morgalyuk, V. P., Safiulina, A. M., Tananaev, I. G., Goryunov, E. I., Goryunova, I. B., Molchanova, G. N., Baulina, T. V., Nifant'ev, E. E. & Myasoedov, B. F. (2005). Dokl. Chem. 403, 126-128.]); Xu & Angell (2000[Xu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16-23.]). For lanthanide compounds of general formula Na[Ln(L1)4]n where HL1 is C6H5S(O)2NHPO(OCH3)2, see: Moroz et al. (2007[Moroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175-m3176.]). For the synthesis of the ligand, see: Kirsanov & Shevchenko (1954[Kirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. 24, 474-484.]); Oyamada & Morimura (1960[Oyamada, K. & Morimura, S. (1960). Annu. Rep. Takamine Lab. 12, 41.]). For inter­pretation of coordination polyhedra, see: Porai-Koshits & Aslanov (1972[Porai-Koshits, M. & Aslanov, L. (1972). Zh. Strukt. Khim. 13, 266-276.]). For bond lengths in similar compounds, see: Sokolov et al. (2007[Sokolov, F. D., Babashkina, M. G., Safin, D. A., Rakhmatullin, A. I., Fayon, F., Zabirov, N. G., Bolte, M., Brusko, V. V., Galezowska, J. & Kozlowski, H. (2007). Dalton Trans. pp. 4693-4700.]); Sokolnicki et al. (1998[Sokolnicki, J., Legendziewicz, J., Amirkhanov, V., Ovchinnikov, V. & Macalik, L. (1998). Spectrochim. Acta, 55, 349-367.]).

[Scheme 1]

Experimental

Crystal data
  • [NaNd(C14H21N3O5PS)4]

  • Mr = 1664.72

  • Cubic, [P \overline 43n ]

  • a = 22.943 (5) Å

  • V = 12077 (5) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.60 × 0.40 × 0.30 mm

Data collection
  • Oxford Diffraction KM-4 Xcalibur diffractometer with a Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.614, Tmax = 0.774

  • 66051 measured reflections

  • 5883 independent reflections

  • 3713 reflections with I > 2σ(I)

  • Rint = 0.113

Refinement
  • R[F2 > 2σ(F2)] = 0.095

  • wR(F2) = 0.178

  • S = 1.42

  • 5883 reflections

  • 174 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.17 e Å−3

  • Δρmin = −0.75 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2727 Friedel pairs

  • Flack parameter: 0.05 (3)

Table 1
Selected bond lengths (Å)

Nd1—O1 2.376 (4)
Nd1—O2 2.532 (4)
Na1—O3 2.282 (4)

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Lots of bidentate ligands under coordination form closure rings through the donor atoms binding to the same metal. The most used ligands are those derived from that containing oxygen, nitrogen, phosphorus and sulphur atoms (Casas et al., 1995; Amirkhanov et al., 1997; Ly et al., 1998). Such chelates may be used in catalysis (Zazybin et al., 2006), metal extraction (Karande et al., 2003; Morgalyuk et al., 2005), bioinorganic chemistry (Xu et al., 2000). Phosphorylated sulphonylamides of a general view RS(O)2NHP(O)(NR2)2 could be applied for obtaining of lanthanide coordination compounds and presence of sulfono-group oxygen atom as addititious coordination centre gives a challenging opportunity to use them as convenient building blocks for syntheses of bi- and poly-nuclear compounds.

The results of lanthanide compounds investigation with one of the phosphorylated sulphonylamides representative – C6H5S(O)2NHPO(OCH3)2 (HL1) of general formula Na[Ln(L1)4]n were already reported (Moroz et al., 2007).

We now report the synthesis and investigation of tetrakis - complex of the composition {Na[Nd(L)4]}n, (I) (Fig.1), where L- is dimorpholinephenylsulphonylamidophosphate (C6H5S(O)2NPO(NC4H8O)2)-. The synthesis of HL was carried out according to (Oyamada et al., 1960; Kirsanov et al., 1954), using benzenesulfonamide and morpholine.

The molecular structure of title compound contains 1D polymer chain, formed by [Nd(L)4)]- anion and sodium cation as a linker. In complex anions the neodymium atoms have 8-fold coordination environment formed by oxygen atoms of SO2 and PO groups of four bidentate chelate ligands (Fig. 2). According to Porai-Koshits (Porai-Koshits & Aslanov, 1972) the resulting coordination polyhedra can be interpreted as a medium conformation between dodecahedron (δ1 = δ2 = δ3 = δ4 = 29.5 °) and square antiprism (δ1 = δ2 = 0 °; δ3 = δ4 = 52.5 °) for Nd atom (interplanar angles in polyhedra for Nd δ1 = δ2 = 26.2 °; δ3 = δ4 = 51.8 °).

The Nd – O(P) bond lengths (2.376 (4) Å) are shorter than Nd – O(S) (2.532 (4) Å) that can be explained by higher affinity of phosphoryl group to lanthanide ions. The P – O (1.499 (4) Å), N(1) – P (1.613 (6) Å) bond lengths are also comparable with the values observed for similar compounds (Sokolnicki et al., 1998; Sokolov et al., 2007). The average P—N (morpholine substituents) distance (1.628 (7) Å) is larger than P—N(1) bond length in chelate core because of the conjugation in S(O)2NP(O) fragment. The metallocycles are almost flat with a deviation of the N(1) atom from the mean plane defined by the six atoms NdO(1)P(1) N(1)S(1)O(2) of 0.24496 Å.

The bonding of complex anions in polymer structure is provided by Na ions. The Na polyhedron is a distorted tetrahedron, formed by two SO oxygens from different anions.

The crystal structure is unusual: it contains substantial voids (800 Å3) within which there is no evidence for included solvent (Fig. 3). The crystals remained glass-clear being on air.

Related literature top

For general background to the use of bidentate ligands in ring closure in coordination compounds, see: Casas et al. (1995); Amirkhanov et al. (1997); Ly & Woollins (1998). For applications of the chelates formed, see: Zazybin et al. (2006); Karande et al. (2003); Morgalyuk et al. (2005); Xu & Angell (2000). For lanthanide compounds of general formula Na[Ln(L1)4]n where HL1 is C6H5S(O)2NHPO(OCH3)2, see: Moroz et al. (2007). For the synthesis of the ligand, see: Kirsanov & Shevchenko (1954); Oyamada & Morimura (1960). For interpretation of coordination polyhedra, see: Porai-Koshits & Aslanov (1972). For bond lengths in similar compounds, see: Sokolov et al. (2007); Sokolnicki et al. (1998).

Experimental top

Nd(NO3)37H2O (0.087 g, 1 mmol) was dissolved in 10 ml of i-PrOH and added to 10 ml of a solution of NaL (0.3 g, 4 mmol) in a mixture of methanol and i-PrOH (1:1). After 30 min the precipitate of NaNO3 was filtered off. The resulting clear solution was left for crystallization in a vacuum desiccator. The resulting light violet blocks of (I) were separated by filtration after 48 h, washed with cool i-PrOH (5 ml) and finally dried in air. Yield: 85–90%. IR (KBr pellet, cm-1): 1240, 1030 (s, SO2) and 1140 (s, PO).

Refinement top

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of Na[Nd(L)4]n with displacement ellipsoids shown at the 30% probability level. H atoms and morpholine rings have been omitted for clarity.
[Figure 2] Fig. 2. Polyhedror of Nd3+ in (I).
[Figure 3] Fig. 3. Motif of packing of (I) viewed along z (all H atoms are omitted for clarity).
catena-Poly[neodymium(III)-bis[µ-N- (dimorpholinophosphoryl)benzenesulfonamidato]-sodium(I)-bis[µ-N- (dimorpholinophosphoryl)benzenesulfonamidato]] top
Crystal data top
[NaNd(C14H21N3O5PS)4]Mo Kα radiation, λ = 0.71069 Å
Mr = 1664.72Cell parameters from 68542 reflections
Cubic, P43nθ = 2.8–32.1°
a = 22.943 (5) ŵ = 0.90 mm1
V = 12077 (5) Å3T = 293 K
Z = 6Block, light violet
F(000) = 51540.60 × 0.40 × 0.30 mm
Dx = 1.373 Mg m3
Data collection top
Oxford Diffraction KM-4 Xcalibur
diffractometer with a Sapphire3 detector
5883 independent reflections
Radiation source: fine-focus sealed tube3713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.113
Detector resolution: 16.1827 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω scansh = 3132
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 3032
Tmin = 0.614, Tmax = 0.774l = 3232
66051 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0311P)2 + 27.6297P]
where P = (Fo2 + 2Fc2)/3
S = 1.42(Δ/σ)max = 0.053
5883 reflectionsΔρmax = 1.17 e Å3
174 parametersΔρmin = 0.75 e Å3
1 restraintAbsolute structure: Flack (1983), 2727 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (3)
Crystal data top
[NaNd(C14H21N3O5PS)4]Z = 6
Mr = 1664.72Mo Kα radiation
Cubic, P43nµ = 0.90 mm1
a = 22.943 (5) ÅT = 293 K
V = 12077 (5) Å30.60 × 0.40 × 0.30 mm
Data collection top
Oxford Diffraction KM-4 Xcalibur
diffractometer with a Sapphire3 detector
5883 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
3713 reflections with I > 2σ(I)
Tmin = 0.614, Tmax = 0.774Rint = 0.113
66051 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.095H-atom parameters constrained
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0311P)2 + 27.6297P]
where P = (Fo2 + 2Fc2)/3
S = 1.42Δρmax = 1.17 e Å3
5883 reflectionsΔρmin = 0.75 e Å3
174 parametersAbsolute structure: Flack (1983), 2727 Friedel pairs
1 restraintAbsolute structure parameter: 0.05 (3)
Special details top

Experimental. CrysAlis RED, (Oxford Diffraction Ltd., 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.25000.00000.50000.03890 (11)
Na10.50000.00000.50000.0591 (11)
P10.34264 (7)0.11150 (8)0.56551 (8)0.0580 (4)
S10.38783 (6)0.07841 (7)0.45680 (7)0.0542 (4)
C10.3831 (3)0.1414 (3)0.4113 (3)0.0561 (17)
N10.3939 (2)0.1001 (3)0.5188 (2)0.0784 (19)
N20.3754 (2)0.1023 (3)0.6282 (3)0.0907 (14)
N30.3220 (3)0.1790 (3)0.5648 (4)0.126 (2)
O20.33520 (14)0.04482 (17)0.44606 (16)0.0497 (10)
O30.44068 (16)0.0500 (2)0.4378 (2)0.0719 (13)
O10.28838 (15)0.07562 (17)0.55946 (17)0.0526 (11)
O40.4251 (3)0.0792 (4)0.7367 (2)0.134 (2)
O50.2927 (4)0.2972 (3)0.5510 (4)0.163 (3)
C20.4310 (3)0.1778 (3)0.4091 (3)0.076 (2)
H2A0.46510.16990.42960.092*
C30.4246 (4)0.2277 (3)0.3737 (4)0.108 (3)
H3A0.45620.25280.37010.129*
C40.3754 (5)0.2411 (4)0.3447 (4)0.112 (3)
H4A0.37340.27410.32120.135*
C50.3306 (5)0.2067 (4)0.3505 (4)0.111 (3)
H5A0.29600.21670.33210.133*
C60.3325 (4)0.1552 (3)0.3833 (3)0.079 (2)
H6A0.30000.13110.38590.095*
C70.4355 (3)0.0977 (4)0.6373 (3)0.0907 (14)
H7A0.45090.13700.63960.109*
H7B0.45210.08000.60260.109*
C80.4565 (5)0.0675 (5)0.6845 (4)0.134 (2)
H8A0.45460.02600.67630.161*
H8B0.49720.07760.69030.161*
C90.3442 (3)0.1124 (4)0.6830 (3)0.0907 (14)
H9A0.30320.10360.67780.109*
H9B0.34770.15310.69390.109*
C100.3674 (4)0.0770 (6)0.7282 (4)0.134 (2)
H10A0.35690.03680.72010.161*
H10B0.34840.08780.76440.161*
C120.2463 (4)0.2556 (2)0.5500 (5)0.163 (3)
H12A0.22800.25350.58800.196*
H12B0.21710.26730.52180.196*
C110.2713 (3)0.1964 (2)0.5334 (5)0.126 (2)
H11A0.28070.19690.49220.151*
H11B0.24140.16710.53930.151*
C130.3666 (4)0.2253 (3)0.5699 (5)0.126 (2)
H13A0.38730.22880.53320.151*
H13B0.39460.21450.59970.151*
C140.3422 (5)0.2777 (4)0.5838 (6)0.163 (3)
H14A0.33080.27610.62450.196*
H14B0.37230.30720.58050.196*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.02596 (19)0.04536 (15)0.04536 (15)0.0000.0000.000
Na10.0368 (17)0.078 (3)0.063 (2)0.0000.0000.000
P10.0465 (8)0.0611 (9)0.0663 (10)0.0090 (8)0.0157 (8)0.0007 (8)
S10.0324 (6)0.0678 (9)0.0624 (9)0.0034 (7)0.0001 (7)0.0180 (8)
C10.049 (3)0.065 (4)0.055 (3)0.001 (3)0.016 (3)0.010 (3)
N10.054 (3)0.113 (4)0.069 (4)0.041 (3)0.004 (3)0.008 (3)
N20.052 (2)0.154 (4)0.066 (2)0.005 (3)0.0010 (19)0.018 (3)
N30.091 (3)0.067 (3)0.219 (6)0.007 (2)0.064 (3)0.010 (3)
O20.0341 (17)0.059 (2)0.056 (2)0.0013 (18)0.0033 (18)0.009 (2)
O30.0338 (19)0.085 (3)0.097 (3)0.001 (2)0.007 (2)0.027 (3)
O10.0365 (18)0.060 (2)0.061 (2)0.0045 (18)0.0008 (18)0.017 (2)
O40.119 (4)0.212 (5)0.071 (3)0.029 (4)0.014 (3)0.000 (3)
O50.194 (6)0.080 (3)0.216 (6)0.016 (3)0.067 (5)0.034 (4)
C20.073 (4)0.067 (4)0.090 (5)0.009 (4)0.023 (4)0.002 (4)
C30.143 (7)0.073 (5)0.106 (6)0.021 (5)0.074 (5)0.001 (4)
C40.159 (9)0.077 (5)0.100 (6)0.018 (6)0.034 (6)0.031 (5)
C50.137 (8)0.106 (6)0.091 (6)0.034 (6)0.003 (6)0.041 (5)
C60.086 (5)0.082 (5)0.070 (4)0.009 (4)0.007 (4)0.009 (4)
C70.052 (2)0.154 (4)0.066 (2)0.005 (3)0.0010 (19)0.018 (3)
C80.119 (4)0.212 (5)0.071 (3)0.029 (4)0.014 (3)0.000 (3)
C90.052 (2)0.154 (4)0.066 (2)0.005 (3)0.0010 (19)0.018 (3)
C100.119 (4)0.212 (5)0.071 (3)0.029 (4)0.014 (3)0.000 (3)
C120.194 (6)0.080 (3)0.216 (6)0.016 (3)0.067 (5)0.034 (4)
C110.091 (3)0.067 (3)0.219 (6)0.007 (2)0.064 (3)0.010 (3)
C130.091 (3)0.067 (3)0.219 (6)0.007 (2)0.064 (3)0.010 (3)
C140.194 (6)0.080 (3)0.216 (6)0.016 (3)0.067 (5)0.034 (4)
Geometric parameters (Å, º) top
Nd1—O1i2.376 (4)O5—C121.429 (10)
Nd1—O1ii2.376 (4)O5—C141.434 (13)
Nd1—O12.376 (4)C2—C31.413 (10)
Nd1—O1iii2.376 (4)C2—H2A0.9300
Nd1—O2ii2.532 (4)C3—C41.345 (13)
Nd1—O22.532 (4)C3—H3A0.9300
Nd1—O2iii2.532 (4)C4—C51.302 (13)
Nd1—O2i2.532 (4)C4—H4A0.9300
Na1—O32.282 (4)C5—C61.400 (11)
Na1—O3iv2.282 (4)C5—H5A0.9300
Na1—O3v2.282 (4)C6—H6A0.9300
Na1—O3ii2.282 (4)C7—C81.374 (12)
Na1—S13.2926 (16)C7—H7A0.9700
Na1—S1v3.2926 (16)C7—H7B0.9700
Na1—S1iv3.2926 (16)C8—H8A0.9700
Na1—S1ii3.2926 (16)C8—H8B0.9700
P1—O11.499 (4)C9—C101.421 (13)
P1—N11.613 (6)C9—H9A0.9700
P1—N31.619 (7)C9—H9B0.9700
P1—N21.637 (7)C10—H10A0.9700
S1—O31.444 (4)C10—H10B0.9700
S1—O21.453 (4)C12—C111.524 (5)
S1—N11.513 (6)C12—H12A0.9700
S1—C11.787 (6)C12—H12B0.9700
C1—C61.365 (10)C11—H11A0.9700
C1—C21.380 (9)C11—H11B0.9700
N2—C71.400 (9)C13—C141.364 (12)
N2—C91.465 (9)C13—H13A0.9700
N3—C111.425 (11)C13—H13B0.9700
N3—C131.478 (10)C14—H14A0.9700
O4—C101.340 (11)C14—H14B0.9700
O4—C81.424 (10)
O1i—Nd1—O1ii97.89 (6)S1—N1—P1127.6 (3)
O1i—Nd1—O197.89 (6)C7—N2—C9111.4 (6)
O1ii—Nd1—O1136.50 (17)C7—N2—P1126.4 (5)
O1i—Nd1—O1iii136.50 (17)C9—N2—P1120.7 (5)
O1ii—Nd1—O1iii97.89 (6)C11—N3—C13113.8 (7)
O1—Nd1—O1iii97.89 (6)C11—N3—P1120.7 (5)
O1i—Nd1—O2ii151.18 (12)C13—N3—P1119.0 (6)
O1ii—Nd1—O2ii72.42 (12)S1—O2—Nd1140.7 (2)
O1—Nd1—O2ii74.32 (13)S1—O3—Na1122.6 (3)
O1iii—Nd1—O2ii72.30 (12)P1—O1—Nd1139.6 (2)
O1i—Nd1—O272.30 (12)C10—O4—C8111.7 (7)
O1ii—Nd1—O274.32 (13)C12—O5—C14112.9 (8)
O1—Nd1—O272.42 (12)C1—C2—C3115.3 (7)
O1iii—Nd1—O2151.18 (12)C1—C2—H2A122.4
O2ii—Nd1—O278.92 (16)C3—C2—H2A122.4
O1i—Nd1—O2iii74.32 (13)C4—C3—C2123.9 (8)
O1ii—Nd1—O2iii151.18 (12)C4—C3—H3A118.1
O1—Nd1—O2iii72.30 (12)C2—C3—H3A118.1
O1iii—Nd1—O2iii72.42 (12)C5—C4—C3118.2 (9)
O2ii—Nd1—O2iii126.59 (10)C5—C4—H4A120.9
O2—Nd1—O2iii126.59 (10)C3—C4—H4A120.9
O1i—Nd1—O2i72.42 (12)C4—C5—C6122.8 (9)
O1ii—Nd1—O2i72.30 (12)C4—C5—H5A118.6
O1—Nd1—O2i151.18 (12)C6—C5—H5A118.6
O1iii—Nd1—O2i74.32 (13)C1—C6—C5118.3 (8)
O2ii—Nd1—O2i126.59 (10)C1—C6—H6A120.8
O2—Nd1—O2i126.59 (10)C5—C6—H6A120.8
O2iii—Nd1—O2i78.92 (16)C8—C7—N2120.1 (8)
O3—Na1—O3iv119.6 (2)C8—C7—H7A107.3
O3—Na1—O3v102.5 (2)N2—C7—H7A107.3
O3iv—Na1—O3v106.8 (2)C8—C7—H7B107.3
O3—Na1—O3ii106.8 (2)N2—C7—H7B107.3
O3iv—Na1—O3ii102.5 (2)H7A—C7—H7B106.9
O3v—Na1—O3ii119.6 (2)C7—C8—O4113.0 (9)
O3—Na1—S121.69 (11)C7—C8—H8A109.0
O3iv—Na1—S1112.32 (11)O4—C8—H8A109.0
O3v—Na1—S1123.55 (12)C7—C8—H8B109.0
O3ii—Na1—S189.82 (10)O4—C8—H8B109.0
O3—Na1—S1v123.55 (12)H8A—C8—H8B107.8
O3iv—Na1—S1v89.82 (10)C10—C9—N2110.7 (7)
O3v—Na1—S1v21.69 (11)C10—C9—H9A109.5
O3ii—Na1—S1v112.32 (11)N2—C9—H9A109.5
S1—Na1—S1v144.97 (6)C10—C9—H9B109.5
O3—Na1—S1iv112.32 (11)N2—C9—H9B109.5
O3iv—Na1—S1iv21.69 (11)H9A—C9—H9B108.1
O3v—Na1—S1iv89.82 (10)O4—C10—C9117.0 (9)
O3ii—Na1—S1iv123.55 (12)O4—C10—H10A108.1
S1—Na1—S1iv113.77 (6)C9—C10—H10A108.1
S1v—Na1—S1iv77.18 (5)O4—C10—H10B108.1
O3—Na1—S1ii89.82 (10)C9—C10—H10B108.1
O3iv—Na1—S1ii123.55 (12)H10A—C10—H10B107.3
O3v—Na1—S1ii112.32 (11)O5—C12—C11108.6 (7)
O3ii—Na1—S1ii21.69 (11)O5—C12—H12A110.0
S1—Na1—S1ii77.18 (5)C11—C12—H12A110.0
S1v—Na1—S1ii113.77 (6)O5—C12—H12B110.0
S1iv—Na1—S1ii144.97 (6)C11—C12—H12B110.0
O1—P1—N1117.1 (3)H12A—C12—H12B108.3
O1—P1—N3106.4 (3)N3—C11—C12115.6 (7)
N1—P1—N3111.2 (4)N3—C11—H11A108.4
O1—P1—N2113.1 (3)C12—C11—H11A108.4
N1—P1—N2103.2 (3)N3—C11—H11B108.4
N3—P1—N2105.4 (4)C12—C11—H11B108.4
O3—S1—O2114.0 (3)H11A—C11—H11B107.5
O3—S1—N1110.8 (3)C14—C13—N3111.6 (8)
O2—S1—N1114.2 (3)C14—C13—H13A109.3
O3—S1—C1103.8 (3)N3—C13—H13A109.3
O2—S1—C1106.2 (3)C14—C13—H13B109.3
N1—S1—C1106.8 (3)N3—C13—H13B109.3
O3—S1—Na135.73 (19)H13A—C13—H13B108.0
O2—S1—Na1114.25 (17)C13—C14—O5118.5 (10)
N1—S1—Na179.9 (2)C13—C14—H14A107.7
C1—S1—Na1131.7 (2)O5—C14—H14A107.7
C6—C1—C2121.4 (6)C13—C14—H14B107.7
C6—C1—S1121.0 (5)O5—C14—H14B107.7
C2—C1—S1117.5 (5)H14A—C14—H14B107.1
O3iv—Na1—S1—O3114.4 (4)O3—S1—O2—Nd1121.0 (4)
O3v—Na1—S1—O315.9 (4)N1—S1—O2—Nd17.8 (5)
O3ii—Na1—S1—O3142.1 (2)C1—S1—O2—Nd1125.3 (4)
S1v—Na1—S1—O311.0 (3)Na1—S1—O2—Nd181.7 (3)
S1iv—Na1—S1—O390.9 (3)O1i—Nd1—O2—S1126.9 (4)
S1ii—Na1—S1—O3124.3 (3)O1ii—Nd1—O2—S1129.2 (4)
O3—Na1—S1—O298.0 (4)O1—Nd1—O2—S122.3 (3)
O3iv—Na1—S1—O2147.6 (2)O1iii—Nd1—O2—S151.6 (5)
O3v—Na1—S1—O282.1 (2)O2ii—Nd1—O2—S154.6 (3)
O3ii—Na1—S1—O244.1 (2)O2iii—Nd1—O2—S173.1 (3)
S1v—Na1—S1—O286.97 (18)O2i—Nd1—O2—S1177.7 (3)
S1iv—Na1—S1—O2171.15 (19)O2—S1—O3—Na198.6 (3)
S1ii—Na1—S1—O226.33 (17)N1—S1—O3—Na131.9 (4)
O3—Na1—S1—N1149.9 (4)C1—S1—O3—Na1146.2 (3)
O3iv—Na1—S1—N135.5 (2)O3iv—Na1—O3—S175.7 (3)
O3v—Na1—S1—N1165.7 (2)O3v—Na1—O3—S1166.5 (4)
O3ii—Na1—S1—N168.0 (2)O3ii—Na1—O3—S139.9 (2)
S1v—Na1—S1—N1160.9 (2)S1v—Na1—O3—S1172.4 (2)
S1iv—Na1—S1—N159.0 (2)S1iv—Na1—O3—S198.4 (3)
S1ii—Na1—S1—N185.8 (2)S1ii—Na1—O3—S153.7 (3)
O3—Na1—S1—C146.3 (4)N1—P1—O1—Nd11.5 (5)
O3iv—Na1—S1—C168.1 (3)N3—P1—O1—Nd1126.5 (5)
O3v—Na1—S1—C162.2 (3)N2—P1—O1—Nd1118.3 (4)
O3ii—Na1—S1—C1171.6 (3)O1i—Nd1—O1—P186.0 (3)
S1v—Na1—S1—C157.3 (3)O1ii—Nd1—O1—P124.3 (3)
S1iv—Na1—S1—C144.6 (3)O1iii—Nd1—O1—P1134.7 (4)
S1ii—Na1—S1—C1170.6 (3)O2ii—Nd1—O1—P165.6 (4)
O3—S1—C1—C6131.8 (6)O2—Nd1—O1—P117.5 (4)
O2—S1—C1—C611.2 (6)O2iii—Nd1—O1—P1156.7 (4)
N1—S1—C1—C6111.1 (6)O2i—Nd1—O1—P1153.6 (3)
Na1—S1—C1—C6157.6 (4)C6—C1—C2—C33.4 (10)
O3—S1—C1—C253.1 (6)S1—C1—C2—C3178.5 (5)
O2—S1—C1—C2173.7 (5)C1—C2—C3—C41.8 (12)
N1—S1—C1—C264.0 (6)C2—C3—C4—C51.3 (14)
Na1—S1—C1—C227.4 (7)C3—C4—C5—C62.9 (14)
O3—S1—N1—P1154.8 (4)C2—C1—C6—C52.0 (11)
O2—S1—N1—P124.4 (6)S1—C1—C6—C5176.9 (6)
C1—S1—N1—P192.7 (5)C4—C5—C6—C11.4 (13)
Na1—S1—N1—P1136.6 (5)C9—N2—C7—C840.8 (12)
O1—P1—N1—S128.1 (6)P1—N2—C7—C8153.3 (8)
N3—P1—N1—S194.4 (6)N2—C7—C8—O442.8 (13)
N2—P1—N1—S1153.0 (5)C10—O4—C8—C746.7 (13)
O1—P1—N2—C7139.0 (7)C7—N2—C9—C1041.8 (11)
N1—P1—N2—C711.5 (8)P1—N2—C9—C10151.4 (7)
N3—P1—N2—C7105.2 (8)C8—O4—C10—C954.2 (13)
O1—P1—N2—C956.4 (8)N2—C9—C10—O452.2 (12)
N1—P1—N2—C9176.2 (7)C14—O5—C12—C1149.2 (12)
N3—P1—N2—C959.4 (8)C13—N3—C11—C1245.9 (12)
O1—P1—N3—C1129.9 (9)P1—N3—C11—C12162.7 (7)
N1—P1—N3—C1198.7 (8)O5—C12—C11—N348.4 (12)
N2—P1—N3—C11150.2 (8)C11—N3—C13—C1444.0 (14)
O1—P1—N3—C13179.8 (8)P1—N3—C13—C14164.1 (9)
N1—P1—N3—C1351.3 (9)N3—C13—C14—O548.7 (16)
N2—P1—N3—C1359.9 (9)C12—O5—C14—C1354.3 (15)
Symmetry codes: (i) x+1/2, z+1/2, y+1/2; (ii) x, y, z+1; (iii) x+1/2, z1/2, y+1/2; (iv) x+1, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[NaNd(C14H21N3O5PS)4]
Mr1664.72
Crystal system, space groupCubic, P43n
Temperature (K)293
a (Å)22.943 (5)
V3)12077 (5)
Z6
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.60 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction KM-4 Xcalibur
diffractometer with a Sapphire3 detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.614, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
66051, 5883, 3713
Rint0.113
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.095, 0.178, 1.42
No. of reflections5883
No. of parameters174
No. of restraints1
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0311P)2 + 27.6297P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.17, 0.75
Absolute structureFlack (1983), 2727 Friedel pairs
Absolute structure parameter0.05 (3)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Nd1—O12.376 (4)Na1—O32.282 (4)
Nd1—O22.532 (4)
 

References

First citationAmirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336.  CAS Google Scholar
First citationCasas, J. S., Castineiras, A., Haiduc, I., Sanchez, A., Sordo, H. & Vazquez-Lopez, E. M. (1995). Polyhedron, 14, 805–809.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKarande, A. P., Mallik, G. K., Panakkal, J. P., Kamath, H. S., Bhargava, V. K. & Mathur, J. N. (2003). J. Radioanal. Nucl. Chem. 256, 185–189.  Web of Science CrossRef CAS Google Scholar
First citationKirsanov, A. & Shevchenko, V. (1954). Zh. Obshch. Khim. 24, 474–484.  CAS Google Scholar
First citationLy, T. Q. & Woollins, J. D. (1998). Coord. Chem. Rev. 176, 451–481.  Web of Science CrossRef CAS Google Scholar
First citationMorgalyuk, V. P., Safiulina, A. M., Tananaev, I. G., Goryunov, E. I., Goryunova, I. B., Molchanova, G. N., Baulina, T. V., Nifant'ev, E. E. & Myasoedov, B. F. (2005). Dokl. Chem. 403, 126–128.  Web of Science CrossRef CAS Google Scholar
First citationMoroz, O. V., Shishkina, S. V., Trush, V. A., Sliva, T. Y. & Amirkhanov, V. M. (2007). Acta Cryst. E63, m3175–m3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationOyamada, K. & Morimura, S. (1960). Annu. Rep. Takamine Lab. 12, 41.  Google Scholar
First citationPorai-Koshits, M. & Aslanov, L. (1972). Zh. Strukt. Khim. 13, 266–276.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSokolnicki, J., Legendziewicz, J., Amirkhanov, V., Ovchinnikov, V. & Macalik, L. (1998). Spectrochim. Acta, 55, 349–367.  CrossRef Google Scholar
First citationSokolov, F. D., Babashkina, M. G., Safin, D. A., Rakhmatullin, A. I., Fayon, F., Zabirov, N. G., Bolte, M., Brusko, V. V., Galezowska, J. & Kozlowski, H. (2007). Dalton Trans. pp. 4693–4700.  Web of Science CSD CrossRef PubMed Google Scholar
First citationXu, K. & Angell, C. (2000). Inorg. Chim. Acta, 298, 16–23.  Web of Science CrossRef CAS Google Scholar
First citationZazybin, A., Osipova, O., Khusnutdinova, U., Aristov, I., Solomonov, B., Sokolov, F., Babashkina, M. & Zabirov, N. (2006). J. Molec. Catal. A Chem. 253, 234–238.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m397-m398
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds