organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N′-(2,4-di­chloro­benzyl­­idene)benzohydrazide

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
*Correspondence e-mail: zhoucongsh@gmail.com

(Received 25 February 2010; accepted 27 February 2010; online 6 March 2010)

The title Schiff base compound, C14H9Cl3N2O, exists in a trans configuration with respect to the C=N bond and the dihedral angle between the two benzene rings is 13.5 (2)°. In the crystal, inter­molecular N—H⋯O hydrogen bonds link adjacent mol­ecules into extended C(4) chains propagating along the c-axis direction.

Related literature

For a related structure and background material, see the previous paper: Zhou & Yang (2010[Zhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o751.]).

[Scheme 1]

Experimental

Crystal data
  • C14H9Cl3N2O

  • Mr = 327.58

  • Monoclinic, P 21 /c

  • a = 7.4737 (11) Å

  • b = 25.877 (4) Å

  • c = 8.1833 (12) Å

  • β = 116.013 (2)°

  • V = 1422.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.64 mm−1

  • T = 298 K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.867, Tmax = 0.883

  • 7752 measured reflections

  • 2828 independent reflections

  • 2066 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.121

  • S = 1.02

  • 2828 reflections

  • 184 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 2.00 (1) 2.864 (3) 164 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our ongoing studies of Schiff bases (Zhou & Yang, 2010), the crystal structure of the title Schiff base, (I), derived from the condensing of 2,4-dichlorobenzaldehyde with 2-chlorobenzohydrazide in methanol is reported.

The molecule exists in a trans configuration with respect to the acyclic CN bond. The molecule of the compound is distorted, with the dihedral angle between the two benzene rings of 13.5 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds link adjacent molecules into extended chains along the c axis (Table 1 and Fig. 2).

Related literature top

For a related structure and background material, see the previous paper: Zhou & Yang (2010).

Experimental top

2,4-Dichlorobenzaldehyde (1.0 mmol, 175 mg) and 2-chlorobenzohydrazide (1.0 mmol, 170 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless blocks of (I).

Refinement top

H2 attached to N2 was located in a difference map and refined with N—H distance restrained to 0.90 (1)Å. The remaining H atoms were positioned geometrically, with C—H distances of 0.93 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
2-Chloro-N'-(2,4-dichlorobenzylidene)benzohydrazide top
Crystal data top
C14H9Cl3N2OF(000) = 664
Mr = 327.58Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2111 reflections
a = 7.4737 (11) Åθ = 3.0–24.9°
b = 25.877 (4) ŵ = 0.64 mm1
c = 8.1833 (12) ÅT = 298 K
β = 116.013 (2)°Block, colourless
V = 1422.3 (4) Å30.23 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2828 independent reflections
Radiation source: fine-focus sealed tube2066 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 26.2°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.867, Tmax = 0.883k = 2832
7752 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.7512P]
where P = (Fo2 + 2Fc2)/3
2828 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.36 e Å3
Crystal data top
C14H9Cl3N2OV = 1422.3 (4) Å3
Mr = 327.58Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4737 (11) ŵ = 0.64 mm1
b = 25.877 (4) ÅT = 298 K
c = 8.1833 (12) Å0.23 × 0.20 × 0.20 mm
β = 116.013 (2)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2828 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2066 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.883Rint = 0.029
7752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.59 e Å3
2828 reflectionsΔρmin = 0.36 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19289 (14)0.55576 (3)0.33995 (10)0.0770 (3)
Cl20.73603 (12)0.52632 (3)1.02156 (11)0.0691 (3)
Cl30.07212 (14)0.90788 (3)0.33033 (13)0.0715 (3)
H20.076 (5)0.7358 (12)0.209 (2)0.080*
N10.1947 (3)0.71586 (8)0.4668 (3)0.0436 (5)
N20.0880 (3)0.74638 (8)0.3170 (3)0.0435 (5)
O10.0219 (3)0.80567 (7)0.4865 (2)0.0554 (5)
C10.3509 (4)0.63513 (10)0.5759 (3)0.0395 (6)
C20.3470 (4)0.58197 (10)0.5493 (3)0.0438 (6)
C30.4627 (4)0.54838 (10)0.6852 (4)0.0477 (7)
H30.45540.51290.66480.057*
C40.5895 (4)0.56846 (11)0.8522 (3)0.0450 (6)
C50.6012 (4)0.62076 (11)0.8836 (4)0.0482 (7)
H50.68950.63390.99610.058*
C60.4815 (4)0.65335 (10)0.7478 (3)0.0444 (6)
H60.48740.68870.77070.053*
C70.2298 (4)0.67024 (10)0.4305 (3)0.0421 (6)
H70.17770.65930.31020.051*
C80.0076 (4)0.79055 (9)0.3394 (3)0.0419 (6)
C90.1100 (4)0.81908 (10)0.1658 (3)0.0421 (6)
C100.0930 (4)0.87193 (11)0.1520 (4)0.0510 (7)
C110.2088 (6)0.89765 (13)0.0095 (5)0.0675 (9)
H110.19440.93310.01910.081*
C120.3438 (6)0.87046 (16)0.1536 (5)0.0769 (11)
H120.42300.88790.26060.092*
C130.3653 (5)0.81802 (15)0.1446 (4)0.0701 (10)
H130.45710.80030.24540.084*
C140.2510 (4)0.79142 (13)0.0140 (3)0.0557 (8)
H140.26630.75590.02110.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0824 (6)0.0591 (5)0.0504 (5)0.0065 (4)0.0068 (4)0.0140 (4)
Cl20.0573 (5)0.0710 (5)0.0564 (5)0.0074 (4)0.0042 (4)0.0240 (4)
Cl30.0819 (6)0.0509 (4)0.0903 (6)0.0115 (4)0.0457 (5)0.0095 (4)
N10.0532 (13)0.0462 (13)0.0320 (11)0.0056 (10)0.0192 (10)0.0040 (9)
N20.0597 (14)0.0440 (12)0.0296 (11)0.0123 (10)0.0221 (11)0.0046 (9)
O10.0890 (15)0.0477 (11)0.0363 (10)0.0098 (10)0.0336 (10)0.0001 (8)
C10.0392 (14)0.0470 (14)0.0319 (13)0.0031 (11)0.0150 (11)0.0036 (11)
C20.0406 (15)0.0472 (15)0.0359 (13)0.0019 (12)0.0098 (12)0.0017 (11)
C30.0454 (16)0.0423 (14)0.0488 (16)0.0026 (12)0.0146 (13)0.0042 (12)
C40.0354 (14)0.0539 (16)0.0402 (14)0.0002 (12)0.0116 (12)0.0112 (12)
C50.0448 (16)0.0601 (18)0.0333 (13)0.0106 (13)0.0111 (12)0.0018 (12)
C60.0513 (16)0.0429 (14)0.0354 (13)0.0045 (12)0.0156 (12)0.0007 (11)
C70.0495 (16)0.0469 (15)0.0302 (13)0.0044 (12)0.0177 (12)0.0002 (11)
C80.0527 (16)0.0413 (14)0.0368 (13)0.0014 (12)0.0244 (12)0.0023 (11)
C90.0534 (16)0.0450 (14)0.0378 (14)0.0112 (12)0.0291 (13)0.0059 (11)
C100.0623 (18)0.0494 (16)0.0565 (17)0.0091 (13)0.0401 (15)0.0056 (13)
C110.089 (3)0.0591 (19)0.072 (2)0.0241 (18)0.052 (2)0.0227 (17)
C120.093 (3)0.093 (3)0.058 (2)0.045 (2)0.045 (2)0.029 (2)
C130.069 (2)0.096 (3)0.0420 (17)0.0223 (19)0.0210 (16)0.0035 (17)
C140.0590 (18)0.076 (2)0.0337 (14)0.0234 (15)0.0219 (14)0.0061 (13)
Geometric parameters (Å, º) top
Cl1—C21.729 (3)C5—C61.369 (4)
Cl2—C41.726 (3)C5—H50.9300
Cl3—C101.714 (3)C6—H60.9300
N1—C71.272 (3)C7—H70.9300
N1—N21.380 (3)C8—C91.497 (3)
N2—C81.341 (3)C9—C101.383 (4)
N2—H20.893 (10)C9—C141.420 (4)
O1—C81.225 (3)C10—C111.391 (4)
C1—C21.391 (4)C11—C121.364 (5)
C1—C61.396 (3)C11—H110.9300
C1—C71.454 (3)C12—C131.372 (5)
C2—C31.377 (3)C12—H120.9300
C3—C41.378 (4)C13—C141.384 (4)
C3—H30.9300C13—H130.9300
C4—C51.373 (4)C14—H140.9300
C7—N1—N2114.9 (2)N1—C7—H7119.8
C8—N2—N1119.05 (19)C1—C7—H7119.8
C8—N2—H2123 (2)O1—C8—N2123.7 (2)
N1—N2—H2118 (2)O1—C8—C9122.5 (2)
C2—C1—C6116.7 (2)N2—C8—C9113.8 (2)
C2—C1—C7121.8 (2)C10—C9—C14119.1 (2)
C6—C1—C7121.5 (2)C10—C9—C8121.9 (2)
C3—C2—C1122.3 (2)C14—C9—C8118.9 (2)
C3—C2—Cl1117.5 (2)C9—C10—C11120.6 (3)
C1—C2—Cl1120.12 (19)C9—C10—Cl3121.6 (2)
C2—C3—C4118.6 (2)C11—C10—Cl3117.7 (2)
C2—C3—H3120.7C12—C11—C10119.4 (3)
C4—C3—H3120.7C12—C11—H11120.3
C5—C4—C3121.1 (2)C10—C11—H11120.3
C5—C4—Cl2120.4 (2)C11—C12—C13121.6 (3)
C3—C4—Cl2118.4 (2)C11—C12—H12119.2
C6—C5—C4119.3 (2)C13—C12—H12119.2
C6—C5—H5120.4C12—C13—C14120.2 (3)
C4—C5—H5120.4C12—C13—H13119.9
C5—C6—C1122.0 (2)C14—C13—H13119.9
C5—C6—H6119.0C13—C14—C9119.1 (3)
C1—C6—H6119.0C13—C14—H14120.5
N1—C7—C1120.4 (2)C9—C14—H14120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)2.00 (1)2.864 (3)164 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H9Cl3N2O
Mr327.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.4737 (11), 25.877 (4), 8.1833 (12)
β (°) 116.013 (2)
V3)1422.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.64
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.867, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
7752, 2828, 2066
Rint0.029
(sin θ/λ)max1)0.620
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.121, 1.02
No. of reflections2828
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.36

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.893 (10)1.995 (13)2.864 (3)164 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge support of this project by Hunan Provincial Natural Science Foundation of China Scientific Research (09JJ6022) and the Fund of Hunan Provincial Education Department (08B031), People's Republic of China.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, C.-S. & Yang, T. (2010). Acta Cryst. E66, o751.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds