organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-Bis(2,6-di­chloro­benzyl­­idene)propane-1,2-di­amine

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 February 2010; accepted 1 March 2010; online 6 March 2010)

In the title Schiff base, C17H14Cl4N2, the atoms of one of the 2,6-dichloro­benzyl­idene units and the central 1,2-diamino­propane grouping are disordered over two sets of sites in a 0.8838 (12):0.1162 (12) ratio. The dihedral angles between the ordered benzene ring and its disordered counterparts are 57.41 (12) and 54.8 (6)° for the major and minor disorder components, respectively. The crystal studied was a racemic twin, the refined ratio of the twin components being 0.37 (5):0.63 (5).

Related literature

For background to Schiff bases and their applications, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Sreedaran et al. (2008[Sreedaran, S., Shanmuga, K., Bharathi, A., Rahiman, Jagadish, K. L., Kaviyarasan, V., & Narayanan, V. (2008). Polyhedron, 27, 2931-2938.]); Lozier et al. (1975[Lozier, R., Bogomolni, R. & Stoekenius, A. W. (1975). Biophys. J. 15, 955-962.]); Yeap et al. (2006[Yeap, G. Y., Ha, S. T., Lim, P. L., Boey, P. L., Ito, M. M., Sanehisa, S. & Youhei, Y. (2006). Liq. Cryst. 33, 205-211.]); Liu et al. (1990[Liu, J., Masuda, Y. & Sekido, E. (1990). Analyst, 115, 1089-1092.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14Cl4N2

  • Mr = 388.10

  • Monoclinic, P 21

  • a = 4.2981 (7) Å

  • b = 12.995 (2) Å

  • c = 15.728 (3) Å

  • β = 96.493 (3)°

  • V = 872.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.68 mm−1

  • T = 100 K

  • 0.46 × 0.12 × 0.05 mm

Data collection
  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.748, Tmax = 0.970

  • 9842 measured reflections

  • 4849 independent reflections

  • 3924 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 1.02

  • 4849 reflections

  • 251 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2126 Friedel pairs

  • Flack parameter: 0.37 (5)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases and their biologically active complexes have been studied extensively over the past decade. Although numerous transition metal complexes of Schiff bases have been structurally characterized, relatively few free Schiff bases have been similarly characterized (Garnovskii et al., 1993). These compounds played important role in the development of coordination chemistry related to catalysis (Sreedaran et al., 2008) enzymatic reactions (Lozier et al., 1975), liquid crystals (Yeap et al., 2006) and ionophores in the construction of many anion or cation-selective electrodes (Liu et al., 1990). The present work is part of a structural study of compounds of Schiff base systems and we report here the structure of the title compound, (I).

The title compound, (I) is disordered over two positions with refined site-occupancies of 0.8838 (12) and 0.1162 (12) (Fig. 1). The methyl group at the center of the molecule is at different positions in the major and minor components which is C9A and C8B respectively. The dihedral angles between the two benzene rings are 57.41 (12) (major component) and 54.8 (6)° (minor component). In the crystal structure (Fig. 2), the molecules are stacked along the a axis.

Related literature top

For background to Schiff bases and their applications, see : Garnovskii et al. (1993); Sreedaran et al. (2008); Lozier et al. (1975); Yeap et al. (2006); Liu et al. (1990). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

2,6-Dichlorobenzaldehyde (0.087 g) and 1,2-diaminopropane (0.370 g) in ethanol/water (40 ml) were heated under reflux for 2 h with stirring. The colourless solution was then cooled to room temperature. After a few days of slow evaporation of the solvent, colourless needles of (I) was obtained.

Refinement top

Parts of the molecule are disordered over two sets of sites with refined site-occupancies of 0.8838 (12) and 0.1162 (12). The same Uij parameters were used for atom pair C12B/C14B. The minor component was refined isotropically. The C11B–C16B ring was constrained to a regular hexagon with d = 1.39 Å. The crystal studies was a racemic twin, the refined ratio of twin components being 0.37 (5) : 0.63 (5). All hydrogen atoms were positioned geometrically with a riding model with C–H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5 Ueq(C). The rotating group model was applied for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms. All disordered components are shown.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis, showing the molecules stacked along the a axis. Only the major disordered component is shown.
N,N'-Bis(2,6-dichlorobenzylidene)propane-1,2-diamine top
Crystal data top
C17H14Cl4N2F(000) = 396
Mr = 388.10Dx = 1.477 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2926 reflections
a = 4.2981 (7) Åθ = 2.6–28.3°
b = 12.995 (2) ŵ = 0.68 mm1
c = 15.728 (3) ÅT = 100 K
β = 96.493 (3)°Needle, colourless
V = 872.9 (3) Å30.46 × 0.12 × 0.05 mm
Z = 2
Data collection top
Bruker APEX DUO CCD
diffractometer
4849 independent reflections
Radiation source: fine-focus sealed tube3924 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 30.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 65
Tmin = 0.748, Tmax = 0.970k = 1817
9842 measured reflectionsl = 2221
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0532P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4849 reflectionsΔρmax = 0.34 e Å3
251 parametersΔρmin = 0.37 e Å3
1 restraintAbsolute structure: Flack (1983), 2126 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.37 (5)
Crystal data top
C17H14Cl4N2V = 872.9 (3) Å3
Mr = 388.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.2981 (7) ŵ = 0.68 mm1
b = 12.995 (2) ÅT = 100 K
c = 15.728 (3) Å0.46 × 0.12 × 0.05 mm
β = 96.493 (3)°
Data collection top
Bruker APEX DUO CCD
diffractometer
4849 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3924 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.970Rint = 0.036
9842 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.105Δρmax = 0.34 e Å3
S = 1.02Δρmin = 0.37 e Å3
4849 reflectionsAbsolute structure: Flack (1983), 2126 Friedel pairs
251 parametersAbsolute structure parameter: 0.37 (5)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.98339 (13)0.18903 (6)0.45440 (4)0.03938 (16)
Cl20.48865 (13)0.09458 (5)0.74865 (4)0.03122 (13)
N10.7261 (4)0.29956 (15)0.67172 (12)0.0259 (4)
C10.7794 (5)0.1065 (2)0.51600 (14)0.0282 (5)
C20.6666 (6)0.0147 (2)0.47971 (18)0.0404 (7)
H2A0.70530.00290.42460.048*
C30.4962 (6)0.0505 (2)0.52616 (19)0.0418 (7)
H3A0.41930.11220.50230.050*
C40.4398 (6)0.02385 (19)0.60850 (17)0.0329 (6)
H4A0.32360.06730.63980.039*
C50.5580 (5)0.06810 (18)0.64396 (15)0.0260 (5)
C60.7344 (5)0.13629 (17)0.59895 (14)0.0218 (4)
C70.8788 (5)0.23228 (19)0.63548 (13)0.0223 (4)
H7A1.09040.24370.63170.027*
Cl3A1.32672 (17)0.60836 (6)1.00556 (4)0.03585 (18)0.8838 (12)
Cl4A0.60478 (15)0.73403 (6)0.71931 (4)0.03113 (16)0.8838 (12)
N2A1.0367 (5)0.50002 (17)0.82594 (15)0.0239 (5)0.8838 (12)
C8A0.8989 (6)0.3912 (2)0.70341 (18)0.0234 (5)0.8838 (12)
H8AA0.81100.45150.67340.028*0.8838 (12)
H8AB1.11620.38510.69290.028*0.8838 (12)
C9A0.8795 (6)0.4030 (2)0.79957 (17)0.0239 (5)0.8838 (12)
H9AA0.65930.40670.81000.029*0.8838 (12)
C10A0.8565 (5)0.5733 (2)0.84129 (16)0.0212 (5)0.8838 (12)
H10A0.64280.56090.83980.025*0.8838 (12)
C11A0.9779 (7)0.6784 (2)0.86154 (17)0.0213 (6)0.8838 (12)
C12A1.1922 (6)0.7034 (2)0.93279 (16)0.0243 (6)0.8838 (12)
C13A1.2974 (6)0.8035 (2)0.94809 (18)0.0315 (6)0.8838 (12)
H13A1.44150.81780.99530.038*0.8838 (12)
C14A1.1883 (7)0.8821 (3)0.8932 (2)0.0330 (11)0.8838 (12)
H14A1.25820.94920.90340.040*0.8838 (12)
C15A0.9741 (7)0.8603 (2)0.82274 (19)0.0301 (6)0.8838 (12)
H15A0.89880.91250.78550.036*0.8838 (12)
C16A0.8742 (6)0.7606 (2)0.80854 (16)0.0239 (6)0.8838 (12)
C17A1.0371 (7)0.3144 (2)0.8501 (2)0.0257 (6)0.8838 (12)
H17A1.04690.32910.91020.039*0.8838 (12)
H17B1.24530.30560.83470.039*0.8838 (12)
H17C0.91900.25250.83750.039*0.8838 (12)
Cl3B1.2384 (14)0.5487 (5)0.9864 (4)0.0404 (14)*0.1162 (12)
Cl4B0.8089 (16)0.8266 (6)0.7447 (4)0.0488 (16)*0.1162 (12)
N2B1.009 (4)0.5440 (14)0.7775 (12)0.027 (4)*0.1162 (12)
C8B0.949 (5)0.3678 (16)0.7428 (13)0.020 (4)*0.1162 (12)
H8BA1.16040.36990.72540.024*0.1162 (12)
C9B0.805 (5)0.4675 (17)0.7254 (13)0.029 (4)*0.1162 (12)
H9BA0.59440.46830.74190.035*0.1162 (12)
H9BB0.79470.48360.66490.035*0.1162 (12)
C10B0.875 (5)0.6131 (17)0.8187 (13)0.021 (4)*0.1162 (12)
H10B0.65810.61210.81610.026*0.1162 (12)
C11B1.044 (4)0.6922 (11)0.8689 (10)0.030 (7)*0.1162 (12)
C12B1.225 (4)0.6691 (11)0.9454 (10)0.035 (4)*0.1162 (12)
C13B1.384 (4)0.7470 (13)0.9928 (9)0.041 (5)*0.1162 (12)
H13B1.50490.73151.04400.050*0.1162 (12)
C14B1.361 (4)0.8480 (12)0.9637 (11)0.035 (4)*0.1162 (12)
H14B1.46780.90010.99540.042*0.1162 (12)
C15B1.180 (5)0.8711 (10)0.8872 (11)0.044 (12)*0.1162 (12)
H15B1.16540.93870.86780.053*0.1162 (12)
C16B1.021 (4)0.7932 (13)0.8398 (9)0.032 (5)*0.1162 (12)
C17B0.972 (7)0.337 (2)0.8294 (18)0.033 (7)*0.1162 (12)
H17D1.16030.36470.85940.049*0.1162 (12)
H17E0.97600.26350.83280.049*0.1162 (12)
H17F0.79410.36270.85480.049*0.1162 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0263 (3)0.0661 (5)0.0261 (3)0.0084 (3)0.0045 (2)0.0017 (3)
Cl20.0339 (3)0.0285 (3)0.0316 (3)0.0026 (2)0.0051 (2)0.0046 (2)
N10.0215 (9)0.0225 (10)0.0336 (11)0.0016 (7)0.0023 (7)0.0051 (8)
C10.0194 (9)0.0376 (13)0.0264 (11)0.0092 (9)0.0026 (8)0.0041 (11)
C20.0268 (12)0.0533 (17)0.0386 (15)0.0138 (11)0.0075 (10)0.0225 (13)
C30.0340 (13)0.0314 (14)0.0562 (18)0.0070 (11)0.0116 (12)0.0190 (13)
C40.0260 (11)0.0219 (12)0.0485 (15)0.0005 (9)0.0056 (10)0.0016 (11)
C50.0203 (10)0.0242 (12)0.0320 (12)0.0048 (8)0.0030 (8)0.0024 (9)
C60.0168 (9)0.0232 (11)0.0244 (10)0.0046 (7)0.0024 (7)0.0015 (9)
C70.0171 (9)0.0251 (11)0.0242 (10)0.0005 (8)0.0000 (7)0.0028 (9)
Cl3A0.0385 (3)0.0381 (4)0.0285 (3)0.0059 (3)0.0068 (2)0.0015 (3)
Cl4A0.0267 (3)0.0387 (4)0.0269 (3)0.0073 (3)0.0017 (2)0.0018 (3)
N2A0.0160 (9)0.0225 (11)0.0333 (12)0.0010 (8)0.0036 (8)0.0065 (10)
C8A0.0217 (11)0.0185 (13)0.0299 (14)0.0014 (9)0.0017 (9)0.0018 (11)
C9A0.0165 (10)0.0224 (13)0.0329 (14)0.0033 (9)0.0033 (9)0.0038 (11)
C10A0.0146 (10)0.0264 (15)0.0228 (12)0.0013 (9)0.0029 (8)0.0036 (11)
C11A0.0152 (10)0.0241 (13)0.0252 (12)0.0030 (10)0.0045 (8)0.0048 (10)
C12A0.0198 (11)0.0296 (15)0.0236 (12)0.0022 (10)0.0028 (8)0.0041 (11)
C13A0.0269 (13)0.0364 (16)0.0315 (14)0.0042 (11)0.0053 (10)0.0117 (13)
C14A0.0342 (17)0.0238 (16)0.043 (2)0.0093 (11)0.0146 (12)0.0094 (13)
C15A0.0295 (13)0.0263 (15)0.0362 (15)0.0020 (11)0.0114 (11)0.0003 (12)
C16A0.0191 (10)0.0316 (15)0.0217 (11)0.0026 (9)0.0051 (8)0.0050 (11)
C17A0.0229 (13)0.0241 (15)0.0293 (15)0.0041 (10)0.0005 (11)0.0027 (12)
Geometric parameters (Å, º) top
Cl1—C11.747 (3)C13A—H13A0.9300
Cl2—C51.741 (2)C14A—C15A1.387 (5)
N1—C71.267 (3)C14A—H14A0.9300
N1—C8A1.461 (3)C15A—C16A1.375 (4)
N1—C8B1.65 (2)C15A—H15A0.9300
C1—C21.386 (4)C17A—H17A0.9600
C1—C61.395 (3)C17A—H17B0.9600
C2—C31.381 (4)C17A—H17C0.9600
C2—H2A0.9300Cl3B—C12B1.691 (15)
C3—C41.388 (4)Cl4B—C16B1.718 (14)
C3—H3A0.9300N2B—C10B1.28 (3)
C4—C51.390 (3)N2B—C9B1.51 (3)
C4—H4A0.9300C8B—C17B1.41 (3)
C5—C61.408 (3)C8B—C9B1.45 (3)
C6—C71.480 (3)C8B—H8BA0.9800
C7—H7A0.9300C9B—H9BA0.9700
Cl3A—C12A1.738 (3)C9B—H9BB0.9700
Cl4A—C16A1.750 (3)C10B—C11B1.44 (2)
N2A—C10A1.268 (3)C10B—H10B0.9300
N2A—C9A1.468 (3)C11B—C12B1.3900
C8A—C9A1.532 (4)C11B—C16B1.3900
C8A—H8AA0.9700C12B—C13B1.3900
C8A—H8AB0.9700C13B—C14B1.3900
C9A—C17A1.514 (4)C13B—H13B0.9300
C9A—H9AA0.9800C14B—C15B1.3900
C10A—C11A1.484 (4)C14B—H14B0.9300
C10A—H10A0.9300C15B—C16B1.3900
C11A—C16A1.397 (4)C15B—H15B0.9300
C11A—C12A1.406 (4)C17B—H17D0.9600
C12A—C13A1.390 (4)C17B—H17E0.9600
C13A—C14A1.385 (4)C17B—H17F0.9600
C7—N1—C8A116.54 (19)C13A—C14A—H14A120.2
C7—N1—C8B112.7 (7)C15A—C14A—H14A120.2
C2—C1—C6123.0 (2)C16A—C15A—C14A119.3 (3)
C2—C1—Cl1118.31 (19)C16A—C15A—H15A120.4
C6—C1—Cl1118.65 (19)C14A—C15A—H15A120.4
C3—C2—C1119.4 (2)C15A—C16A—C11A123.4 (3)
C3—C2—H2A120.3C15A—C16A—Cl4A118.8 (2)
C1—C2—H2A120.3C11A—C16A—Cl4A117.7 (2)
C2—C3—C4120.0 (3)C10B—N2B—C9B118.1 (17)
C2—C3—H3A120.0C17B—C8B—C9B115 (2)
C4—C3—H3A120.0C17B—C8B—N1118.4 (18)
C3—C4—C5119.6 (3)C9B—C8B—N198.7 (14)
C3—C4—H4A120.2C17B—C8B—H8BA108.2
C5—C4—H4A120.2C9B—C8B—H8BA108.2
C4—C5—C6122.2 (2)N1—C8B—H8BA108.2
C4—C5—Cl2117.09 (19)C8B—C9B—N2B106.2 (16)
C6—C5—Cl2120.72 (17)C8B—C9B—H9BA110.5
C1—C6—C5115.8 (2)N2B—C9B—H9BA110.5
C1—C6—C7120.0 (2)C8B—C9B—H9BB110.5
C5—C6—C7124.1 (2)N2B—C9B—H9BB110.5
N1—C7—C6122.73 (19)H9BA—C9B—H9BB108.7
N1—C7—H7A118.6N2B—C10B—C11B123.5 (18)
C6—C7—H7A118.6N2B—C10B—H10B118.3
C10A—N2A—C9A115.3 (2)C11B—C10B—H10B118.3
N1—C8A—C9A109.6 (2)C12B—C11B—C16B120.0
N1—C8A—H8AA109.7C12B—C11B—C10B121.2 (13)
C9A—C8A—H8AA109.7C16B—C11B—C10B118.8 (13)
N1—C8A—H8AB109.7C11B—C12B—C13B120.0
C9A—C8A—H8AB109.7C11B—C12B—Cl3B121.5 (9)
H8AA—C8A—H8AB108.2C13B—C12B—Cl3B118.4 (9)
N2A—C9A—C17A109.9 (2)C14B—C13B—C12B120.0
N2A—C9A—C8A106.9 (2)C14B—C13B—H13B120.0
C17A—C9A—C8A111.8 (2)C12B—C13B—H13B120.0
N2A—C9A—H9AA109.4C13B—C14B—C15B120.0
C17A—C9A—H9AA109.4C13B—C14B—H14B120.0
C8A—C9A—H9AA109.4C15B—C14B—H14B120.0
N2A—C10A—C11A121.6 (2)C16B—C15B—C14B120.0
N2A—C10A—H10A119.2C16B—C15B—H15B120.0
C11A—C10A—H10A119.2C14B—C15B—H15B120.0
C16A—C11A—C12A115.8 (3)C15B—C16B—C11B120.0
C16A—C11A—C10A119.7 (2)C15B—C16B—Cl4B117.6 (9)
C12A—C11A—C10A124.5 (2)C11B—C16B—Cl4B122.4 (9)
C13A—C12A—C11A121.7 (3)C8B—C17B—H17D109.5
C13A—C12A—Cl3A118.3 (2)C8B—C17B—H17E109.5
C11A—C12A—Cl3A120.0 (2)H17D—C17B—H17E109.5
C14A—C13A—C12A120.1 (3)C8B—C17B—H17F109.5
C14A—C13A—H13A119.9H17D—C17B—H17F109.5
C12A—C13A—H13A119.9H17E—C17B—H17F109.5
C13A—C14A—C15A119.6 (3)
C6—C1—C2—C31.3 (4)C12A—C13A—C14A—C15A0.2 (4)
Cl1—C1—C2—C3178.01 (19)C13A—C14A—C15A—C16A0.2 (4)
C1—C2—C3—C40.1 (4)C14A—C15A—C16A—C11A0.2 (4)
C2—C3—C4—C50.6 (4)C14A—C15A—C16A—Cl4A179.8 (2)
C3—C4—C5—C60.2 (3)C12A—C11A—C16A—C15A0.9 (4)
C3—C4—C5—Cl2178.04 (19)C10A—C11A—C16A—C15A179.8 (2)
C2—C1—C6—C51.6 (3)C12A—C11A—C16A—Cl4A179.52 (19)
Cl1—C1—C6—C5177.68 (16)C10A—C11A—C16A—Cl4A0.5 (3)
C2—C1—C6—C7176.1 (2)C7—N1—C8B—C17B95.2 (19)
Cl1—C1—C6—C74.6 (3)C8A—N1—C8B—C17B161 (3)
C4—C5—C6—C10.9 (3)C7—N1—C8B—C9B140.7 (11)
Cl2—C5—C6—C1179.01 (16)C8A—N1—C8B—C9B36.4 (13)
C4—C5—C6—C7176.7 (2)C17B—C8B—C9B—N2B61 (2)
Cl2—C5—C6—C71.4 (3)N1—C8B—C9B—N2B172.6 (14)
C8A—N1—C7—C6179.0 (2)C10B—N2B—C9B—C8B136 (2)
C8B—N1—C7—C6153.6 (8)C9B—N2B—C10B—C11B178.3 (19)
C1—C6—C7—N1130.8 (2)N2B—C10B—C11B—C12B70 (2)
C5—C6—C7—N151.8 (3)N2B—C10B—C11B—C16B110 (2)
C7—N1—C8A—C9A122.5 (2)C16B—C11B—C12B—C13B0.0
C8B—N1—C8A—C9A35.1 (16)C10B—C11B—C12B—C13B179.7 (17)
C10A—N2A—C9A—C17A132.3 (3)C16B—C11B—C12B—Cl3B175.8 (14)
C10A—N2A—C9A—C8A106.2 (3)C10B—C11B—C12B—Cl3B3.9 (16)
N1—C8A—C9A—N2A175.85 (19)C11B—C12B—C13B—C14B0.0
N1—C8A—C9A—C17A63.9 (3)Cl3B—C12B—C13B—C14B175.9 (13)
C9A—N2A—C10A—C11A174.8 (2)C12B—C13B—C14B—C15B0.0
N2A—C10A—C11A—C16A119.3 (3)C13B—C14B—C15B—C16B0.0
N2A—C10A—C11A—C12A61.8 (4)C14B—C15B—C16B—C11B0.0
C16A—C11A—C12A—C13A1.2 (4)C14B—C15B—C16B—Cl4B178.5 (12)
C10A—C11A—C12A—C13A179.9 (3)C12B—C11B—C16B—C15B0.0
C16A—C11A—C12A—Cl3A177.6 (2)C10B—C11B—C16B—C15B179.7 (16)
C10A—C11A—C12A—Cl3A1.3 (3)C12B—C11B—C16B—Cl4B178.5 (13)
C11A—C12A—C13A—C14A0.9 (4)C10B—C11B—C16B—Cl4B1.8 (17)
Cl3A—C12A—C13A—C14A177.9 (2)

Experimental details

Crystal data
Chemical formulaC17H14Cl4N2
Mr388.10
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)4.2981 (7), 12.995 (2), 15.728 (3)
β (°) 96.493 (3)
V3)872.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.68
Crystal size (mm)0.46 × 0.12 × 0.05
Data collection
DiffractometerBruker APEX DUO CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.748, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
9842, 4849, 3924
Rint0.036
(sin θ/λ)max1)0.712
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 1.02
No. of reflections4849
No. of parameters251
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.37
Absolute structureFlack (1983), 2126 Friedel pairs
Absolute structure parameter0.37 (5)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: A-5523-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH thanks USM for a post-doctoral research fellowship. CSY thanks USM for the award of a USM Fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationLiu, J., Masuda, Y. & Sekido, E. (1990). Analyst, 115, 1089–1092.  CrossRef CAS Web of Science Google Scholar
First citationLozier, R., Bogomolni, R. & Stoekenius, A. W. (1975). Biophys. J. 15, 955–962.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreedaran, S., Shanmuga, K., Bharathi, A., Rahiman, Jagadish, K. L., Kaviyarasan, V., & Narayanan, V. (2008). Polyhedron, 27, 2931–2938.  Web of Science CrossRef CAS Google Scholar
First citationYeap, G. Y., Ha, S. T., Lim, P. L., Boey, P. L., Ito, M. M., Sanehisa, S. & Youhei, Y. (2006). Liq. Cryst. 33, 205–211.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds