metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(3,5-di­nitro­benzoato-κO1)tetra­methano­lcobalt(II)

aDepartment of Chemistry, North Bengal University, Darjeeling, West Bengal 734 430, India, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 26 February 2010; accepted 27 February 2010; online 6 March 2010)

The CoII atom (site symmetry [\overline{1}]) in the title complex, [Co(C7H3N2O6)2(CH3OH)4], exists within an octa­hedral O6 donor set defined by two O-monodentate 3,5-dinitro­benzoate anions and four methanol O atoms. An intra­molecular Om—H⋯Oc (m = methanol and c = carbon­yl) hydrogen bond leads to the formation of an S(6) ring. In the crystal, centrosymmetrically related mol­ecules associate via further Om—H⋯Oc hydrogen bonds, leading to linear supra­molecular chains propagating along the a-axis direction.

Related literature

For the structures of related complexes, see: Tahir et al. (1996[Tahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392-1394.]); Yang et al. (2000[Yang, G., Zhu, H.-G., Zhang, L.-Z., Cai, Z.-G. & Chen, X.-M. (2000). Aust. J. Chem. 53, 601-605.]); Jin et al. (2008[Jin, Y., Che, Y. X. & Zheng, J. M. (2008). Inorg. Chim. Acta, 361, 2799-2803.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C7H3N2O6)2(CH4O)4]

  • Mr = 609.33

  • Triclinic, [P \overline 1]

  • a = 6.4068 (8) Å

  • b = 8.7660 (11) Å

  • c = 12.1603 (16) Å

  • α = 90.411 (2)°

  • β = 100.407 (2)°

  • γ = 102.214 (2)°

  • V = 655.77 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.669, Tmax = 0.746

  • 6372 measured reflections

  • 2999 independent reflections

  • 2388 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.03

  • 2999 reflections

  • 188 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Co—O8 2.0645 (18)
Co—O1 2.0666 (17)
Co—O7 2.1094 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7o⋯O2i 0.85 (3) 1.84 (2) 2.645 (2) 158 (3)
O8—H8o⋯O2ii 0.85 (3) 1.82 (1) 2.662 (2) 179 (3)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The Co(II) atom in (I), Fig. 1, is located on a crystallographic centre of inversion and exists within an octahedral O6 donor set defined by two carboxylate-O1 atoms and four methanol-O atoms. The Co–O1 bond distance [Co–O1 = 2.0666 (17) Å] is comparable to those, i.e. 2.0525 (20) and 2.0587 (19) Å, found in the related tetra-aqua-bis(3,5-dinitrobenzoato-O)cobalt(II) tetrahydrate structure (Tahir et al., 1996; Yang et al., 2000; Jin et al., 2008). A small disparity in the Co—Omethanol bond distances in (I) [Co–O7 = 2.1094 (16) and Co–O8 = 2.0645 (18) Å] is noted. The methanol-O7–H hydrogen forms an intramolecular O–H···O hydrogen bond with the carbonyl-O2 atom to close an almost planar {Co–O–C–O···H–O} S(6) ring, Table 1. The methanol-O8–H also forms a hydrogen bond to the carbonyl-O2 atom on a centrosymmetrically related complex, Table 1. This results in the formation of 12-membered {Co–O–H···O–C–O}2 synthons and linear supramolecular chains along the a axis, Fig. 2. It is noted that the packing of molecules brings into close proximity two nitro-O atoms, i.e. O4···O4ii = 2.756 (3) Å for 3-x, -y, 2-z. While the nature of this interaction is not obvious, there are approximately 50 precedents for such Onitro···Onitro contacts < 2.70 Å in the crystallographic literature (Allen, 2002).

Related literature top

For the structures of related complexes, see: Tahir et al. (1996); Yang et al. (2000); Jin et al. (2008). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

All chemicals purchased from commercial sources (AR/GR grade) were used without further purification. The crystalline sodium salt of 3,5-dinitrobenzoic acid was prepared by neutralising 3,5-dinitrobenzoic acid (1.00 g, 4.70 mmol) by NaOH (1.88 g, 4.70 mmol) in water. On concentration the solution yielded the sodium salt (1). To a purple solution of CoCl2.6H2O (0.50 g, 2.10 mmol) in water (15 ml) was added, with stirring, a solution of (1) (0.98 g, 4.20 mmol) in a mixture of water (3 ml) and methanol (140 ml) when the colour of the mixture turned pink. The solution was then heated under reflux for 6 h. Pink prisms of (I) were obtained from the filtrate after 25 days on slow evaporation.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The methanol H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.85±0.01 Å; their Uiso values were freely refined

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) extended to show the coordination geometry for the Co(II) atom, showing displacement ellipsoids at the 50% probability level. Symmetry operation i: 1-x, 1-y, 1-z.
[Figure 2] Fig. 2. Linear supramolecular chain along the a axis in (I) mediated by O—H···O hydrogen bonding. These and the intramolecular O–H···O hydrogen bonds are shown as blue dashed lines.
Bis(3,5-dinitrobenzoato-κO1)tetramethanolcobalt(II) top
Crystal data top
[Co(C7H3N2O6)2(CH4O)4]Z = 1
Mr = 609.33F(000) = 313
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4068 (8) ÅCell parameters from 1592 reflections
b = 8.7660 (11) Åθ = 2.4–22.8°
c = 12.1603 (16) ŵ = 0.74 mm1
α = 90.411 (2)°T = 293 K
β = 100.407 (2)°Prism, pink
γ = 102.214 (2)°0.35 × 0.30 × 0.05 mm
V = 655.77 (14) Å3
Data collection top
Bruker SMART APEX
diffractometer
2999 independent reflections
Radiation source: fine-focus sealed tube2388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.669, Tmax = 0.746k = 1111
6372 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.1427P]
where P = (Fo2 + 2Fc2)/3
2999 reflections(Δ/σ)max = 0.001
188 parametersΔρmax = 0.38 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C7H3N2O6)2(CH4O)4]γ = 102.214 (2)°
Mr = 609.33V = 655.77 (14) Å3
Triclinic, P1Z = 1
a = 6.4068 (8) ÅMo Kα radiation
b = 8.7660 (11) ŵ = 0.74 mm1
c = 12.1603 (16) ÅT = 293 K
α = 90.411 (2)°0.35 × 0.30 × 0.05 mm
β = 100.407 (2)°
Data collection top
Bruker SMART APEX
diffractometer
2999 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2388 reflections with I > 2σ(I)
Tmin = 0.669, Tmax = 0.746Rint = 0.028
6372 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.38 e Å3
2999 reflectionsΔρmin = 0.30 e Å3
188 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.50000.50000.50000.03530 (16)
O10.6891 (3)0.3924 (2)0.61732 (14)0.0514 (5)
O20.8795 (3)0.2811 (2)0.51696 (14)0.0471 (4)
O31.4087 (5)0.0083 (4)0.7142 (2)0.1213 (12)
O41.4957 (5)0.0210 (4)0.8875 (2)0.1234 (12)
O51.0327 (5)0.2304 (4)1.1038 (2)0.1159 (11)
O60.8093 (6)0.3608 (4)1.0193 (2)0.1090 (10)
O70.3342 (3)0.5533 (2)0.62522 (14)0.0458 (4)
H7O0.255 (4)0.614 (3)0.595 (2)0.075 (11)*
O80.2673 (3)0.2953 (2)0.46261 (18)0.0550 (5)
H8O0.145 (3)0.291 (4)0.481 (3)0.075 (10)*
N11.3845 (5)0.0471 (3)0.8033 (2)0.0710 (8)
N20.9450 (5)0.2836 (4)1.0197 (2)0.0775 (8)
C10.8312 (4)0.3181 (3)0.60687 (19)0.0379 (5)
C20.9496 (4)0.2659 (3)0.7142 (2)0.0383 (5)
C31.1103 (4)0.1830 (3)0.7114 (2)0.0420 (6)
H31.14680.15920.64360.050*
C41.2149 (4)0.1366 (3)0.8100 (2)0.0498 (6)
C51.1687 (5)0.1679 (3)0.9125 (2)0.0547 (7)
H51.24200.13560.97830.066*
C61.0075 (5)0.2500 (3)0.9125 (2)0.0525 (7)
C70.8985 (4)0.2998 (3)0.8158 (2)0.0468 (6)
H70.79140.35580.81910.056*
C80.4162 (5)0.5914 (4)0.7407 (2)0.0604 (8)
H8A0.30340.61560.77550.091*
H8B0.53560.68030.74910.091*
H8C0.46520.50410.77550.091*
C90.2797 (6)0.1460 (3)0.4244 (3)0.0787 (11)
H9A0.20180.12550.34870.118*
H9B0.21660.06860.47120.118*
H9C0.42920.14220.42710.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0357 (3)0.0419 (3)0.0339 (3)0.01829 (19)0.00943 (18)0.00124 (18)
O10.0558 (11)0.0699 (12)0.0409 (10)0.0385 (10)0.0118 (8)0.0069 (8)
O20.0428 (9)0.0662 (12)0.0387 (9)0.0257 (8)0.0080 (7)0.0001 (8)
O30.151 (3)0.177 (3)0.083 (2)0.133 (3)0.0311 (18)0.0207 (19)
O40.125 (2)0.193 (3)0.086 (2)0.117 (2)0.0082 (17)0.044 (2)
O50.157 (3)0.168 (3)0.0389 (14)0.074 (2)0.0149 (15)0.0175 (16)
O60.167 (3)0.132 (2)0.0629 (16)0.085 (2)0.0510 (17)0.0109 (15)
O70.0501 (11)0.0574 (11)0.0379 (9)0.0259 (9)0.0125 (8)0.0023 (8)
O80.0428 (11)0.0497 (11)0.0767 (13)0.0086 (9)0.0242 (10)0.0125 (9)
N10.0722 (17)0.088 (2)0.0672 (18)0.0498 (16)0.0113 (14)0.0207 (15)
N20.109 (2)0.086 (2)0.0466 (16)0.0382 (18)0.0211 (15)0.0030 (14)
C10.0346 (12)0.0411 (13)0.0400 (13)0.0133 (10)0.0064 (10)0.0019 (10)
C20.0375 (12)0.0384 (12)0.0398 (13)0.0105 (10)0.0064 (10)0.0032 (10)
C30.0429 (13)0.0482 (14)0.0377 (13)0.0173 (11)0.0060 (10)0.0027 (10)
C40.0463 (14)0.0495 (15)0.0560 (16)0.0200 (12)0.0046 (12)0.0081 (12)
C50.0603 (17)0.0605 (17)0.0422 (15)0.0184 (14)0.0003 (12)0.0095 (12)
C60.0645 (17)0.0566 (16)0.0380 (14)0.0176 (14)0.0080 (12)0.0011 (12)
C70.0509 (15)0.0488 (14)0.0458 (14)0.0205 (12)0.0107 (11)0.0031 (11)
C80.078 (2)0.0658 (19)0.0409 (15)0.0215 (16)0.0146 (14)0.0014 (13)
C90.084 (2)0.0532 (18)0.104 (3)0.0050 (17)0.044 (2)0.0217 (18)
Geometric parameters (Å, º) top
Co—O82.0645 (18)N2—C61.476 (4)
Co—O8i2.0645 (18)C1—C21.511 (3)
Co—O12.0666 (17)C2—C71.380 (3)
Co—O1i2.0666 (16)C2—C31.385 (3)
Co—O72.1094 (16)C3—C41.373 (3)
Co—O7i2.1094 (16)C3—H30.9300
O1—C11.250 (3)C4—C51.371 (4)
O2—C11.247 (3)C5—C61.378 (4)
O3—N11.179 (4)C5—H50.9300
O4—N11.190 (3)C6—C71.379 (4)
O5—N21.220 (4)C7—H70.9300
O6—N21.209 (4)C8—H8A0.9600
O7—C81.418 (3)C8—H8B0.9600
O7—H7O0.85 (3)C8—H8C0.9600
O8—C91.408 (3)C9—H9A0.9600
O8—H8O0.85 (3)C9—H9B0.9600
N1—C41.482 (3)C9—H9C0.9600
O8—Co—O191.36 (8)C7—C2—C3119.3 (2)
O8i—Co—O188.64 (8)C7—C2—C1120.5 (2)
O8—Co—O1i88.64 (8)C3—C2—C1120.2 (2)
O8i—Co—O1i91.36 (8)C4—C3—C2119.1 (2)
O8—Co—O788.14 (7)C4—C3—H3120.5
O8i—Co—O791.86 (7)C2—C3—H3120.5
O1—Co—O789.22 (7)C5—C4—C3123.3 (2)
O1i—Co—O790.78 (7)C5—C4—N1119.3 (2)
O8—Co—O7i91.86 (7)C3—C4—N1117.4 (2)
O8i—Co—O7i88.14 (7)C4—C5—C6116.3 (2)
O1—Co—O7i90.78 (7)C4—C5—H5121.9
O1i—Co—O7i89.22 (7)C6—C5—H5121.9
O1—Co—O1i180.0C5—C6—C7122.6 (2)
O7—Co—O7i180.0C5—C6—N2119.1 (3)
O8—Co—O8i180.0C7—C6—N2118.3 (3)
C1—O1—Co130.70 (16)C6—C7—C2119.4 (2)
C8—O7—Co128.82 (16)C6—C7—H7120.3
C8—O7—H7O113 (2)C2—C7—H7120.3
Co—O7—H7O105 (2)O7—C8—H8A109.5
C9—O8—Co131.57 (18)O7—C8—H8B109.5
C9—O8—H8O110 (2)H8A—C8—H8B109.5
Co—O8—H8O118 (2)O7—C8—H8C109.5
O3—N1—O4122.3 (3)H8A—C8—H8C109.5
O3—N1—C4118.6 (3)H8B—C8—H8C109.5
O4—N1—C4119.1 (3)O8—C9—H9A109.5
O6—N2—O5123.7 (3)O8—C9—H9B109.5
O6—N2—C6118.5 (3)H9A—C9—H9B109.5
O5—N2—C6117.8 (3)O8—C9—H9C109.5
O2—C1—O1126.1 (2)H9A—C9—H9C109.5
O2—C1—C2118.0 (2)H9B—C9—H9C109.5
O1—C1—C2115.9 (2)
O8—Co—O1—C187.5 (2)C1—C2—C3—C4179.8 (2)
O8i—Co—O1—C192.5 (2)C2—C3—C4—C50.0 (4)
O7—Co—O1—C1175.6 (2)C2—C3—C4—N1179.5 (2)
O7i—Co—O1—C14.4 (2)O3—N1—C4—C5173.0 (3)
O8—Co—O7—C8125.9 (2)O4—N1—C4—C59.2 (5)
O8i—Co—O7—C854.1 (2)O3—N1—C4—C36.5 (5)
O1—Co—O7—C834.5 (2)O4—N1—C4—C3171.2 (3)
O1i—Co—O7—C8145.5 (2)C3—C4—C5—C60.2 (4)
O1—Co—O8—C958.0 (3)N1—C4—C5—C6179.3 (3)
O1i—Co—O8—C9122.0 (3)C4—C5—C6—C70.5 (4)
O7—Co—O8—C9147.1 (3)C4—C5—C6—N2178.2 (3)
O7i—Co—O8—C932.9 (3)O6—N2—C6—C5177.2 (3)
Co—O1—C1—O26.2 (4)O5—N2—C6—C53.4 (5)
Co—O1—C1—C2175.42 (15)O6—N2—C6—C74.0 (5)
O2—C1—C2—C7178.2 (2)O5—N2—C6—C7175.4 (3)
O1—C1—C2—C70.3 (4)C5—C6—C7—C20.6 (4)
O2—C1—C2—C31.6 (4)N2—C6—C7—C2178.1 (3)
O1—C1—C2—C3179.9 (2)C3—C2—C7—C60.3 (4)
C7—C2—C3—C40.0 (4)C1—C2—C7—C6179.5 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7o···O2i0.85 (3)1.84 (2)2.645 (2)158 (3)
O8—H8o···O2ii0.85 (3)1.82 (1)2.662 (2)179 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Co(C7H3N2O6)2(CH4O)4]
Mr609.33
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.4068 (8), 8.7660 (11), 12.1603 (16)
α, β, γ (°)90.411 (2), 100.407 (2), 102.214 (2)
V3)655.77 (14)
Z1
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.35 × 0.30 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.669, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
6372, 2999, 2388
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.03
No. of reflections2999
No. of parameters188
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co—O82.0645 (18)Co—O72.1094 (16)
Co—O12.0666 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7o···O2i0.85 (3)1.840 (15)2.645 (2)158 (3)
O8—H8o···O2ii0.85 (3)1.817 (10)2.662 (2)179 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: abhijitchem1947@yahoo.co.in.

Acknowledgements

The authors are grateful to the SAP (UGC), New Delhi, India, for financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJin, Y., Che, Y. X. & Zheng, J. M. (2008). Inorg. Chim. Acta, 361, 2799–2803.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D. & Mövsümov, E. M. (1996). Acta Cryst. C52, 1392–1394.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYang, G., Zhu, H.-G., Zhang, L.-Z., Cai, Z.-G. & Chen, X.-M. (2000). Aust. J. Chem. 53, 601–605.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds