metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m381-m382

8-Hydr­­oxy-2-methyl­quinolinium tetra­chlorido(quinolin-8-olato-κ2N,O)stannate(IV) aceto­nitrile monosolvate

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 March 2010; accepted 2 March 2010; online 6 March 2010)

In the title solvated salt, (C10H10NO)[SnCl4(C9H6NO)]·CH3CN, the SnIV atom is chelated by the N,O-bidentate 8-hydroxy­quinolinate ligand and four chloride ions, generating a distorted SnONCl4 octa­hedral coordination geometry for the metal. In the crystal, the cations are linked to the anions and the solvent mol­ecules by O—H⋯O and N—H⋯N hydrogen bonds, respectively.

Related literature

For the spectroscopic characterization of the tetra­chlorido(quinolinato)stannate(IV) anion in other salts, see: Cunning­ham et al. (1977[Cunningham, D., Finnegan, J., Donaldson, J. D. & Frazer, M. J. (1977). J. Chem Soc. Dalton Trans. pp. 162-164.]); Douek et al. (1967[Douek, I., Frazer, M. J., Goffer, Z., Goldstein, M., Rimmer, B. & Willis, H. A. (1967). Spectrochim. Acta, 23A, 373-381.]); Frazer & Goffer (1996[Frazer, M. J. & Goffer, Z. (1996). J. Chem. Soc. A, pp. 544-549.]); Frazer & Rimmer (1968[Frazer, M. J. & Rimmer, B. (1968). J. Chem. Soc. A, pp. 69-74.]); Greenwood & Ruddick (1967[Greenwood, N. N. & Ruddick, J. N. R. (1967). J. Chem. Soc. A, pp. 1679-1683.]). For the structures of dichlorido­bis(quinolin-8-olato)tin and dichloridobis(2-methyl­quinolin-8-olato)tin, see: Archer et al. (1987[Archer, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209-218.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m719.]). For a related structure, see: Mohammadnezhad et al. (2010[Mohammadnezhad, G., Amini, M. M. & Langer, V. (2010). Acta Cryst. C66, m44-m47.]).

[Scheme 1]

Experimental

Crystal data
  • (C10H10NO)[SnCl4(C9H6NO)]·C2H3N

  • Mr = 605.88

  • Monoclinic, C 2/c

  • a = 29.1672 (14) Å

  • b = 10.9415 (5) Å

  • c = 15.4907 (8) Å

  • β = 99.9411 (6)°

  • V = 4869.4 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 296 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.583, Tmax = 0.752

  • 22804 measured reflections

  • 5594 independent reflections

  • 4663 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.064

  • S = 1.02

  • 5594 reflections

  • 290 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—N1 2.203 (2)
Sn1—O1 2.077 (1)
Sn1—Cl1 2.3741 (6)
Sn1—Cl2 2.4055 (6)
Sn1—Cl3 2.4130 (6)
Sn1—Cl4 2.4176 (6)
O1—Sn1—N1 78.08 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2o⋯O1 0.85 (1) 1.91 (2) 2.715 (2) 158 (3)
N2—H2n⋯N3 0.85 (1) 2.15 (1) 2.972 (3) 162 (2)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

The 8-hydroxyquinoline anion furnishes a number of compounds with both inorganic tin(IV) and organotin(IV) systems; for example, the crystal structure of dichlorobis(quinolin-8-olato)tin has been known some time back (Archer et al., 1987). The presence of a methyl substituent in the 2-position introduces steric problems (Mohammadnezhad et al., 2010); this may affect the ability of the complexes to crystallize well so that fewer such complexes have been reported. The crystal structure of dichlorobis(2-methylquinolin-8-olato)tin has only recently been reported (Lo & Ng, 2009). On the other hand, mixed chelate complexes are difficult to synthesize as the compounds disproportionate into the symmetrical derivatives.

The reaction of tin(IV) chloride with 8-hydroxyquinoline and 2-methyl-8-hydroxyquinoline in acetonitrile yields instead the salt, 8-hydroxy-2-methylquinolinium tetrachloro(quinolin-8-olato)stannate as the acetonitrile solvate (Scheme I, Fig. 1). Owing to the steric bulk of the methyl group, the 2-methy-8-hydroxyquinoline component does not engage in binding to the tin atom but merely functions as a proton abstractor. In the salt, the tin atom is chelated by the 8-hydroxyquinolinato unit and it exists in an octahedral coordination geometry. The tin-chlorine bonds trans to the chelating atoms are significantly shorter than the other tin-chlorine bonds (Table 1). The cation is linked to the anion by an O–H···O hydrogen bond; the cation is linked to solvent molecule by an N–H···N hydrogen bond (Table 2). The stannate has been spectroscopically characterized in other salts (Cunningham et al., 1977; Douek et al., 1967; Frazer & Goffer, 1996; Frazer & Rimmer, 1968; Greenwood & Ruddick, 1967).

Related literature top

For the spectroscopic characterization of the tetrachlorido(quinolinato)stannate(IV) anion in other salts, see: Cunningham et al. (1977); Douek et al. (1967); Frazer & Goffer (1996); Frazer & Rimmer (1968); Greenwood & Ruddick (1967). For the structures of dichlorobis(quinolin-8-olato)tin and dichloridobis(2-methylquinolin-8-olato)tin, see: Archer et al. (1987); Lo & Ng (2009). For a related structure, see: Mohammadnezhad et al. (2010).

Experimental top

Stannic chloride pentahydrate(1 mmol, 0.35 g), 8-hydroxyquinoline (1 mmol, 0.15 g) and 2-methyl-8-hydroxyquinoline (1 mmol, 0.16 g) were placed in a convection tube; the tube was filled with acetonitrile and kept at 333 K. Yellow prisms of (I) were collected after a week.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The nitrogen- and oxygen-bound ones were located in a difference Fourier map, and were refined with distance restraints of N–H = O–H 0.86±0.01 Å; their temperature factors were refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I): displacement ellipsoids are drawn at the 50% probability level and H atoms are of arbitrary radius.
8-Hydroxy-2-methylquinolinium tetrachlorido(quinolin-8-olato-κ2N,O)stannate(IV) acetonitrile monosolvate top
Crystal data top
(C10H10NO)[SnCl4(C9H6NO)]·C2H3NF(000) = 2400
Mr = 605.88Dx = 1.653 Mg m3
Monoclinic, C2/cMelting point: 408 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 29.1672 (14) ÅCell parameters from 9937 reflections
b = 10.9415 (5) Åθ = 2.3–28.3°
c = 15.4907 (8) ŵ = 1.51 mm1
β = 99.9411 (6)°T = 296 K
V = 4869.4 (4) Å3Prism, yellow
Z = 80.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
5594 independent reflections
Radiation source: fine-focus sealed tube4663 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3737
Tmin = 0.583, Tmax = 0.752k = 1414
22804 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0319P)2 + 3.2971P]
where P = (Fo2 + 2Fc2)/3
5594 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.28 e Å3
2 restraintsΔρmin = 0.54 e Å3
Crystal data top
(C10H10NO)[SnCl4(C9H6NO)]·C2H3NV = 4869.4 (4) Å3
Mr = 605.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.1672 (14) ŵ = 1.51 mm1
b = 10.9415 (5) ÅT = 296 K
c = 15.4907 (8) Å0.40 × 0.30 × 0.20 mm
β = 99.9411 (6)°
Data collection top
Bruker SMART APEX
diffractometer
5594 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4663 reflections with I > 2σ(I)
Tmin = 0.583, Tmax = 0.752Rint = 0.027
22804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0232 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
5594 reflectionsΔρmin = 0.54 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.395979 (5)0.698425 (12)0.408891 (9)0.03485 (6)
Cl10.37060 (2)0.76784 (6)0.53800 (4)0.05477 (15)
Cl20.40349 (2)0.89500 (5)0.34322 (5)0.06272 (18)
Cl30.476603 (19)0.70536 (6)0.47849 (4)0.04984 (14)
Cl40.31714 (2)0.68113 (6)0.33007 (4)0.05257 (15)
O10.39266 (5)0.51704 (12)0.44682 (9)0.0390 (3)
O20.34376 (6)0.38174 (17)0.54651 (13)0.0573 (5)
H2O0.3527 (11)0.436 (2)0.5137 (19)0.092 (12)*
N10.41915 (6)0.60155 (16)0.29942 (11)0.0395 (4)
N20.29662 (7)0.20670 (18)0.61441 (12)0.0443 (4)
H2N0.3234 (5)0.197 (2)0.6006 (16)0.044 (7)*
N30.38826 (10)0.1151 (2)0.58312 (19)0.0753 (7)
C10.43162 (9)0.6467 (3)0.22790 (15)0.0533 (6)
H10.43060.73080.21910.064*
C20.44621 (9)0.5712 (3)0.16521 (16)0.0621 (7)
H20.45490.60500.11540.075*
C30.44759 (9)0.4489 (3)0.17715 (16)0.0614 (7)
H30.45710.39870.13510.074*
C40.43490 (8)0.3968 (2)0.25239 (15)0.0488 (6)
C50.43577 (10)0.2710 (3)0.2723 (2)0.0648 (8)
H50.44470.21490.23320.078*
C60.42365 (10)0.2317 (2)0.3480 (2)0.0618 (7)
H60.42480.14840.36030.074*
C70.40938 (8)0.31228 (19)0.40858 (17)0.0453 (5)
H70.40150.28210.46020.054*
C80.40704 (7)0.43536 (18)0.39199 (14)0.0358 (4)
C90.42052 (7)0.47834 (19)0.31345 (13)0.0364 (4)
C100.30128 (11)0.0040 (3)0.6638 (2)0.0714 (8)
H10A0.31280.02700.61170.107*
H10B0.28030.06570.67770.107*
H10C0.32690.00420.71160.107*
C110.27629 (9)0.1142 (2)0.64902 (15)0.0547 (6)
C120.23234 (10)0.1348 (3)0.67019 (19)0.0693 (8)
H120.21730.07190.69460.083*
C130.21137 (9)0.2439 (3)0.65597 (19)0.0687 (8)
H130.18210.25490.67070.082*
C140.23274 (8)0.3424 (3)0.61921 (15)0.0530 (6)
C150.21283 (10)0.4587 (3)0.6017 (2)0.0702 (8)
H150.18310.47460.61290.084*
C160.23708 (11)0.5477 (3)0.5685 (2)0.0718 (8)
H160.22400.62510.55880.086*
C170.28137 (10)0.5257 (3)0.54830 (18)0.0617 (7)
H170.29710.58790.52470.074*
C180.30146 (8)0.4131 (2)0.56320 (15)0.0456 (5)
C190.27715 (8)0.3204 (2)0.59882 (14)0.0431 (5)
C200.42250 (11)0.0664 (2)0.58977 (18)0.0582 (7)
C210.46668 (12)0.0043 (3)0.5990 (3)0.0996 (13)
H21A0.46390.06520.56060.149*
H21B0.47580.02240.65850.149*
H21C0.48980.05920.58400.149*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03691 (9)0.02715 (8)0.04003 (8)0.00082 (5)0.00535 (6)0.00091 (5)
Cl10.0529 (3)0.0571 (4)0.0555 (3)0.0079 (3)0.0127 (3)0.0166 (3)
Cl20.0668 (4)0.0322 (3)0.0873 (5)0.0024 (3)0.0084 (3)0.0155 (3)
Cl30.0356 (3)0.0614 (4)0.0513 (3)0.0017 (2)0.0039 (2)0.0024 (3)
Cl40.0404 (3)0.0569 (4)0.0562 (3)0.0032 (2)0.0035 (2)0.0031 (3)
O10.0508 (9)0.0289 (7)0.0405 (8)0.0029 (6)0.0172 (6)0.0023 (6)
O20.0440 (9)0.0543 (11)0.0803 (13)0.0083 (8)0.0295 (9)0.0185 (9)
N10.0414 (10)0.0411 (10)0.0362 (9)0.0020 (8)0.0074 (7)0.0025 (7)
N20.0389 (10)0.0557 (12)0.0395 (9)0.0072 (9)0.0099 (8)0.0046 (8)
N30.0781 (18)0.0534 (14)0.099 (2)0.0056 (13)0.0267 (15)0.0007 (13)
C10.0574 (15)0.0613 (16)0.0421 (12)0.0056 (12)0.0111 (11)0.0116 (11)
C20.0541 (15)0.099 (2)0.0353 (12)0.0032 (15)0.0130 (11)0.0036 (13)
C30.0488 (14)0.095 (2)0.0413 (13)0.0014 (14)0.0098 (11)0.0218 (14)
C40.0411 (12)0.0569 (15)0.0481 (13)0.0005 (11)0.0069 (10)0.0171 (11)
C50.0618 (17)0.0542 (16)0.0785 (19)0.0066 (13)0.0119 (14)0.0315 (14)
C60.0592 (16)0.0318 (12)0.093 (2)0.0027 (11)0.0107 (15)0.0111 (13)
C70.0413 (12)0.0335 (11)0.0608 (14)0.0005 (9)0.0079 (10)0.0024 (10)
C80.0314 (10)0.0326 (10)0.0429 (11)0.0017 (8)0.0049 (8)0.0023 (8)
C90.0305 (10)0.0399 (11)0.0382 (10)0.0002 (8)0.0038 (8)0.0053 (8)
C100.084 (2)0.0607 (18)0.0682 (18)0.0182 (16)0.0103 (15)0.0090 (14)
C110.0583 (15)0.0628 (16)0.0432 (12)0.0222 (13)0.0089 (11)0.0087 (11)
C120.0610 (17)0.087 (2)0.0643 (17)0.0347 (17)0.0225 (14)0.0148 (16)
C130.0393 (14)0.105 (2)0.0656 (17)0.0219 (16)0.0196 (12)0.0243 (17)
C140.0364 (12)0.0810 (18)0.0420 (12)0.0035 (12)0.0073 (10)0.0158 (12)
C150.0425 (14)0.103 (2)0.0658 (17)0.0164 (16)0.0119 (13)0.0178 (17)
C160.0644 (18)0.079 (2)0.0728 (19)0.0302 (16)0.0144 (15)0.0023 (16)
C170.0585 (16)0.0626 (17)0.0656 (17)0.0112 (13)0.0152 (13)0.0048 (13)
C180.0381 (11)0.0555 (14)0.0443 (12)0.0036 (10)0.0102 (9)0.0019 (10)
C190.0350 (11)0.0592 (14)0.0345 (10)0.0042 (10)0.0044 (9)0.0085 (9)
C200.0721 (19)0.0400 (13)0.0665 (17)0.0085 (13)0.0229 (14)0.0031 (12)
C210.068 (2)0.070 (2)0.167 (4)0.0003 (17)0.036 (2)0.001 (2)
Geometric parameters (Å, º) top
Sn1—N12.203 (2)C6—H60.9300
Sn1—O12.077 (1)C7—C81.371 (3)
Sn1—Cl12.3741 (6)C7—H70.9300
Sn1—Cl22.4055 (6)C8—C91.422 (3)
Sn1—Cl32.4130 (6)C10—C111.482 (4)
Sn1—Cl42.4176 (6)C10—H10A0.9600
O1—C81.349 (2)C10—H10B0.9600
O2—C181.348 (3)C10—H10C0.9600
O2—H2O0.849 (10)C11—C121.395 (4)
N1—C11.320 (3)C12—C131.341 (5)
N1—C91.365 (3)C12—H120.9300
N2—C111.332 (3)C13—C141.413 (4)
N2—C191.371 (3)C13—H130.9300
N2—H2N0.852 (10)C14—C191.406 (3)
N3—C201.121 (4)C14—C151.406 (4)
C1—C21.396 (4)C15—C161.356 (4)
C1—H10.9300C15—H150.9300
C2—C31.351 (4)C16—C171.401 (4)
C2—H20.9300C16—H160.9300
C3—C41.403 (4)C17—C181.367 (3)
C3—H30.9300C17—H170.9300
C4—C51.410 (4)C18—C191.404 (3)
C4—C91.415 (3)C20—C211.442 (4)
C5—C61.352 (4)C21—H21A0.9600
C5—H50.9300C21—H21B0.9600
C6—C71.402 (4)C21—H21C0.9600
O1—Sn1—N178.08 (6)O1—C8—C9118.80 (18)
O1—Sn1—Cl191.77 (4)C7—C8—C9118.2 (2)
N1—Sn1—Cl1169.83 (5)N1—C9—C4121.3 (2)
O1—Sn1—Cl2170.48 (4)N1—C9—C8117.27 (18)
N1—Sn1—Cl292.42 (5)C4—C9—C8121.4 (2)
Cl1—Sn1—Cl297.74 (3)C11—C10—H10A109.5
O1—Sn1—Cl389.60 (4)C11—C10—H10B109.5
N1—Sn1—Cl387.37 (5)H10A—C10—H10B109.5
Cl1—Sn1—Cl392.01 (2)C11—C10—H10C109.5
Cl2—Sn1—Cl390.45 (2)H10A—C10—H10C109.5
O1—Sn1—Cl488.93 (4)H10B—C10—H10C109.5
N1—Sn1—Cl488.00 (5)N2—C11—C12117.6 (3)
Cl1—Sn1—Cl492.45 (2)N2—C11—C10118.9 (2)
Cl2—Sn1—Cl490.26 (2)C12—C11—C10123.5 (3)
Cl3—Sn1—Cl4175.34 (2)C13—C12—C11121.1 (3)
C8—O1—Sn1114.85 (12)C13—C12—H12119.4
C18—O2—H2O109 (2)C11—C12—H12119.4
C1—N1—C9119.9 (2)C12—C13—C14121.6 (3)
C1—N1—Sn1129.17 (17)C12—C13—H13119.2
C9—N1—Sn1110.92 (13)C14—C13—H13119.2
C11—N2—C19124.1 (2)C19—C14—C15118.5 (3)
C11—N2—H2N119.6 (16)C19—C14—C13116.6 (3)
C19—N2—H2N116.3 (16)C15—C14—C13124.9 (3)
N1—C1—C2121.6 (3)C16—C15—C14119.9 (3)
N1—C1—H1119.2C16—C15—H15120.1
C2—C1—H1119.2C14—C15—H15120.1
C3—C2—C1119.8 (2)C15—C16—C17121.5 (3)
C3—C2—H2120.1C15—C16—H16119.2
C1—C2—H2120.1C17—C16—H16119.2
C2—C3—C4120.7 (2)C18—C17—C16120.1 (3)
C2—C3—H3119.7C18—C17—H17119.9
C4—C3—H3119.7C16—C17—H17119.9
C3—C4—C5125.5 (2)O2—C18—C17125.2 (2)
C3—C4—C9116.8 (2)O2—C18—C19115.6 (2)
C5—C4—C9117.7 (2)C17—C18—C19119.1 (2)
C6—C5—C4120.2 (2)N2—C19—C18120.2 (2)
C6—C5—H5119.9N2—C19—C14119.0 (2)
C4—C5—H5119.9C18—C19—C14120.8 (2)
C5—C6—C7122.2 (2)N3—C20—C21179.5 (4)
C5—C6—H6118.9C20—C21—H21A109.5
C7—C6—H6118.9C20—C21—H21B109.5
C8—C7—C6120.2 (2)H21A—C21—H21B109.5
C8—C7—H7119.9C20—C21—H21C109.5
C6—C7—H7119.9H21A—C21—H21C109.5
O1—C8—C7122.9 (2)H21B—C21—H21C109.5
N1—Sn1—O1—C82.45 (13)C3—C4—C9—N10.0 (3)
Cl1—Sn1—O1—C8176.95 (13)C5—C4—C9—N1179.4 (2)
Cl3—Sn1—O1—C884.95 (13)C3—C4—C9—C8179.8 (2)
Cl4—Sn1—O1—C890.63 (13)C5—C4—C9—C80.5 (3)
O1—Sn1—N1—C1179.6 (2)O1—C8—C9—N11.6 (3)
Cl1—Sn1—N1—C1177.0 (2)C7—C8—C9—N1178.21 (19)
Cl2—Sn1—N1—C10.1 (2)O1—C8—C9—C4178.54 (18)
Cl3—Sn1—N1—C190.3 (2)C7—C8—C9—C41.6 (3)
Cl4—Sn1—N1—C190.2 (2)C19—N2—C11—C120.3 (3)
O1—Sn1—N1—C91.57 (13)C19—N2—C11—C10179.2 (2)
Cl1—Sn1—N1—C91.8 (4)N2—C11—C12—C130.1 (4)
Cl2—Sn1—N1—C9178.93 (13)C10—C11—C12—C13179.6 (3)
Cl3—Sn1—N1—C988.58 (13)C11—C12—C13—C140.1 (4)
Cl4—Sn1—N1—C990.90 (13)C12—C13—C14—C190.3 (4)
C9—N1—C1—C20.2 (3)C12—C13—C14—C15179.4 (3)
Sn1—N1—C1—C2178.98 (17)C19—C14—C15—C162.0 (4)
N1—C1—C2—C30.2 (4)C13—C14—C15—C16178.2 (3)
C1—C2—C3—C40.6 (4)C14—C15—C16—C172.0 (5)
C2—C3—C4—C5178.9 (3)C15—C16—C17—C181.0 (5)
C2—C3—C4—C90.5 (4)C16—C17—C18—O2179.9 (3)
C3—C4—C5—C6178.6 (3)C16—C17—C18—C190.0 (4)
C9—C4—C5—C60.7 (4)C11—N2—C19—C18179.1 (2)
C4—C5—C6—C70.8 (4)C11—N2—C19—C140.8 (3)
C5—C6—C7—C80.4 (4)O2—C18—C19—N20.0 (3)
Sn1—O1—C8—C7176.79 (17)C17—C18—C19—N2179.9 (2)
Sn1—O1—C8—C93.1 (2)O2—C18—C19—C14179.8 (2)
C6—C7—C8—O1178.6 (2)C17—C18—C19—C140.1 (3)
C6—C7—C8—C91.6 (3)C15—C14—C19—N2179.1 (2)
C1—N1—C9—C40.3 (3)C13—C14—C19—N20.7 (3)
Sn1—N1—C9—C4179.30 (16)C15—C14—C19—C181.1 (3)
C1—N1—C9—C8179.5 (2)C13—C14—C19—C18179.1 (2)
Sn1—N1—C9—C80.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O10.85 (1)1.91 (2)2.715 (2)158 (3)
N2—H2n···N30.85 (1)2.15 (1)2.972 (3)162 (2)

Experimental details

Crystal data
Chemical formula(C10H10NO)[SnCl4(C9H6NO)]·C2H3N
Mr605.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)29.1672 (14), 10.9415 (5), 15.4907 (8)
β (°) 99.9411 (6)
V3)4869.4 (4)
Z8
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.583, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
22804, 5594, 4663
Rint0.027
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.064, 1.02
No. of reflections5594
No. of parameters290
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Sn1—N12.203 (2)Sn1—Cl22.4055 (6)
Sn1—O12.077 (1)Sn1—Cl32.4130 (6)
Sn1—Cl12.3741 (6)Sn1—Cl42.4176 (6)
O1—Sn1—N178.08 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2o···O10.85 (1)1.91 (2)2.715 (2)158 (3)
N2—H2n···N30.85 (1)2.15 (1)2.972 (3)162 (2)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationArcher, S. J., Koch, K. R. & Schmidt, S. (1987). Inorg. Chim. Acta, 126, 209–218.  CSD CrossRef CAS Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCunningham, D., Finnegan, J., Donaldson, J. D. & Frazer, M. J. (1977). J. Chem Soc. Dalton Trans. pp. 162–164.  CrossRef Web of Science Google Scholar
First citationDouek, I., Frazer, M. J., Goffer, Z., Goldstein, M., Rimmer, B. & Willis, H. A. (1967). Spectrochim. Acta, 23A, 373–381.  CrossRef CAS Google Scholar
First citationFrazer, M. J. & Goffer, Z. (1996). J. Chem. Soc. A, pp. 544–549.  Google Scholar
First citationFrazer, M. J. & Rimmer, B. (1968). J. Chem. Soc. A, pp. 69–74.  CrossRef Google Scholar
First citationGreenwood, N. N. & Ruddick, J. N. R. (1967). J. Chem. Soc. A, pp. 1679–1683.  CrossRef Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m719.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohammadnezhad, G., Amini, M. M. & Langer, V. (2010). Acta Cryst. C66, m44–m47.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 4| April 2010| Pages m381-m382
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds