metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-sulfato-κ4O:O′-bis­­{bis­­[3-(2-pyrid­yl)pyrazole]cobalt(II)}

aSchool of Chemistry and Life Science, Maoming University, Maoming 525000, People's Republic of China, and bSchool of Chemistry and Life Sciences, Harbin University, Harbin, 150080, People's Republic of China
*Correspondence e-mail: anz_md@163.com

(Received 1 March 2010; accepted 2 March 2010; online 6 March 2010)

In the centrosymmetric binuclear title molecule, [Co2(SO4)2(C8H7N3)4], the CoII ion is coordinated by two N,N′-bidentate 3-(2-pyrid­yl)pyrazole ligands and two sulfate ions, generating a distorted cis-CoO2N4 octa­hedral geometry for the metal atom. The dihedral angles between the pyridine and pyrazole rings in the two ligands are 10.5 (2) and 7.38 (19)°. The bridging sulfate ions generate an eight-membered ring and intra­molecular N—H⋯O hydrogen bonds help to establish the mol­ecular conformation.

Related literature

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998[Ward, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609-612.], 2001[Ward, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251-272.]); Zhang et al. (2003[Zhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181-1185.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(SO4)2(C8H7N3)4]

  • Mr = 890.64

  • Triclinic, [P \overline 1]

  • a = 8.318 (5) Å

  • b = 9.879 (5) Å

  • c = 11.807 (6) Å

  • α = 100.342 (8)°

  • β = 98.820 (9)°

  • γ = 99.302 (8)°

  • V = 925.2 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 294 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.919

  • 4790 measured reflections

  • 3228 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.011

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.130

  • S = 1.00

  • 3228 reflections

  • 253 parameters

  • H-atom parameters not refined

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O2i 2.074 (3)
Co1—O4 2.097 (3)
Co1—N5 2.187 (3)
Co1—N2 2.212 (3)
Co1—N6 2.331 (3)
Co1—N3 2.331 (3)
N5—Co1—N6 71.51 (10)
N2—Co1—N3 71.12 (10)
Symmetry code: (i) -x+1, -y+2, -z+2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 1.98 2.772 (4) 152
N4—H4⋯O1i 0.86 1.96 2.761 (4) 155
Symmetry code: (i) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tridentate ligand 3-(2-pyridyl)pyrazole and its derivatives have been used widely in the construction of supramolecular architectures by way of metal-organic coordination (Ward et al. 1998; 2001; Zhang et al. 2003).

As a continuation of these studies, we now report the crystal structure of the title complex, (I). As shown in Figure 1, two Co(II) cations chelated by two 3-(2-Pyridyl)pyrazole) are linked by two sulfate ions to form one circle in which the cobalt ion is hexacoordinated by two 3-(2-Pyridyl)pyrazole) ligands and two O from two sulfate ions (Table 1).

Related literature top

For coordination compounds with pyridyl-pyrazolide ligands, see: Ward et al. (1998, 2001); Zhang et al. (2003).

Experimental top

A mixture of cobalt sulfate heptahydrate (1 mmol, 0.25 g), sodium hydroxide (0.04 g, 1 mmol) and 3-(2-pyridyl)pyrazole (1 mmol, 0.15 g) and water (15 ml) was stirred for 30 min in air. The mixture was then transferred to a 25 ml Teflon-lined hydrothermal bomb. The bomb was kept at 433 K for 72 h under autogenous pressure. Upon cooling, red blocks of (I) were obtained from the reaction mixture.

Refinement top

All hydrogen atoms bound to carbon were refined using a riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms on nitrogen atoms were refined using a riding model with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level; H atoms are given as spheres of arbitrary radius. Unlabelled atoms are generated by the symmetry operation (1–x, 2–y, 2–z).
Di-µ-sulfato-κ4O:O'-bis{bis[3-(2-pyridyl)pyrazole]cobalt(II)} top
Crystal data top
[Co2(SO4)2(C8H7N3)4]Z = 1
Mr = 890.64F(000) = 454
Triclinic, P1Dx = 1.599 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.318 (5) ÅCell parameters from 3228 reflections
b = 9.879 (5) Åθ = 2.1–25.0°
c = 11.807 (6) ŵ = 1.08 mm1
α = 100.342 (8)°T = 294 K
β = 98.820 (9)°Block, red
γ = 99.302 (8)°0.12 × 0.10 × 0.08 mm
V = 925.2 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3228 independent reflections
Radiation source: fine-focus sealed tube2990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.882, Tmax = 0.919k = 1111
4790 measured reflectionsl = 1410
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters not refined
S = 1.00 w = 1/[σ2(Fo2) + (0.078P)2 + 1.7757P]
where P = (Fo2 + 2Fc2)/3
3228 reflections(Δ/σ)max = 0.005
253 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Co2(SO4)2(C8H7N3)4]γ = 99.302 (8)°
Mr = 890.64V = 925.2 (9) Å3
Triclinic, P1Z = 1
a = 8.318 (5) ÅMo Kα radiation
b = 9.879 (5) ŵ = 1.08 mm1
c = 11.807 (6) ÅT = 294 K
α = 100.342 (8)°0.12 × 0.10 × 0.08 mm
β = 98.820 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
3228 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2990 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.919Rint = 0.011
4790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.130H-atom parameters not refined
S = 1.00Δρmax = 0.61 e Å3
3228 reflectionsΔρmin = 0.54 e Å3
253 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.42221 (5)0.79964 (4)0.84355 (4)0.03040 (18)
C10.0398 (5)0.9232 (4)0.7050 (3)0.0420 (9)
H10.13950.95310.70970.050*
C20.0198 (5)0.8857 (4)0.6063 (3)0.0448 (9)
H20.03020.88350.52980.054*
C30.1714 (4)0.8511 (4)0.6431 (3)0.0318 (7)
C40.2985 (4)0.8065 (4)0.5790 (3)0.0371 (8)
C50.2946 (6)0.8116 (6)0.4641 (4)0.0636 (13)
H50.20920.84310.42230.076*
C60.4197 (7)0.7690 (8)0.4113 (4)0.090 (2)
H60.42070.77210.33320.108*
C70.5414 (7)0.7226 (7)0.4750 (4)0.0846 (19)
H70.62610.69220.44060.102*
C80.5382 (5)0.7212 (5)0.5893 (4)0.0530 (11)
H80.62200.68900.63220.064*
C90.8750 (4)0.6412 (4)0.9368 (4)0.0403 (8)
H90.98830.64900.96190.048*
C100.7598 (4)0.5198 (3)0.9034 (3)0.0368 (8)
H100.77740.42870.90040.044*
C110.6107 (4)0.5620 (3)0.8748 (3)0.0249 (6)
C120.4408 (4)0.4824 (3)0.8353 (3)0.0252 (6)
C130.4011 (4)0.3396 (3)0.8316 (3)0.0342 (7)
H130.48280.28980.85240.041*
C140.2386 (5)0.2743 (4)0.7967 (4)0.0490 (10)
H140.20810.17860.79330.059*
C150.1224 (5)0.3493 (4)0.7670 (4)0.0517 (10)
H150.01140.30590.74340.062*
C160.1705 (4)0.4906 (4)0.7721 (3)0.0425 (8)
H160.08980.54140.75120.051*
N10.0705 (3)0.9095 (3)0.7943 (2)0.0293 (6)
H1A0.05960.92700.86640.035*
N20.2007 (3)0.8649 (3)0.7574 (2)0.0283 (6)
N30.4193 (4)0.7642 (3)0.6426 (2)0.0355 (6)
N40.7960 (3)0.7468 (3)0.9271 (2)0.0298 (6)
H40.84370.83380.94350.036*
N50.6333 (3)0.7005 (3)0.8887 (2)0.0249 (5)
N60.3280 (3)0.5577 (3)0.8057 (2)0.0294 (6)
O10.1481 (3)0.9642 (2)1.03701 (19)0.0307 (5)
O20.4260 (3)1.0067 (3)1.1403 (3)0.0592 (9)
O30.2278 (3)0.8263 (3)1.1747 (2)0.0411 (6)
O40.3184 (3)0.7973 (3)0.9944 (2)0.0429 (6)
S10.28057 (8)0.89939 (7)1.08803 (6)0.0206 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0288 (3)0.0295 (3)0.0343 (3)0.00912 (19)0.00506 (19)0.00780 (19)
C10.0307 (18)0.055 (2)0.044 (2)0.0196 (16)0.0048 (15)0.0114 (17)
C20.041 (2)0.066 (3)0.0311 (18)0.0229 (18)0.0006 (15)0.0126 (17)
C30.0290 (17)0.0389 (18)0.0276 (16)0.0088 (14)0.0025 (13)0.0076 (13)
C40.0332 (18)0.052 (2)0.0267 (17)0.0145 (16)0.0054 (14)0.0047 (15)
C50.056 (3)0.114 (4)0.031 (2)0.042 (3)0.0086 (18)0.018 (2)
C60.083 (4)0.175 (7)0.033 (2)0.069 (4)0.022 (2)0.028 (3)
C70.071 (3)0.158 (6)0.045 (3)0.066 (4)0.029 (2)0.019 (3)
C80.042 (2)0.084 (3)0.040 (2)0.031 (2)0.0119 (17)0.012 (2)
C90.0263 (17)0.0351 (19)0.060 (2)0.0111 (14)0.0031 (16)0.0110 (17)
C100.0328 (18)0.0241 (16)0.055 (2)0.0121 (13)0.0036 (15)0.0092 (15)
C110.0291 (16)0.0198 (14)0.0280 (15)0.0069 (12)0.0082 (12)0.0060 (11)
C120.0301 (16)0.0218 (15)0.0248 (14)0.0052 (12)0.0095 (12)0.0040 (11)
C130.043 (2)0.0224 (15)0.0372 (18)0.0033 (14)0.0113 (15)0.0063 (13)
C140.057 (3)0.0294 (18)0.055 (2)0.0076 (17)0.0132 (19)0.0058 (16)
C150.034 (2)0.048 (2)0.061 (3)0.0140 (17)0.0075 (18)0.0009 (19)
C160.0308 (18)0.043 (2)0.050 (2)0.0051 (15)0.0048 (16)0.0058 (17)
N10.0252 (13)0.0342 (14)0.0300 (14)0.0082 (11)0.0074 (11)0.0068 (11)
N20.0234 (13)0.0339 (14)0.0284 (14)0.0061 (11)0.0051 (10)0.0080 (11)
N30.0339 (15)0.0463 (17)0.0280 (14)0.0131 (13)0.0062 (12)0.0068 (12)
N40.0246 (13)0.0223 (13)0.0421 (15)0.0037 (10)0.0055 (11)0.0075 (11)
N50.0231 (13)0.0203 (12)0.0336 (14)0.0067 (10)0.0072 (10)0.0081 (10)
N60.0250 (13)0.0277 (13)0.0351 (14)0.0048 (11)0.0064 (11)0.0051 (11)
O10.0285 (11)0.0287 (11)0.0361 (12)0.0150 (9)0.0003 (9)0.0068 (9)
O20.0386 (15)0.0315 (13)0.094 (2)0.0101 (11)0.0226 (15)0.0237 (14)
O30.0504 (15)0.0437 (14)0.0438 (14)0.0197 (12)0.0231 (12)0.0255 (11)
O40.0641 (17)0.0460 (14)0.0352 (13)0.0374 (13)0.0234 (12)0.0156 (11)
S10.0194 (4)0.0186 (4)0.0260 (4)0.0064 (3)0.0043 (3)0.0078 (3)
Geometric parameters (Å, º) top
Co1—O2i2.074 (3)C9—H90.9300
Co1—O42.097 (3)C10—C111.384 (5)
Co1—N52.187 (3)C10—H100.9300
Co1—N22.212 (3)C11—N51.327 (4)
Co1—N62.331 (3)C11—C121.463 (4)
Co1—N32.331 (3)C12—N61.332 (4)
C1—N11.329 (4)C12—C131.387 (4)
C1—C21.351 (5)C13—C141.366 (5)
C1—H10.9300C13—H130.9300
C2—C31.386 (5)C14—C151.351 (6)
C2—H20.9300C14—H140.9300
C3—N21.312 (4)C15—C161.376 (6)
C3—C41.469 (5)C15—H150.9300
C4—N31.328 (4)C16—N61.334 (4)
C4—C51.362 (5)C16—H160.9300
C5—C61.376 (6)N1—N21.337 (4)
C5—H50.9300N1—H1A0.8600
C6—C71.357 (7)N4—N51.336 (4)
C6—H60.9300N4—H40.8600
C7—C81.357 (6)O1—S11.466 (2)
C7—H70.9300O2—S11.446 (3)
C8—N31.336 (5)O2—Co1i2.074 (3)
C8—H80.9300O3—S11.436 (2)
C9—N41.332 (4)O4—S11.466 (2)
C9—C101.363 (5)
O2i—Co1—O4109.51 (13)N5—C11—C10110.9 (3)
O2i—Co1—N592.56 (11)N5—C11—C12117.4 (3)
O4—Co1—N599.64 (10)C10—C11—C12131.7 (3)
O2i—Co1—N293.38 (11)N6—C12—C13122.9 (3)
O4—Co1—N289.94 (10)N6—C12—C11115.1 (3)
N5—Co1—N2166.34 (10)C13—C12—C11122.0 (3)
O2i—Co1—N6161.04 (12)C14—C13—C12118.1 (3)
O4—Co1—N683.92 (10)C14—C13—H13121.0
N5—Co1—N671.51 (10)C12—C13—H13121.0
N2—Co1—N6100.13 (10)C15—C14—C13119.7 (3)
O2i—Co1—N387.49 (13)C15—C14—H14120.1
O4—Co1—N3155.57 (11)C13—C14—H14120.1
N5—Co1—N396.88 (10)C14—C15—C16119.2 (4)
N2—Co1—N371.12 (10)C14—C15—H15120.4
N6—Co1—N384.40 (10)C16—C15—H15120.4
N1—C1—C2107.2 (3)N6—C16—C15122.7 (4)
N1—C1—H1126.4N6—C16—H16118.7
C2—C1—H1126.4C15—C16—H16118.7
C1—C2—C3105.4 (3)C1—N1—N2111.2 (3)
C1—C2—H2127.3C1—N1—H1A124.4
C3—C2—H2127.3N2—N1—H1A124.4
N2—C3—C2110.2 (3)C3—N2—N1106.0 (3)
N2—C3—C4117.7 (3)C3—N2—Co1119.5 (2)
C2—C3—C4132.1 (3)N1—N2—Co1134.3 (2)
N3—C4—C5122.7 (3)C4—N3—C8117.8 (3)
N3—C4—C3114.8 (3)C4—N3—Co1116.2 (2)
C5—C4—C3122.5 (3)C8—N3—Co1125.5 (2)
C4—C5—C6118.6 (4)C9—N4—N5111.4 (3)
C4—C5—H5120.7C9—N4—H4124.3
C6—C5—H5120.7N5—N4—H4124.3
C7—C6—C5119.0 (4)C11—N5—N4105.3 (2)
C7—C6—H6120.5C11—N5—Co1119.8 (2)
C5—C6—H6120.5N4—N5—Co1134.78 (19)
C8—C7—C6119.3 (4)C16—N6—C12117.4 (3)
C8—C7—H7120.3C16—N6—Co1126.2 (2)
C6—C7—H7120.3C12—N6—Co1115.8 (2)
N3—C8—C7122.5 (4)S1—O2—Co1i153.33 (18)
N3—C8—H8118.7S1—O4—Co1137.65 (16)
C7—C8—H8118.7O3—S1—O2110.08 (18)
N4—C9—C10107.6 (3)O3—S1—O4108.22 (15)
N4—C9—H9126.2O2—S1—O4110.2 (2)
C10—C9—H9126.2O3—S1—O1110.61 (15)
C9—C10—C11104.7 (3)O2—S1—O1109.36 (15)
C9—C10—H10127.7O4—S1—O1108.40 (14)
C11—C10—H10127.7
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.982.772 (4)152
N4—H4···O1i0.861.962.761 (4)155
Symmetry code: (i) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Co2(SO4)2(C8H7N3)4]
Mr890.64
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.318 (5), 9.879 (5), 11.807 (6)
α, β, γ (°)100.342 (8), 98.820 (9), 99.302 (8)
V3)925.2 (9)
Z1
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.882, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
4790, 3228, 2990
Rint0.011
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.130, 1.00
No. of reflections3228
No. of parameters253
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.61, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Co1—O2i2.074 (3)Co1—N22.212 (3)
Co1—O42.097 (3)Co1—N62.331 (3)
Co1—N52.187 (3)Co1—N32.331 (3)
N5—Co1—N671.51 (10)N2—Co1—N371.12 (10)
Symmetry code: (i) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.861.982.772 (4)152
N4—H4···O1i0.861.962.761 (4)155
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

The authors acknowledge financial support from the program for talent introduction in Guangdong Higher Education Institutions and the scientific research start-up funds of talent introduction in Maoming University.

References

First citationBruker (2001). SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., Fleming, J. S., Psillakis, E., Jeffery, J. C. & McCleverty, J. A. (1998). Acta Cryst. C54, 609–612.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWard, M. D., McCleverty, J. A. & Jeffery, J. C. (2001). Coord. Chem. Rev. 222, 251–272.  Web of Science CrossRef CAS Google Scholar
First citationZhang, X. T., Lu, C. Z., Zhang, Q. Z., Lu, S. F., Yang, W. B., Liu, J. C. & Zhuang, H. H. (2003). Eur. J. Inorg. Chem. pp. 1181–1185.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds