organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Bis(iso­propyl­sulfan­yl)benzene-1,2-dicarbo­nitrile

aSchool of Chemistry & Chemical Technology, Shandong University, Jinan 250100, People's Republic of China
*Correspondence e-mail: jianzhuang@ustb.edu.cn, zhangxiaomei@sdu.edu.cn

(Received 5 March 2010; accepted 8 March 2010; online 13 March 2010)

In the title compound, C14H16N2S2, the C atoms of the aromatic ring, the two cyanide groups and the two S atoms of the isopropyl­sulfanyl groups are almost coplanar [maximum deviation from the mean plane = 0.042 (7) Å]. In the crystal, inversion dimers linked by aromatic ππ stacking occur, with a centroid–centroid separation of 3.7543 (8) Å.

Related literature

For a related structure and background information on phthalocyanines, see: Zhang et al. (2009[Zhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.]). For the synthesis, see: Rey et al. (1998[Rey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc. 120, 12808-12817.]).

[Scheme 1]

Experimental

Crystal data
  • C14H16N2S2

  • Mr = 276.41

  • Monoclinic, P 21 /n

  • a = 10.4929 (7) Å

  • b = 9.3613 (6) Å

  • c = 15.4491 (11) Å

  • β = 96.467 (1)°

  • V = 1507.87 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 298 K

  • 0.20 × 0.12 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.936, Tmax = 0.983

  • 7215 measured reflections

  • 2653 independent reflections

  • 2371 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.05

  • 2653 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing studies of phthalocyanines (Zhang et al., 2009), we now report the synthesis and structure of the title compound, (I).

As shown in the Fig. 1, the aromatic carbon atoms, two nitrogen atoms and two carbon atoms of two cyanide groups, and two sulfur atoms in the substituted isopropylthio groups build the main skeleton for (I). The skeleton is almost planar with the maximum deviation from the mean plane of 0.042 (7) Å. The bond distances of cyanide groups are consistent with those in similar compounds (Zhang et al., 2009).

In the crystal, inversion dimers (–x, –y, 1–z) linked by aromatic π-π stacking occur, with a centroid-centroid separation of 3.7543 (8)Å.

Related literature top

For a related structure and background information on phthalocyanines, see: Zhang et al. (2009). For the synthesis, see: Rey et al. (1998).

Experimental top

The title compound was prepared according to the literature (Rey et al., 1998) and colourless plates of (I) were recrystallized from ethanol solution.

Refinement top

All H-atoms bound to carbon were refined using a riding model with distance C—H = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic atoms, C—H = 0.98 Å, Uiso = 1.2Ueq (C) for methenyl atoms, and C—H = 0.96 Å, Uiso = 1.5Ueq (C) for methyl atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids are drawn at the 30% probability level.
4,5-Bis(isopropylsulfanyl)benzene-1,2-dicarbonitrile top
Crystal data top
C14H16N2S2F(000) = 584
Mr = 276.41Dx = 1.218 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4590 reflections
a = 10.4929 (7) Åθ = 2.5–27.4°
b = 9.3613 (6) ŵ = 0.34 mm1
c = 15.4491 (11) ÅT = 298 K
β = 96.467 (1)°Plate, colorless
V = 1507.87 (18) Å30.20 × 0.12 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2653 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 129
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
k = 1111
Tmin = 0.936, Tmax = 0.983l = 1718
7215 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0476P)2 + 0.2613P]
where P = (Fo2 + 2Fc2)/3
2653 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H16N2S2V = 1507.87 (18) Å3
Mr = 276.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4929 (7) ŵ = 0.34 mm1
b = 9.3613 (6) ÅT = 298 K
c = 15.4491 (11) Å0.20 × 0.12 × 0.05 mm
β = 96.467 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2653 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2371 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.983Rint = 0.016
7215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.05Δρmax = 0.15 e Å3
2653 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19579 (3)0.17837 (4)0.39373 (3)0.05107 (14)
S20.31036 (3)0.05041 (4)0.51139 (2)0.04640 (14)
C10.02406 (13)0.23666 (15)0.41156 (9)0.0420 (3)
C40.10593 (12)0.02113 (15)0.39674 (9)0.0374 (3)
C50.16133 (12)0.08841 (14)0.45253 (8)0.0362 (3)
C60.09506 (13)0.21542 (15)0.45910 (9)0.0418 (3)
H60.13070.28730.49570.050*
C30.01420 (13)0.00042 (16)0.35047 (9)0.0416 (3)
H30.05150.07180.31480.050*
C20.07884 (13)0.12884 (16)0.35707 (9)0.0408 (3)
C130.35421 (14)0.20982 (16)0.57640 (9)0.0448 (3)
H130.27800.24700.60010.054*
C70.08952 (15)0.37074 (18)0.41839 (11)0.0538 (4)
C140.45028 (15)0.1574 (2)0.65105 (10)0.0583 (4)
H14A0.41110.08500.68320.088*
H14B0.47620.23600.68900.088*
H14C0.52400.11840.62800.088*
N10.14093 (17)0.47715 (17)0.42345 (12)0.0778 (5)
C100.10888 (15)0.29469 (16)0.31245 (10)0.0471 (4)
H100.01910.30130.32400.057*
C80.20085 (14)0.15434 (18)0.30676 (10)0.0507 (4)
N20.29515 (14)0.1806 (2)0.26646 (11)0.0752 (5)
C120.4102 (2)0.3253 (2)0.52361 (13)0.0714 (5)
H12A0.34710.35520.47730.107*
H12B0.48400.28870.49950.107*
H12C0.43490.40540.56050.107*
C110.1728 (2)0.43966 (18)0.32843 (14)0.0722 (5)
H11A0.16800.46810.38770.108*
H11B0.26100.43330.31790.108*
H11C0.12960.50900.28980.108*
C90.1141 (2)0.2436 (2)0.22038 (12)0.0700 (5)
H9A0.07340.15190.21300.105*
H9B0.07020.31060.18050.105*
H9C0.20190.23580.20910.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0376 (2)0.0453 (2)0.0673 (3)0.00601 (15)0.00753 (17)0.01699 (17)
S20.0365 (2)0.0456 (2)0.0536 (2)0.00658 (15)0.01006 (16)0.00971 (16)
C10.0399 (7)0.0423 (8)0.0430 (7)0.0060 (6)0.0014 (6)0.0032 (6)
C40.0323 (7)0.0402 (7)0.0398 (7)0.0001 (5)0.0044 (5)0.0015 (6)
C50.0315 (7)0.0403 (7)0.0363 (7)0.0011 (5)0.0020 (5)0.0001 (5)
C60.0409 (8)0.0401 (8)0.0426 (8)0.0028 (6)0.0031 (6)0.0029 (6)
C30.0354 (7)0.0453 (8)0.0433 (7)0.0034 (6)0.0005 (6)0.0035 (6)
C20.0320 (7)0.0489 (8)0.0406 (7)0.0008 (6)0.0005 (6)0.0062 (6)
C130.0383 (7)0.0513 (9)0.0434 (8)0.0002 (6)0.0017 (6)0.0117 (6)
C70.0507 (9)0.0505 (9)0.0569 (9)0.0110 (7)0.0083 (7)0.0004 (7)
C140.0425 (8)0.0797 (12)0.0499 (9)0.0037 (8)0.0078 (7)0.0122 (8)
N10.0790 (11)0.0594 (10)0.0895 (12)0.0271 (9)0.0150 (9)0.0073 (8)
C100.0425 (8)0.0420 (8)0.0561 (9)0.0071 (6)0.0025 (6)0.0093 (7)
C80.0384 (8)0.0609 (10)0.0513 (9)0.0004 (7)0.0022 (7)0.0051 (7)
N20.0455 (8)0.1017 (13)0.0736 (10)0.0064 (8)0.0150 (7)0.0103 (9)
C120.0734 (13)0.0612 (11)0.0777 (13)0.0156 (9)0.0006 (10)0.0011 (9)
C110.0770 (13)0.0440 (10)0.0921 (14)0.0008 (9)0.0066 (11)0.0183 (9)
C90.0839 (13)0.0701 (12)0.0574 (10)0.0124 (10)0.0142 (9)0.0105 (9)
Geometric parameters (Å, º) top
S1—C41.7515 (14)C7—N11.140 (2)
S1—C101.8265 (15)C14—H14A0.9600
S2—C51.7545 (13)C14—H14B0.9600
S2—C131.8284 (15)C14—H14C0.9600
C1—C61.3909 (19)C10—C91.507 (2)
C1—C21.396 (2)C10—C111.521 (2)
C1—C71.440 (2)C10—H100.9800
C4—C31.3920 (19)C8—N21.135 (2)
C4—C51.4211 (19)C12—H12A0.9600
C5—C61.3868 (19)C12—H12B0.9600
C6—H60.9300C12—H12C0.9600
C3—C21.390 (2)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C2—C81.441 (2)C11—H11C0.9600
C13—C121.512 (2)C9—H9A0.9600
C13—C141.525 (2)C9—H9B0.9600
C13—H130.9800C9—H9C0.9600
C4—S1—C10106.90 (7)H14A—C14—H14B109.5
C5—S2—C13105.88 (7)C13—C14—H14C109.5
C6—C1—C2119.97 (13)H14A—C14—H14C109.5
C6—C1—C7119.57 (13)H14B—C14—H14C109.5
C2—C1—C7120.46 (13)C9—C10—C11111.96 (15)
C3—C4—C5119.46 (13)C9—C10—S1113.04 (11)
C3—C4—S1124.56 (11)C11—C10—S1104.09 (11)
C5—C4—S1115.97 (10)C9—C10—H10109.2
C6—C5—C4119.26 (12)C11—C10—H10109.2
C6—C5—S2124.12 (10)S1—C10—H10109.2
C4—C5—S2116.61 (10)N2—C8—C2176.87 (19)
C5—C6—C1120.80 (13)C13—C12—H12A109.5
C5—C6—H6119.6C13—C12—H12B109.5
C1—C6—H6119.6H12A—C12—H12B109.5
C2—C3—C4120.59 (13)C13—C12—H12C109.5
C2—C3—H3119.7H12A—C12—H12C109.5
C4—C3—H3119.7H12B—C12—H12C109.5
C3—C2—C1119.90 (12)C10—C11—H11A109.5
C3—C2—C8121.00 (14)C10—C11—H11B109.5
C1—C2—C8119.08 (13)H11A—C11—H11B109.5
C12—C13—C14111.97 (14)C10—C11—H11C109.5
C12—C13—S2112.10 (11)H11A—C11—H11C109.5
C14—C13—S2104.90 (11)H11B—C11—H11C109.5
C12—C13—H13109.3C10—C9—H9A109.5
C14—C13—H13109.3C10—C9—H9B109.5
S2—C13—H13109.3H9A—C9—H9B109.5
N1—C7—C1179.6 (2)C10—C9—H9C109.5
C13—C14—H14A109.5H9A—C9—H9C109.5
C13—C14—H14B109.5H9B—C9—H9C109.5

Experimental details

Crystal data
Chemical formulaC14H16N2S2
Mr276.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)10.4929 (7), 9.3613 (6), 15.4491 (11)
β (°) 96.467 (1)
V3)1507.87 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.20 × 0.12 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.936, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
7215, 2653, 2371
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.05
No. of reflections2653
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Postdoctoral Scientific Foundation of China (grant No. 20070411093), the Postdoctoral Scientific Foundation of Shandong Province (grant No. 200603070) and the Independent Innovation Foundation of Shandong University, IIFSDU.

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRey, B., Keller, U. & Torres, T. (1998). J. Am. Chem. Soc. 120, 12808–12817.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Wang, W., Jiang, J. & Ni, Z. (2009). Acta Cryst. E65, o837.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds