organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

12-(4-Meth­oxy­phen­yl)-10-phenyl-3,4,5,6,8,10-hexa­azatri­cyclo­[7.3.0.02,6]dodeca-1(9),2,4,7,11-penta­ene

aDepartment of Physics, Bhavan's Sheth R. A. College of Science, Ahmedabad, Gujarat 380 001, India, bDepartment of Chemistry, M. G. Science Institute, Navrangpura, Ahmedabad, Gujarat 380 009, India, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 March 2010; accepted 7 March 2010; online 13 March 2010)

In the title compound, C19H14N6O, the fused 12-membered tetra­zolo/pyrimidine/pyrrole ring system is almost planar (r.m.s. deviation = 0.013 Å). The 4-methoxy­phenyl and phenyl substituents on the pyrrole ring are both twisted with respect to the fused-ring system [dihedral angles = 25.39 (18) and 36.42 (18)°, respectively]. Intra­molecular C—H⋯N inter­actions occur. In the crystal, mol­ecules pack into layers in the ac plane and these are connected along the b axis via C—H⋯π and ππ [centroid–centroid separation = 3.608 (3) Å] inter­actions.

Related literature

For background to the biological activity of fused tetra­zolopyrimidines, see: Shishoo & Jain (1992[Shishoo, C. J. & Jain, S. K. (1992). J. Heterocycl. Chem. 29, 883-893.]); Desai & Shah (2006[Desai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275-3278.]). For related structures, see: Jotani et al. (2010a[Jotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, o212-o213.],b[Jotani, M. M., Shah, R. D., Jasinski, J. P. & Butcher, R. J. (2010b). Acta Cryst. E66, o574.]); Shah et al. (2010[Shah, R. D., Jotani, M. M. & Jasinski, J. P. (2010). Acta Cryst. E66, o601-o602.]). For semi-empirical quantum chemical calculations, see: Stewart (2009[Stewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. Available from web: http://OpenMOPAC.net.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N6O

  • Mr = 342.36

  • Orthorhombic, P n a 21

  • a = 9.3537 (7) Å

  • b = 23.6045 (19) Å

  • c = 7.1543 (6) Å

  • V = 1579.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.981

  • 16155 measured reflections

  • 1666 independent reflections

  • 1344 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.142

  • S = 1.12

  • 1666 reflections

  • 236 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N4 0.93 2.50 3.257 (5) 138
C15—H15⋯N5 0.93 2.57 3.020 (5) 111
C11—H11⋯Cg1i 0.93 2.91 3.684 (5) 141
C13—H13c⋯Cg1ii 0.96 2.72 3.459 (5) 134
Symmetry codes: (i) [-x, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Comment top

Interest in fused tetrazolopyrimidines relates, in part, to their biological activities (Shishoo & Jain, 1992; Desai & Shah, 2006). In continuation of complementary structural studies (Jotani et al. 2010a; Jotani et al. 2010b; Shah et al. 2010), the synthesis and X-ray crystal structure determination of the title compound, (I), are reported herein.

The molecule of (I) comprises a central pyrimidine ring (N1,N5,C1–C4) to which is fused a tetrazolo ring (N1–N4,C2) and a di-substituted pyrrole ring (N6,C3–C6), Fig. 1. These atoms form a plane with dihedral angles formed between the pyrimidine and the tetrazolo and pyrrole rings being 0.1 (3) and 1.5 (3) °, respectively; the dihedral angle formed between the tetrazolo and pyrrole rings is 1.6 (3) °. The r.m.s. deviation of the 12 non-hydrogen atoms comprising the fused ring system is 0.013 Å. The presence of intramolecular C–H···N interactions, Table 1, are noted and these result in the formation of S(6) and S(7) rings. The 4-methoxyphenyl and benzene substituents on the pyrrole ring are not co-planar with the fused-ring system as seen in the C3–C6–C7–C8 and C4–N6–C14–C15 torsion angles of 24.2 (9) and -39.1 (7) °, respectively.

In the crystal packing, the molecules pack into layers parallel to (0 1 0) with connections between the layers provided by C–H···π, Table 1, and ππ interactions between the five-membered tetrazolo and pyrrole rings [Cg(N1–N4,C2)···Cg(N6,C3–C6)i = 3.608 (3) Å, angle between planes = 5.0 (3) ° for i: 1-x, -y, -1/2+z], Fig. 2.

The Semi-empirical Quantum Chemical Calculations were performed on the experimental structure using the MOPAC2009 programme (Stewart, 2009) to optimize the structure with the Parametrization Model 6 (PM6) approximation together with the restricted Hartree-Fock closed-shell wavefunction; minimizations were terminated at an r.m.s. gradient of less than 0.01 kJ mol-1 Å-1. The most significant difference between the experimental and calculated structures is found in the relative orientation of the 4-methoxyphenyl ring with respect to the pyrrol ring to which it is bonded. This is quantified in the C3–C6–C7–C8 torsion angle of 38.9 ° cf. 24.2 (9) ° in the experimental structure. The orientation of the pyrrole-benzene ring remains unaffected.as seen in the (torsion angles is C4–N6–C14–C15 torsion angle of -38.8 ° cf. -39.1 (7) ° (experiment).

Related literature top

For background to the biological activity of fused tetrazolopyrimidines, see: Shishoo & Jain (1992); Desai & Shah (2006). For related structures, see: Jotani et al. (2010a,b); Shah et al. (2010). For semi-empirical quantum chemical calculations, see: Stewart (2009).

Experimental top

To a well stirred mixture of 5-(4-methoxyphenyl)-7-phenyl-4-chloro-7H-pyrrolo[2,3-d]pyrimidine (5 mmol) and Aliquat 336 (0.5 mmol) in toluene (25 ml) was added sodium azide (6 mmol) in water (5 ml). The reaction mixture was stirred under reflux conditions for 1.5 h. Thereafter, the two phases were separated. The aqueous phase was extracted with toluene and the combined organic layers were washed with water. The excess solvent was distilled off under reduced pressure. The obtained solid was dried to yield (I) which was crystallized from dioxane to obtain the final product (70 % yield, m.pt. 489–491 K). The crystals used for X-ray crystallography were obtained by slow evaporation from the an ethanol solution of (I).

Refinement top

The C-bound H atoms were geometrically placed (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(parent atom). In the absence of significant anomalous scattering effects, 1378 Friedel pairs were averaged in the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level.
[Figure 2] Fig. 2. A view in projection down the a axis in (I), highlighting the C–H···π and ππ interactions (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
12-(4-Methoxyphenyl)-10-phenyl-3,4,5,6,8,10- hexaazatricyclo[7.3.0.02,6]dodeca-1(9),2,4,7,11-pentaene top
Crystal data top
C19H14N6OF(000) = 712
Mr = 342.36Dx = 1.440 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2330 reflections
a = 9.3537 (7) Åθ = 2.0–32.0°
b = 23.6045 (19) ŵ = 0.10 mm1
c = 7.1543 (6) ÅT = 293 K
V = 1579.6 (2) Å3Block, colourless
Z = 40.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1666 independent reflections
Radiation source: fine-focus sealed tube1344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and ϕ scanθmax = 25.9°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1110
Tmin = 0.967, Tmax = 0.981k = 2826
16155 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0924P)2 + 0.1003P]
where P = (Fo2 + 2Fc2)/3
1666 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C19H14N6OV = 1579.6 (2) Å3
Mr = 342.36Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.3537 (7) ŵ = 0.10 mm1
b = 23.6045 (19) ÅT = 293 K
c = 7.1543 (6) Å0.35 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1666 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1344 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.981Rint = 0.051
16155 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.142H-atom parameters constrained
S = 1.12Δρmax = 0.50 e Å3
1666 reflectionsΔρmin = 0.27 e Å3
236 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1311 (2)0.24532 (10)0.1991 (5)0.0436 (7)
N10.6887 (3)0.03688 (12)0.2217 (6)0.0388 (7)
N20.8226 (3)0.01376 (15)0.2170 (8)0.0538 (9)
N30.8028 (3)0.04038 (15)0.2108 (8)0.0570 (10)
N40.6627 (3)0.05488 (13)0.2095 (7)0.0490 (9)
N50.5225 (3)0.11037 (11)0.2330 (6)0.0394 (8)
N60.2784 (3)0.07783 (11)0.2260 (5)0.0345 (7)
C10.6538 (4)0.09319 (16)0.2303 (7)0.0434 (9)
H10.72690.11990.23420.052*
C20.5911 (3)0.00622 (14)0.2167 (8)0.0368 (8)
C30.4447 (3)0.00972 (13)0.2204 (7)0.0326 (7)
C40.4226 (3)0.06828 (13)0.2276 (7)0.0338 (8)
C50.2112 (3)0.02605 (13)0.2160 (7)0.0374 (8)
H50.11260.02110.21280.045*
C60.3086 (3)0.01734 (14)0.2112 (7)0.0348 (8)
C70.2701 (3)0.07795 (14)0.2027 (7)0.0336 (8)
C80.3593 (4)0.12011 (15)0.2688 (6)0.0413 (11)
H80.44940.11050.31360.050*
C90.3172 (4)0.17651 (15)0.2697 (7)0.0430 (11)
H90.37810.20430.31610.052*
C100.1848 (4)0.19110 (13)0.2015 (7)0.0356 (8)
C110.0954 (4)0.14989 (15)0.1288 (6)0.0380 (9)
H110.00710.15970.07860.046*
C120.1390 (4)0.09411 (16)0.1317 (7)0.0382 (9)
H120.07820.06650.08420.046*
C130.2110 (4)0.28780 (15)0.2954 (7)0.0487 (11)
H13A0.30600.28960.24490.073*
H13B0.16500.32390.28020.073*
H13C0.21570.27850.42590.073*
C140.2042 (3)0.13107 (13)0.2232 (7)0.0339 (8)
C150.2549 (4)0.17606 (15)0.3270 (7)0.0375 (9)
H150.33650.17210.40020.045*
C160.1822 (4)0.22714 (15)0.3202 (7)0.0448 (10)
H160.21730.25820.38600.054*
C170.0586 (4)0.23249 (15)0.2172 (8)0.0462 (9)
H170.00970.26680.21370.055*
C180.0080 (4)0.18610 (15)0.1186 (7)0.0456 (10)
H180.07650.18920.05110.055*
C190.0800 (4)0.13608 (15)0.1191 (7)0.0405 (9)
H190.04610.10550.05020.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0420 (14)0.0314 (12)0.057 (2)0.0069 (10)0.0019 (15)0.0016 (15)
N10.0246 (14)0.0442 (16)0.048 (2)0.0005 (12)0.0045 (17)0.0019 (19)
N20.0259 (15)0.062 (2)0.073 (3)0.0029 (14)0.003 (2)0.000 (3)
N30.0294 (16)0.057 (2)0.085 (3)0.0061 (14)0.005 (2)0.000 (3)
N40.0281 (15)0.0476 (19)0.071 (3)0.0056 (12)0.0001 (18)0.002 (2)
N50.0326 (15)0.0351 (15)0.050 (2)0.0048 (12)0.0031 (17)0.0032 (18)
N60.0292 (14)0.0285 (14)0.046 (2)0.0018 (10)0.0029 (17)0.0011 (16)
C10.0353 (19)0.044 (2)0.051 (3)0.0068 (15)0.003 (2)0.002 (2)
C20.0297 (16)0.0390 (18)0.042 (2)0.0006 (14)0.001 (2)0.001 (2)
C30.0287 (16)0.0324 (16)0.0366 (19)0.0006 (13)0.001 (2)0.001 (2)
C40.0301 (16)0.0333 (17)0.038 (2)0.0008 (13)0.0004 (18)0.0011 (19)
C50.0277 (16)0.0322 (18)0.052 (2)0.0003 (13)0.000 (2)0.002 (2)
C60.0284 (16)0.0319 (17)0.044 (2)0.0006 (13)0.000 (2)0.004 (2)
C70.0290 (17)0.0308 (17)0.041 (2)0.0017 (13)0.0057 (18)0.0007 (18)
C80.0305 (19)0.038 (2)0.055 (3)0.0003 (15)0.0042 (17)0.0009 (18)
C90.034 (2)0.0303 (18)0.065 (3)0.0055 (15)0.0018 (19)0.0029 (18)
C100.0358 (18)0.0299 (17)0.041 (2)0.0039 (13)0.0079 (19)0.0023 (18)
C110.0292 (17)0.042 (2)0.042 (2)0.0046 (15)0.0006 (17)0.0028 (19)
C120.0294 (18)0.0359 (19)0.049 (2)0.0050 (15)0.0026 (18)0.0034 (18)
C130.059 (3)0.0315 (19)0.055 (3)0.0006 (18)0.003 (2)0.0022 (19)
C140.0313 (17)0.0298 (16)0.041 (2)0.0008 (13)0.002 (2)0.0026 (19)
C150.0334 (19)0.0349 (19)0.044 (2)0.0012 (15)0.0025 (17)0.0013 (18)
C160.048 (2)0.035 (2)0.051 (3)0.0011 (17)0.002 (2)0.0088 (19)
C170.047 (2)0.0377 (19)0.054 (3)0.0110 (15)0.003 (2)0.001 (2)
C180.038 (2)0.043 (2)0.056 (3)0.0061 (16)0.010 (2)0.004 (2)
C190.038 (2)0.0316 (18)0.052 (3)0.0037 (15)0.006 (2)0.0005 (18)
Geometric parameters (Å, º) top
O1—C101.375 (4)C8—C91.388 (5)
O1—C131.428 (5)C8—H80.9300
N1—N21.367 (4)C9—C101.374 (5)
N1—C21.367 (4)C9—H90.9300
N1—C11.370 (5)C10—C111.384 (5)
N2—N31.292 (5)C11—C121.379 (5)
N3—N41.355 (4)C11—H110.9300
N4—C21.330 (4)C12—H120.9300
N5—C11.294 (4)C13—H13A0.9600
N5—C41.364 (4)C13—H13B0.9600
N6—C41.368 (4)C13—H13C0.9600
N6—C51.376 (4)C14—C151.380 (5)
N6—C141.435 (4)C14—C191.385 (5)
C1—H10.9300C15—C161.385 (5)
C2—C31.420 (4)C15—H150.9300
C3—C41.399 (5)C16—C171.377 (6)
C3—C61.426 (4)C16—H160.9300
C5—C61.371 (4)C17—C181.386 (6)
C5—H50.9300C17—H170.9300
C6—C71.477 (4)C18—C191.359 (5)
C7—C121.380 (5)C18—H180.9300
C7—C81.382 (5)C19—H190.9300
C10—O1—C13117.2 (3)C10—C9—H9120.2
N2—N1—C2108.3 (3)C8—C9—H9120.2
N2—N1—C1127.3 (3)C9—C10—O1124.5 (3)
C2—N1—C1124.4 (3)C9—C10—C11120.1 (3)
N3—N2—N1105.4 (3)O1—C10—C11115.4 (3)
N2—N3—N4112.9 (3)C12—C11—C10119.1 (3)
C2—N4—N3105.6 (3)C12—C11—H11120.4
C1—N5—C4114.9 (3)C10—C11—H11120.4
C4—N6—C5107.7 (3)C11—C12—C7122.1 (3)
C4—N6—C14128.4 (3)C11—C12—H12118.9
C5—N6—C14123.8 (3)C7—C12—H12118.9
N5—C1—N1122.0 (3)O1—C13—H13A109.5
N5—C1—H1119.0O1—C13—H13B109.5
N1—C1—H1119.0H13A—C13—H13B109.5
N4—C2—N1107.9 (3)O1—C13—H13C109.5
N4—C2—C3135.6 (3)H13A—C13—H13C109.5
N1—C2—C3116.5 (3)H13B—C13—H13C109.5
C4—C3—C2113.9 (3)C15—C14—C19120.8 (3)
C4—C3—C6108.2 (3)C15—C14—N6120.0 (3)
C2—C3—C6137.8 (3)C19—C14—N6119.2 (3)
N5—C4—N6123.7 (3)C14—C15—C16118.8 (4)
N5—C4—C3128.3 (3)C14—C15—H15120.6
N6—C4—C3107.9 (3)C16—C15—H15120.6
C6—C5—N6111.2 (3)C17—C16—C15120.7 (4)
C6—C5—H5124.4C17—C16—H16119.6
N6—C5—H5124.4C15—C16—H16119.6
C5—C6—C3104.9 (3)C16—C17—C18119.1 (3)
C5—C6—C7124.2 (3)C16—C17—H17120.4
C3—C6—C7130.9 (3)C18—C17—H17120.4
C12—C7—C8117.6 (3)C19—C18—C17121.1 (4)
C12—C7—C6120.0 (3)C19—C18—H18119.5
C8—C7—C6122.4 (3)C17—C18—H18119.5
C7—C8—C9121.4 (3)C18—C19—C14119.4 (4)
C7—C8—H8119.3C18—C19—H19120.3
C9—C8—H8119.3C14—C19—H19120.3
C10—C9—C8119.6 (3)
C2—N1—N2—N30.4 (7)C2—C3—C6—C5177.7 (6)
C1—N1—N2—N3179.5 (5)C4—C3—C6—C7179.5 (5)
N1—N2—N3—N40.5 (8)C2—C3—C6—C73.6 (11)
N2—N3—N4—C20.5 (7)C5—C6—C7—C1223.8 (8)
C4—N5—C1—N10.3 (7)C3—C6—C7—C12157.7 (5)
N2—N1—C1—N5179.6 (5)C5—C6—C7—C8154.3 (5)
C2—N1—C1—N50.5 (8)C3—C6—C7—C824.2 (9)
N3—N4—C2—N10.2 (6)C12—C7—C8—C92.1 (7)
N3—N4—C2—C3179.7 (7)C6—C7—C8—C9176.0 (4)
N2—N1—C2—N40.1 (6)C7—C8—C9—C100.8 (7)
C1—N1—C2—N4179.8 (5)C8—C9—C10—O1178.6 (4)
N2—N1—C2—C3179.9 (5)C8—C9—C10—C111.3 (7)
C1—N1—C2—C30.2 (8)C13—O1—C10—C98.3 (6)
N4—C2—C3—C4179.7 (6)C13—O1—C10—C11171.7 (4)
N1—C2—C3—C40.3 (7)C9—C10—C11—C122.1 (7)
N4—C2—C3—C62.9 (12)O1—C10—C11—C12177.8 (4)
N1—C2—C3—C6177.1 (6)C10—C11—C12—C70.8 (7)
C1—N5—C4—N6178.8 (5)C8—C7—C12—C111.3 (7)
C1—N5—C4—C30.2 (8)C6—C7—C12—C11176.9 (4)
C5—N6—C4—N5178.6 (5)C4—N6—C14—C1539.1 (7)
C14—N6—C4—N52.3 (8)C5—N6—C14—C15145.1 (4)
C5—N6—C4—C30.6 (5)C4—N6—C14—C19142.5 (5)
C14—N6—C4—C3176.9 (5)C5—N6—C14—C1933.3 (7)
C2—C3—C4—N50.6 (8)C19—C14—C15—C162.3 (6)
C6—C3—C4—N5178.3 (5)N6—C14—C15—C16179.3 (4)
C2—C3—C4—N6178.6 (4)C14—C15—C16—C172.3 (7)
C6—C3—C4—N60.9 (6)C15—C16—C17—C180.5 (7)
C4—N6—C5—C60.1 (5)C16—C17—C18—C191.4 (7)
C14—N6—C5—C6176.6 (5)C17—C18—C19—C141.4 (7)
N6—C5—C6—C30.4 (6)C15—C14—C19—C180.5 (7)
N6—C5—C6—C7179.2 (5)N6—C14—C19—C18178.8 (4)
C4—C3—C6—C50.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···N40.932.503.257 (5)138
C15—H15···N50.932.573.020 (5)111
C11—H11···Cg1i0.932.913.684 (5)141
C13—H13c···Cg1ii0.962.723.459 (5)134
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H14N6O
Mr342.36
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)9.3537 (7), 23.6045 (19), 7.1543 (6)
V3)1579.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
16155, 1666, 1344
Rint0.051
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.142, 1.12
No. of reflections1666
No. of parameters236
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8···N40.932.503.257 (5)138
C15—H15···N50.932.573.020 (5)111
C11—H11···Cg1i0.932.913.684 (5)141
C13—H13c···Cg1ii0.962.723.459 (5)134
Symmetry codes: (i) x, y, z1/2; (ii) x+1/2, y1/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: mmjotani@rediffmail.com.

Acknowledgements

The authors are thankful to the Department of Science and Technology (DST), and the SAIF, IIT Madras, Chennai, India, for the X-ray data collection.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, N. D. & Shah, R. D. (2006). Synthesis, 19, 3275–3278.  Web of Science CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Shah, R. D. & Jasinski, J. P. (2010a). Acta Cryst. E66, o212–o213.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJotani, M. M., Shah, R. D., Jasinski, J. P. & Butcher, R. J. (2010b). Acta Cryst. E66, o574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShah, R. D., Jotani, M. M. & Jasinski, J. P. (2010). Acta Cryst. E66, o601–o602.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShishoo, C. J. & Jain, S. K. (1992). J. Heterocycl. Chem. 29, 883–893.  CrossRef CAS Google Scholar
First citationStewart, J. P. (2009). MOPAC2009. Stewart Computational Chemistry. Available from web: http://OpenMOPAC.net.  Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds